<codeclass="descname">states</code><aclass="headerlink"href="#paddle.v2.fluid.evaluator.Evaluator.states"title="Permalink to this definition">¶</a></dt>
<dd><p><em>list</em>– The list of state variables. states will be reset to zero
<codeclass="descname">metrics</code><aclass="headerlink"href="#paddle.v2.fluid.evaluator.Evaluator.metrics"title="Permalink to this definition">¶</a></dt>
<dd><p><em>list</em>– The list of metrics variables. They will be calculate
<li><strong>x</strong>– The first input of mul op
Duplicable: False Optional: False</li>
<li><strong>y</strong>– The second input of mul op
Duplicable: False Optional: False</li>
<li><strong>x_num_col_dims</strong> (<em>INT</em>) – (int, default 1) mul_op can take tensors with more than two dimensions as input <cite>X</cite>,
in that case, tensors will be reshaped to a matrix. The matrix’s first
dimension(column length) will be the product of tensor’s last
<cite>num_col_dims</cite> dimensions, and the matrix’s second dimension(row length)
will be the product of tensor’s first <cite>rank - num_col_dims</cite> dimensions.</li>
<li><strong>y_num_col_dims</strong> (<em>INT</em>) – (int, default 1) mul_op can take tensors with more than two dimensions as input <cite>Y</cite>,
in that case, tensors will be reshaped to a matrix. Just like input <cite>X</cite>.</li>
</ul>
</td>
</tr>
<trclass="field-even field"><thclass="field-name">Returns:</th><tdclass="field-body"><pclass="first last">The output of mul op</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
</div>
</div>
<divclass="section"id="elementwise-add">
<divclass="section"id="elementwise-add">
<h2>elementwise_add<aclass="headerlink"href="#elementwise-add"title="Permalink to this headline">¶</a></h2>
<h2>elementwise_add<aclass="headerlink"href="#elementwise-add"title="Permalink to this headline">¶</a></h2>
<li><strong>x</strong>– (Tensor)The input tensor, tensors with rank at most 6 are supported
Duplicable: False Optional: False</li>
<li><strong>axis</strong> (<em>INTS</em>) – (vector<int>)A list of values, and the size of the list should be the same with the input tensor rank, the tensor will permute the axes according the the values given</li>
<li><strong>loss</strong>– the target that this optimization is for.</li>
<li><strong>parameters_and_grads</strong>– a list of (variable, gradient) pair to update.</li>
</ul>
</td>
</tr>
<trclass="field-even field"><thclass="field-name">Returns:</th><tdclass="field-body"><pclass="first">a list of operators that will complete one step of
optimization. This will include parameter update ops, global step
update ops and any other custom ops required by subclasses to manage
<emclass="property">class </em><codeclass="descclassname">paddle.v2.fluid.regularizer.</code><codeclass="descname">L1DecayRegularizer</code><spanclass="sig-paren">(</span><em>regularization_coeff=0.0</em><spanclass="sig-paren">)</span><aclass="headerlink"href="#paddle.v2.fluid.regularizer.L1DecayRegularizer"title="Permalink to this definition">¶</a></dt>
<dd><p>Implements the L1 Weight Decay Regularization</p>
<li><ahref="api/v2/data/image.html#paddle.v2.image.left_right_flip">left_right_flip() (in module paddle.v2.image)</a>
<li><ahref="api/v2/fluid/regularizer.html#paddle.v2.fluid.regularizer.L1DecayRegularizer">L1DecayRegularizer (class in paddle.v2.fluid.regularizer)</a>
</li>
</li>
<li><ahref="api/v2/data/image.html#paddle.v2.image.load_and_transform">load_and_transform() (in module paddle.v2.image)</a>
<li><ahref="api/v2/data/image.html#paddle.v2.image.left_right_flip">left_right_flip() (in module paddle.v2.image)</a>
</li>
</li>
</ul></td>
</ul></td>
<tdstyle="width: 33%; vertical-align: top;"><ul>
<tdstyle="width: 33%; vertical-align: top;"><ul>
<li><ahref="api/v2/data/image.html#paddle.v2.image.load_and_transform">load_and_transform() (in module paddle.v2.image)</a>
</li>
<li><ahref="api/v2/data/image.html#paddle.v2.image.load_image">load_image() (in module paddle.v2.image)</a>
<li><ahref="api/v2/data/image.html#paddle.v2.image.load_image">load_image() (in module paddle.v2.image)</a>
</li>
</li>
<li><ahref="api/v2/data/image.html#paddle.v2.image.load_image_bytes">load_image_bytes() (in module paddle.v2.image)</a>
<li><ahref="api/v2/data/image.html#paddle.v2.image.load_image_bytes">load_image_bytes() (in module paddle.v2.image)</a>
<li><ahref="api/v1/data_provider/pydataprovider2_en.html#paddle.trainer.PyDataProvider2.provider">provider() (in module paddle.trainer.PyDataProvider2)</a>
<li><ahref="api/v1/data_provider/pydataprovider2_en.html#paddle.trainer.PyDataProvider2.provider">provider() (in module paddle.trainer.PyDataProvider2)</a>
<li><strong>x</strong>– The first input of mul op
Duplicable: False Optional: False</li>
<li><strong>y</strong>– The second input of mul op
Duplicable: False Optional: False</li>
<li><strong>x_num_col_dims</strong> (<em>INT</em>) – (int, default 1) mul_op can take tensors with more than two dimensions as input <cite>X</cite>,
in that case, tensors will be reshaped to a matrix. The matrix’s first
dimension(column length) will be the product of tensor’s last
<cite>num_col_dims</cite> dimensions, and the matrix’s second dimension(row length)
will be the product of tensor’s first <cite>rank - num_col_dims</cite> dimensions.</li>
<li><strong>y_num_col_dims</strong> (<em>INT</em>) – (int, default 1) mul_op can take tensors with more than two dimensions as input <cite>Y</cite>,
in that case, tensors will be reshaped to a matrix. Just like input <cite>X</cite>.</li>
</ul>
</td>
</tr>
<trclass="field-even field"><thclass="field-name">返回:</th><tdclass="field-body"><pclass="first last">The output of mul op</p>
<li><strong>x</strong>– (Tensor)The input tensor, tensors with rank at most 6 are supported
Duplicable: False Optional: False</li>
<li><strong>axis</strong> (<em>INTS</em>) – (vector<int>)A list of values, and the size of the list should be the same with the input tensor rank, the tensor will permute the axes according the the values given</li>