未验证 提交 1d5746bd 编写于 作者: X Xiaoxu Chen 提交者: GitHub

add rocm support for fft api (#36415)

上级 77f4597f
......@@ -102,8 +102,7 @@ else()
op_library(warpctc_op DEPS dynload_warpctc sequence_padding sequence_scale)
endif()
if (WITH_GPU AND (NOT WITH_ROCM))
if (WITH_GPU OR WITH_ROCM)
if (MKL_FOUND AND WITH_ONEMKL)
op_library(spectral_op SRCS spectral_op.cc spectral_op.cu DEPS dynload_cuda dynload_mklrt ${OP_HEADER_DEPS})
target_include_directories(spectral_op PRIVATE ${MKL_INCLUDE})
......
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/operators/spectral_op.h"
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/dynload/hipfft.h"
#endif
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/dynload/cufft.h"
#endif
namespace paddle {
namespace operators {
using ScalarType = framework::proto::VarType::Type;
const int64_t kMaxCUFFTNdim = 3;
const int64_t kMaxDataNdim = kMaxCUFFTNdim + 1;
// This struct is used to easily compute hashes of the
// parameters. It will be the **key** to the plan cache.
struct PlanKey {
// between 1 and kMaxCUFFTNdim, i.e., 1 <= signal_ndim <= 3
int64_t signal_ndim_;
// These include additional batch dimension as well.
int64_t sizes_[kMaxDataNdim];
int64_t input_shape_[kMaxDataNdim];
int64_t output_shape_[kMaxDataNdim];
FFTTransformType fft_type_;
ScalarType value_type_;
PlanKey() = default;
PlanKey(const std::vector<int64_t>& in_shape,
const std::vector<int64_t>& out_shape,
const std::vector<int64_t>& signal_size, FFTTransformType fft_type,
ScalarType value_type) {
// Padding bits must be zeroed for hashing
memset(this, 0, sizeof(*this));
signal_ndim_ = signal_size.size() - 1;
fft_type_ = fft_type;
value_type_ = value_type;
std::copy(signal_size.cbegin(), signal_size.cend(), sizes_);
std::copy(in_shape.cbegin(), in_shape.cend(), input_shape_);
std::copy(out_shape.cbegin(), out_shape.cend(), output_shape_);
}
};
#if defined(PADDLE_WITH_CUDA)
// An RAII encapsulation of cuFFTHandle
class CuFFTHandle {
::cufftHandle handle_;
public:
CuFFTHandle() {
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cufftCreate(&handle_));
}
::cufftHandle& get() { return handle_; }
const ::cufftHandle& get() const { return handle_; }
~CuFFTHandle() {
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cufftDestroy(handle_));
}
};
using plan_size_type = long long int; // NOLINT
// This class contains all the information needed to execute a cuFFT plan:
// 1. the plan
// 2. the workspace size needed
class CuFFTConfig {
public:
// Only move semantics is enought for this class. Although we already use
// unique_ptr for the plan, still remove copy constructor and assignment op so
// we don't accidentally copy and take perf hit.
explicit CuFFTConfig(const PlanKey& plan_key)
: CuFFTConfig(
std::vector<int64_t>(plan_key.sizes_,
plan_key.sizes_ + plan_key.signal_ndim_ + 1),
plan_key.signal_ndim_, plan_key.fft_type_, plan_key.value_type_) {}
// sizes are full signal, including batch size and always two-sided
CuFFTConfig(const std::vector<int64_t>& sizes, const int64_t signal_ndim,
FFTTransformType fft_type, ScalarType dtype)
: fft_type_(fft_type), value_type_(dtype) {
// signal sizes (excluding batch dim)
std::vector<plan_size_type> signal_sizes(sizes.begin() + 1, sizes.end());
// input batch size
const auto batch = static_cast<plan_size_type>(sizes[0]);
// const int64_t signal_ndim = sizes.size() - 1;
PADDLE_ENFORCE_EQ(signal_ndim, sizes.size() - 1,
platform::errors::InvalidArgument(
"The signal_ndim must be equal to sizes.size() - 1,"
"But signal_ndim is: [%d], sizes.size() - 1 is: [%d]",
signal_ndim, sizes.size() - 1));
cudaDataType itype, otype, exec_type;
const auto complex_input = has_complex_input(fft_type);
