Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
200f07c2
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
200f07c2
编写于
11月 21, 2017
作者:
S
sweetsky0901
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add test
上级
ab03daa4
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
82 addition
and
29 deletion
+82
-29
paddle/operators/math/unpooling.cc
paddle/operators/math/unpooling.cc
+8
-8
paddle/operators/math/unpooling.cu
paddle/operators/math/unpooling.cu
+8
-11
paddle/operators/math/unpooling.h
paddle/operators/math/unpooling.h
+2
-2
paddle/operators/unpool_op.cc
paddle/operators/unpool_op.cc
+15
-6
paddle/operators/unpool_op.h
paddle/operators/unpool_op.h
+2
-2
python/paddle/v2/fluid/tests/test_unpool2d_op.py
python/paddle/v2/fluid/tests/test_unpool2d_op.py
+47
-0
未找到文件。
paddle/operators/math/unpooling.cc
浏览文件 @
200f07c2
...
...
@@ -20,7 +20,7 @@ namespace math {
// All tensors are in NCHW format
template
<
typename
T
>
class
Unpool2d
_
MaxFunctor
<
platform
::
CPUPlace
,
T
>
{
class
Unpool2dMaxFunctor
<
platform
::
CPUPlace
,
T
>
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
...
...
@@ -43,7 +43,7 @@ class Unpool2d_MaxFunctor<platform::CPUPlace, T> {
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
for
(
int
i
=
0
;
i
<
input_feasize
;
++
i
)
{
int
index
=
indices_data
[
i
];
//
PADDLE_ENFORCE(index < output_feasize, "err index in unpooling!");
PADDLE_ENFORCE
(
index
<
output_feasize
,
"err index in unpooling!"
);
output_data
[
index
]
=
input_data
[
i
];
}
input_data
+=
input_feasize
;
...
...
@@ -57,7 +57,7 @@ class Unpool2d_MaxFunctor<platform::CPUPlace, T> {
template
<
class
T
>
class
Unpool2d
_
MaxGradFunctor
<
platform
::
CPUPlace
,
T
>
{
class
Unpool2dMaxGradFunctor
<
platform
::
CPUPlace
,
T
>
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
...
...
@@ -83,7 +83,7 @@ public:
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
for
(
int
i
=
0
;
i
<
input_feasize
;
++
i
)
{
int
index
=
indices_data
[
i
];
//
PADDLE_ENFORCE(index < output_feasize, "err index in unpooling!");
PADDLE_ENFORCE
(
index
<
output_feasize
,
"err index in unpooling!"
);
input_grad_data
[
i
]
=
output_grad_data
[
index
];
}
input_grad_data
+=
input_feasize
;
...
...
@@ -94,10 +94,10 @@ public:
}
};
template
class
Unpool2d
_
MaxGradFunctor
<
platform
::
CPUPlace
,
float
>;
template
class
Unpool2d
_
MaxGradFunctor
<
platform
::
CPUPlace
,
double
>;
template
class
Unpool2d
_
MaxFunctor
<
platform
::
CPUPlace
,
float
>;
template
class
Unpool2d
_
MaxFunctor
<
platform
::
CPUPlace
,
double
>;
template
class
Unpool2dMaxGradFunctor
<
platform
::
CPUPlace
,
float
>;
template
class
Unpool2dMaxGradFunctor
<
platform
::
CPUPlace
,
double
>;
template
class
Unpool2dMaxFunctor
<
platform
::
CPUPlace
,
float
>;
template
class
Unpool2dMaxFunctor
<
platform
::
CPUPlace
,
double
>;
}
// namespace math
}
// namespace operators
...
...
paddle/operators/math/unpooling.cu
浏览文件 @
200f07c2
...
...
@@ -30,12 +30,11 @@ __global__ void KernelUnpool2dMax(const int nthreads,
const
int
output_width
)
{
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
offset
=
blockDim
.
x
*
gridDim
.
x
;
// int output_feasize = output_height * output_width;
for
(
int
i
=
index
;
i
<
nthreads
;
i
+=
offset
)
{
int
out_offset
=
i
/
(
input_height
*
input_width
)
\
*
output_height
*
output_width
;
int
out_index
=
indices_data
[
i
];
// PADDLE_ENFORCE(out_index < output_feasize, "err index in unpooling!"
