提交 211f83fa 编写于 作者: Z zlx

set depthwise conv layer interface in python

上级 6fd41f7b
......@@ -1741,6 +1741,59 @@ class ParameterReluLayer(LayerBase):
self.create_input_parameter(0, input_layer.size / partial_sum)
@config_layer('depthwise_conv')
class DepthwiseConvLayer(LayerBase):
layer_type = 'depthwise_conv'
def __init__(self,
name,
inputs=[],
bias=True,
num_filters=None,
shared_biases=False,
**xargs):
super(DepthwiseConvLayer, self).__init__(
name, self.layer_type, 0, inputs=inputs, **xargs)
if num_filters is not None:
self.config.num_filters = num_filters
use_gpu = int(g_command_config_args.get("use_gpu", 0))
parallel_nn = int(g_command_config_args.get("parallel_nn", 0))
# Automatically select cudnn_type for GPU and exconv for CPU
# if set type=conv, but still reserve the way user specify
# exconv or cudnn_conv manually.
self.layer_type = "depthwise_conv"
# need to specify layer in config
self.config.type = self.layer_type
if shared_biases is not None:
self.config.shared_biases = shared_biases
for input_index in xrange(len(self.inputs)):
input_layer = self.get_input_layer(input_index)
conv_conf = self.config.inputs[input_index].conv_conf
#set the groups
self.inputs[input_index].conv.groups = self.inputs[
input_index].conv.channels
parse_conv(self.inputs[input_index].conv, input_layer.name,
conv_conf, num_filters)
psize = self.calc_parameter_size(conv_conf)
self.create_input_parameter(input_index, psize)
self.set_cnn_layer(name, conv_conf.output_y, conv_conf.output_x,
self.config.num_filters)
psize = self.config.size
if shared_biases:
psize = self.config.num_filters
self.create_bias_parameter(bias, psize, [psize, 1])
def calc_parameter_size(self, conv_conf):
return self.config.num_filters * conv_conf.filter_channels \
* (conv_conf.filter_size * conv_conf.filter_size_y)
@config_layer('conv')
class ConvLayerBase(LayerBase):
layer_type = 'conv'
......@@ -3145,6 +3198,10 @@ def ParameterHook(type, **kwargs):
if sparsity_ratio is not None:
hook.sparsity_ratio = sparsity_ratio
return hook
elif type == 'dpruning':
hook = ParameterUpdaterHookConfig()
hook.type = type
return hook
else:
return None
......
......@@ -57,6 +57,7 @@ __all__ = [
'classification_cost',
'LayerOutput',
'img_conv_layer',
'img_depthwise_conv_layer',
'img_pool_layer',
'batch_norm_layer',
'img_cmrnorm_layer',
......@@ -148,6 +149,7 @@ class LayerType(object):
HSIGMOID = 'hsigmoid'
CONV_LAYER = 'conv'
CONVTRANS_LAYER = 'convt'
DEPTHWISE_CONV_LAYER = 'depthwise_conv'
EXCONV_LAYER = 'exconv'
EXCONVTRANS_LAYER = 'exconvt'
CUDNNCONV_LAYER = 'cudnn_conv'
......@@ -2085,6 +2087,94 @@ def hsigmoid(input,
name, LayerType.HSIGMOID, parents=parents, size=l.config.size)
@wrap_name_default("depthwise_conv")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
def img_depthwise_conv_layer(input,
filter_size,
num_filters,
name=None,
num_channels=None,
act=None,
groups=1,
stride=1,
padding=0,
bias_attr=None,
param_attr=None,
shared_biases=True,
layer_attr=None,
filter_size_y=None,
stride_y=None,
padding_y=None,
trans=False,
layer_type=None):
if num_channels is None:
assert input.num_filters is not None
num_channels = input.num_filters
if filter_size_y is None:
if isinstance(filter_size, collections.Sequence):
assert len(filter_size) == 2
filter_size, filter_size_y = filter_size
else:
filter_size_y = filter_size
if stride_y is None:
if isinstance(stride, collections.Sequence):
assert len(stride) == 2
stride, stride_y = stride
else:
stride_y = stride
if padding_y is None:
if isinstance(padding, collections.Sequence):
assert len(padding) == 2
padding, padding_y = padding
else:
padding_y = padding
if param_attr.attr.get('initial_smart'):
# special initial for conv layers.
init_w = (2.0 / (filter_size**2 * num_channels))**0.5
param_attr.attr["initial_mean"] = 0.0
param_attr.attr["initial_std"] = init_w
param_attr.attr["initial_strategy"] = 0
param_attr.attr["initial_smart"] = False
lt = LayerType.DEPTHWISE_CONV_LAYER
l = Layer(
name=name,
inputs=Input(
input.name,
conv=Conv(
filter_size=filter_size,
padding=padding,
stride=stride,
channels=num_channels,
groups=groups,
filter_size_y=filter_size_y,
padding_y=padding_y,
stride_y=stride_y),
**param_attr.attr),
active_type=act.name,
num_filters=num_filters,
bias=ParamAttr.to_bias(bias_attr),
shared_biases=shared_biases,
type=lt,
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(
name,
lt,
parents=[input],
activation=act,
num_filters=num_filters,
size=l.config.size)
@wrap_name_default("conv")
@wrap_param_attr_default()
@wrap_bias_attr_default()
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册
新手
引导
客服 返回
顶部