const auto complex_output = has_complex_output(fft_type);
if (dtype == framework::proto::VarType::FP32) {
itype = complex_input ? CUDA_C_32F : CUDA_R_32F;
otype = complex_output ? CUDA_C_32F : CUDA_R_32F;
exec_type = CUDA_C_32F;
} else if (dtype == framework::proto::VarType::FP64) {
itype = complex_input ? CUDA_C_64F : CUDA_R_64F;
otype = complex_output ? CUDA_C_64F : CUDA_R_64F;
exec_type = CUDA_C_64F;
} else if (dtype == framework::proto::VarType::FP16) {
itype = complex_input ? CUDA_C_16F : CUDA_R_16F;
otype = complex_output ? CUDA_C_16F : CUDA_R_16F;
exec_type = CUDA_C_16F;
} else {
PADDLE_THROW(platform::errors::InvalidArgument(
"cuFFT only support transforms of type float16, float32 and "
"float64"));
}
// disable auto allocation of workspace to use allocator from the framework
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cufftSetAutoAllocation(
plan(), /* autoAllocate */ 0));
size_t ws_size_t;
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cufftXtMakePlanMany(
plan(), signal_ndim, signal_sizes.data(),
/* inembed */ nullptr, /* base_istride */ 1, /* idist */ 1, itype,
/* onembed */ nullptr, /* base_ostride */ 1, /* odist */ 1, otype,
batch, &ws_size_t, exec_type));
ws_size = ws_size_t;
}
const cufftHandle& plan() const { return plan_ptr.get(); }
FFTTransformType transform_type() const { return fft_type_; }
ScalarType data_type() const { return value_type_; }
size_t workspace_size() const { return ws_size; }
private:
CuFFTHandle plan_ptr;
size_t ws_size;
FFTTransformType fft_type_;
ScalarType value_type_;
};
#elif defined(PADDLE_WITH_HIP)
// An RAII encapsulation of cuFFTHandle
class HIPFFTHandle {
::hipfftHandle handle_;
public:
HIPFFTHandle() {
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::hipfftCreate(&handle_));
}
::hipfftHandle& get() { return handle_; }
const ::hipfftHandle& get() const { return handle_; }
~HIPFFTHandle() {
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::hipfftDestroy(handle_));
}
};
using plan_size_type = int;
// This class contains all the information needed to execute a cuFFT plan:
// 1. the plan
// 2. the workspace size needed
class HIPFFTConfig {
public:
// Only move semantics is enought for this class. Although we already use
// unique_ptr for the plan, still remove copy constructor and assignment op so
// we don't accidentally copy and take perf hit.
explicit HIPFFTConfig(const PlanKey& plan_key)
: HIPFFTConfig(
std::vector<int64_t>(plan_key.sizes_,
plan_key.sizes_ + plan_key.signal_ndim_ + 1),
plan_key.signal_ndim_, plan_key.fft_type_, plan_key.value_type_) {}
// sizes are full signal, including batch size and always two-sided
HIPFFTConfig(const std::vector<int64_t>& sizes, const int64_t signal_ndim,
FFTTransformType fft_type, ScalarType dtype)
: fft_type_(fft_type), value_type_(dtype) {
// signal sizes (excluding batch dim)
std::vector<plan_size_type> signal_sizes(sizes.begin() + 1, sizes.end());
// input batch size
const auto batch = static_cast<plan_size_type>(sizes[0]);
// const int64_t signal_ndim = sizes.size() - 1;
PADDLE_ENFORCE_EQ(signal_ndim, sizes.size() - 1,
platform::errors::InvalidArgument(
"The signal_ndim must be equal to sizes.size() - 1,"
"But signal_ndim is: [%d], sizes.size() - 1 is: [%d]",
signal_ndim, sizes.size() - 1));
hipfftType exec_type = [&] {
if (dtype == framework::proto::VarType::FP32) {
switch (fft_type) {
case FFTTransformType::C2C:
return HIPFFT_C2C;
case FFTTransformType::R2C:
return HIPFFT_R2C;
case FFTTransformType::C2R:
return HIPFFT_C2R;
}
} else if (dtype == framework::proto::VarType::FP64) {
switch (fft_type) {
case FFTTransformType::C2C:
return HIPFFT_Z2Z;
case FFTTransformType::R2C:
return HIPFFT_D2Z;
case FFTTransformType::C2R:
return HIPFFT_Z2D;
}
}
PADDLE_THROW(platform::errors::InvalidArgument(
"hipFFT only support transforms of type float32 and float64"));
}();
// disable auto allocation of workspace to use allocator from the framework
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::hipfftSetAutoAllocation(
plan(), /* autoAllocate */ 0));
size_t ws_size_t;
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::hipfftMakePlanMany(
plan(), signal_ndim, signal_sizes.data(),
/* inembed */ nullptr, /* base_istride */ 1, /* idist */ 1,
/* onembed */ nullptr, /* base_ostride */ 1, /* odist */ 1, exec_type,
batch, &ws_size_t));
ws_size = ws_size_t;
}
const hipfftHandle& plan() const { return plan_ptr.get(); }
FFTTransformType transform_type() const { return fft_type_; }
ScalarType data_type() const { return value_type_; }
size_t workspace_size() const { return ws_size; }
private:
HIPFFTHandle plan_ptr;
size_t ws_size;
FFTTransformType fft_type_;
ScalarType value_type_;
};
#endif
} // namespace operators
} // namespace paddle
......@@ -8,10 +8,6 @@
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <cufft.h>
#include <cufftXt.h>
#include <functional>
#include <list>
#include <memory>
......@@ -24,311 +20,246 @@
#include <vector>
#include "paddle/fluid/operators/conj_op.h"
#include "paddle/fluid/operators/spectral_helper.h"
#include "paddle/fluid/operators/spectral_op.h"
#include "paddle/fluid/operators/transpose_op.h"
#include "paddle/fluid/platform/dynload/cufft.h"
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
namespace operators {
namespace {
using ScalarType = framework::proto::VarType::Type;
const int64_t kMaxCUFFTNdim = 3;
const int64_t kMaxDataNdim = kMaxCUFFTNdim + 1;
static inline std::string get_cufft_error_info(cufftResult error) {
switch (error) {
case CUFFT_SUCCESS:
return "CUFFT_SUCCESS";
case CUFFT_INVALID_PLAN:
return "CUFFT_INVALID_PLAN";
case CUFFT_ALLOC_FAILED:
return "CUFFT_ALLOC_FAILED";
case CUFFT_INVALID_TYPE:
return "CUFFT_INVALID_TYPE";
case CUFFT_INVALID_VALUE:
return "CUFFT_INVALID_VALUE";
case CUFFT_INTERNAL_ERROR:
return "CUFFT_INTERNAL_ERROR";
case CUFFT_EXEC_FAILED:
return "CUFFT_EXEC_FAILED";
case CUFFT_SETUP_FAILED:
return "CUFFT_SETUP_FAILED";
case CUFFT_INVALID_SIZE:
return "CUFFT_INVALID_SIZE";
case CUFFT_UNALIGNED_DATA:
return "CUFFT_UNALIGNED_DATA";
case CUFFT_INCOMPLETE_PARAMETER_LIST:
return "CUFFT_INCOMPLETE_PARAMETER_LIST";
case CUFFT_INVALID_DEVICE:
return "CUFFT_INVALID_DEVICE";
case CUFFT_PARSE_ERROR:
return "CUFFT_PARSE_ERROR";
case CUFFT_NO_WORKSPACE:
return "CUFFT_NO_WORKSPACE";
case CUFFT_NOT_IMPLEMENTED:
return "CUFFT_NOT_IMPLEMENTED";
#ifndef __HIPCC__
case CUFFT_LICENSE_ERROR:
return "CUFFT_LICENSE_ERROR";
#endif
case CUFFT_NOT_SUPPORTED:
return "CUFFT_NOT_SUPPORTED";
default:
std::ostringstream ss;
ss << "unknown error " << error;
return ss.str();
// Calculates the normalization constant
double fft_normalization_scale(FFTNormMode normalization,
const std::vector<int64_t>& sizes,
const std::vector<int64_t>& dims) {
// auto norm = static_cast<fft_norm_mode>(normalization);
if (normalization == FFTNormMode::none) {
return static_cast<double>(1.0);
}
}
static inline void CUFFT_CHECK(cufftResult error) {
PADDLE_ENFORCE_CUDA_SUCCESS(error);
int64_t signal_numel = 1;
for (auto dim : dims) {
signal_numel *= sizes[dim];
}
const double scale_denom = (normalization == FFTNormMode::by_sqrt_n)
? std::sqrt(signal_numel)
: static_cast<double>(signal_numel);
return static_cast<double>(1.0 / scale_denom);
}
// This struct is used to easily compute hashes of the
// parameters. It will be the **key** to the plan cache.