);
PADDLE_ASSERT
(
out_index
<
(
output_height
*
output_width
)
);
output_data
[
out_offset
+
out_index
]
=
input_data
[
i
];
}
}
...
...
@@ -52,13 +51,11 @@ __global__ void KernelUnpool2dMaxGrad(const int nthreads,
T
*
input_grad
)
{
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
offset
=
blockDim
.
x
*
gridDim
.
x
;
// int output_feasize = output_height * output_width;
for
(
int
i
=
index
;
i
<
nthreads
;
i
+=
offset
)
{
int
out_offset
=
i
/
(
input_height
*
input_width
)
\
*
output_height
*
output_width
;
int
out_index
=
indices_data
[
i
];
// PADDLE_ENFORCE(out_index < output_feasize,
// "err index in unpooling!");
PADDLE_ASSERT
(
out_index
<
(
output_height
*
output_width
));
input_grad
[
i
]
=
output_grad
[
out_offset
+
out_index
];
}
}
...
...
@@ -66,7 +63,7 @@ __global__ void KernelUnpool2dMaxGrad(const int nthreads,
* All tensors are in NCHW format.
*/
template
<
typename
T
>
class
Unpool2d
_
MaxFunctor
<
platform
::
GPUPlace
,
T
>
{
class
Unpool2dMaxFunctor
<
platform
::
GPUPlace
,
T
>
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
...
...
@@ -99,7 +96,7 @@ class Unpool2d_MaxFunctor<platform::GPUPlace, T> {
* All tensors are in NCHW format.
*/
template
<
typename
T
>
class
Unpool2d
_
MaxGradFunctor
<
platform
::
GPUPlace
,
T
>
{
class
Unpool2dMaxGradFunctor
<
platform
::
GPUPlace
,
T
>
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
...
...
@@ -135,11 +132,11 @@ class Unpool2d_MaxGradFunctor<platform::GPUPlace, T> {
}
};
template
class
Unpool2d
_
MaxGradFunctor
<
platform
::
GPUPlace
,
float
>;
template
class
Unpool2d
_
MaxGradFunctor
<
platform
::
GPUPlace
,
double
>;
template
class
Unpool2dMaxGradFunctor
<
platform
::
GPUPlace
,
float
>;
template
class
Unpool2dMaxGradFunctor
<
platform
::
GPUPlace
,
double
>;
template
class
Unpool2d
_
MaxFunctor
<
platform
::
GPUPlace
,
float
>;
template
class
Unpool2d
_
MaxFunctor
<
platform
::
GPUPlace
,
double
>;
template
class
Unpool2dMaxFunctor
<
platform
::
GPUPlace
,
float
>;
template
class
Unpool2dMaxFunctor
<
platform
::
GPUPlace
,
double
>;
}
// namespace math
}
// namespace operators
...
...
paddle/operators/math/unpooling.h
浏览文件 @
200f07c2
...
...
@@ -26,7 +26,7 @@ namespace math {
template
<
typename
Place
,
typename
T
>
class
Unpool2d
_
MaxFunctor
{
class
Unpool2dMaxFunctor
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
...
...
@@ -35,7 +35,7 @@ class Unpool2d_MaxFunctor {
};
template
<
typename
Place
,
class
T
>
class
Unpool2d
_
MaxGradFunctor
{
class
Unpool2dMaxGradFunctor
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
...
...
paddle/operators/unpool_op.cc
浏览文件 @
200f07c2
...
...
@@ -49,11 +49,15 @@ class Unpool2dOpMaker : public framework::OpProtoAndCheckerMaker {
"paddings(height, width) of unpooling operator."
)
.
SetDefault
({
0
,
0
});
AddAttr
<
std
::
string
>
(
"unpoolingType"
,
"(string), unpooling type, can be
\"
max
\"
for max-unpooling "
"and
\"
avg
\"
for average-unpooling."
)
.
InEnum
({
"max"
,
"avg"
});
"(string), unpooling type, can be
\"
max
\"
for max-unpooling "
)
.
InEnum
({
"max"
});
AddComment
(
R"DOC(
"input: the input Tensor to invert"
"indices: the indices given out by MaxPool2d"
"ksize – Size of the max pooling window."
"stride – Stride of the max pooling window."
"It is set to kernel_size by default."
"padding – Padding that was added to the input"
)DOC"
);
}
};
...
...
@@ -82,8 +86,13 @@ class UnpoolOp : public framework::OperatorWithKernel {
std
::
vector
<
int
>
strides
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"paddings"
);
PADDLE_ENFORCE
(
in_x_dims
.
size
()
==
4
||
in_x_dims
.
size
()
==
5
,
"Unpooling intput should be 4-D or 5-D tensor."
);
PADDLE_ENFORCE
(
in_x_dims
.
size
()
==
4
,
"Unpooling intput should be 4-D."
);
for
(
int
i
=
0
;
i
<
4
;
++
i
)
{
PADDLE_ENFORCE
(
in_x_dims
[
i
]
==
in_y_dims
[
i
],
"X size must be eq Y size!"
);
}
std
::
vector
<
int64_t
>
output_shape
({
in_x_dims
[
0
],
in_x_dims
[
1
]});
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
{
...
...
paddle/operators/unpool_op.h
浏览文件 @
200f07c2
...
...
@@ -37,7 +37,7 @@ class UnpoolKernel : public framework::OpKernel<T> {
switch
(
ksize
.
size
())
{
case
2
:
{
if
(
pooling_type
==
"max"
)
{
math
::
Unpool2d
_
MaxFunctor
<
Place
,
T
>
unpool2d_max_forward
;
math
::
Unpool2dMaxFunctor
<
Place
,
T
>
unpool2d_max_forward
;
unpool2d_max_forward
(
context
.
device_context
(),
*
in_x
,
*
in_y
,
out
);
}
}
break
;
...
...
@@ -70,7 +70,7 @@ class UnpoolGradKernel : public framework::OpKernel<T> {
switch
(
ksize
.
size
())
{
case
2
:
{
if
(
pooling_type
==
"max"
)
{
math
::
Unpool2d
_
MaxGradFunctor
<
Place
,
T
>
unpool2d_max_backward
;
math
::
Unpool2dMaxGradFunctor
<
Place
,
T
>
unpool2d_max_backward
;
unpool2d_max_backward
(
context
.
device_context
(),
*
in_x
,
*
in_y
,
in_x_grad
,
*
out
,
*
out_grad
);
}
...
...
python/paddle/v2/fluid/tests/test_unpool2d_op.py
0 → 100644
浏览文件 @
200f07c2
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
def
maxout_forward_naive
(
input
,
groups
):
s0
,
s1
,
s2
,
s3
=
input
.
shape
return
np
.
ndarray
([
s0
,
s1
/
groups
,
groups
,
s2
,
s3
],
\
buffer
=
input
,
dtype
=
input
.
dtype
).
max
(
axis
=
(
2
))
class
TestUnpool2dOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"unpool2d"
self
.
init_test_case
()
input
=
np
.
random
.
random
(
self
.
shape
).
astype
(
"float32"
)
output
=
self
.
MaxOut_forward_naive
(
input
,
self
.
groups
).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
input
}
self
.
attrs
=
{
'strides'
:
self
.
strides
,
'paddings'
:
self
.
paddings
,
'ksize'
:
self
.
ksize
,
'unpooling_type'
:
self
.
pool_type
,
}
self
.
outputs
=
{
'Out'
:
output
.
astype
(
'float32'
)}
def
init_pool_type
(
self
):
self
.
pool_type
=
"max"
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
def
init_test_case
(
self
):
self
.
MaxOut_forward_naive
=
maxout_forward_naive
self
.
shape
=
[
100
,
6
,
2
,
2
]
self
.
groups
=
2
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录