struct PlanKey {
// between 1 and kMaxCUFFTNdim, i.e., 1 <= signal_ndim <= 3
int64_t signal_ndim_;
// These include additional batch dimension as well.
int64_t sizes_[kMaxDataNdim];
int64_t input_shape_[kMaxDataNdim];
int64_t output_shape_[kMaxDataNdim];
FFTTransformType fft_type_;
ScalarType value_type_;
PlanKey() = default;
PlanKey(const std::vector<int64_t>& in_shape,
const std::vector<int64_t>& out_shape,
const std::vector<int64_t>& signal_size, FFTTransformType fft_type,
ScalarType value_type) {
// Padding bits must be zeroed for hashing
memset(this, 0, sizeof(*this));
signal_ndim_ = signal_size.size() - 1;
fft_type_ = fft_type;
value_type_ = value_type;
std::copy(signal_size.cbegin(), signal_size.cend(), sizes_);
std::copy(in_shape.cbegin(), in_shape.cend(), input_shape_);
std::copy(out_shape.cbegin(), out_shape.cend(), output_shape_);
template <typename DeviceContext, typename T>
void exec_normalization(const DeviceContext& ctx, const Tensor* in, Tensor* out,
FFTNormMode normalization,
const std::vector<int64_t>& sizes,
const std::vector<int64_t>& axes) {
double scale = fft_normalization_scale(normalization, sizes, axes);
if (scale != 1.0) {
auto eigen_out = framework::EigenVector<T>::Flatten(*out);
auto eigen_in = framework::EigenVector<T>::Flatten(*in);
auto dev = ctx.eigen_device();
EigenScale<Eigen::GpuDevice, T>::Eval(*dev, eigen_out, eigen_in,
static_cast<T>(scale),
static_cast<T>(0), false);
} else {
framework::TensorCopy(*in, ctx.GetPlace(), out);
}
};
// An RAII encapsulation of cuFFTHandle
class CuFFTHandle {
::cufftHandle handle_;
public:
CuFFTHandle() { CUFFT_CHECK(platform::dynload::cufftCreate(&handle_)); }
}
::cufftHandle& get() { return handle_; }
const ::cufftHandle& get() const { return handle_; }
#if defined(PADDLE_WITH_CUDA)
CuFFTConfig create_cufft_config(const framework::Tensor& input,
const framework::Tensor& output,
int signal_ndim) {
// Create the transform plan (either from cache or locally)
const auto value_type = framework::IsComplexType(input.type())
? framework::ToRealType(input.type())
: input.type();
auto fft_type = GetFFTTransformType(input.type(), output.type());
// signal sizes
std::vector<int64_t> signal_size(signal_ndim + 1);
~CuFFTHandle() {
// Not using fftDestroy() for rocFFT to work around double freeing of handles
#ifndef __HIPCC__
CUFFT_CHECK(platform::dynload::cufftDestroy(handle_));
#endif
signal_size[0] = input.dims()[0];
for (int64_t i = 1; i <= signal_ndim; ++i) {
auto in_size = input.dims()[i];
auto out_size = output.dims()[i];
signal_size[i] = std::max(in_size, out_size);
}
};
PlanKey key(framework::vectorize(input.dims()),
framework::vectorize(output.dims()), signal_size, fft_type,
value_type);
#ifdef __HIPCC__
using plan_size_type = int;
#else
using plan_size_type = long long int; // NOLINT
#endif
return CuFFTConfig(key);
}
// This class contains all the information needed to execute a cuFFT plan:
// 1. the plan
// 2. the workspace size needed
class CuFFTConfig {
public:
// Only move semantics is enought for this class. Although we already use
// unique_ptr for the plan, still remove copy constructor and assignment op so
// we don't accidentally copy and take perf hit.
CuFFTConfig(const CuFFTConfig&) = delete;
CuFFTConfig& operator=(CuFFTConfig const&) = delete;
explicit CuFFTConfig(const PlanKey& plan_key)
: CuFFTConfig(
std::vector<int64_t>(plan_key.sizes_,
plan_key.sizes_ + plan_key.signal_ndim_ + 1),
plan_key.signal_ndim_, plan_key.fft_type_, plan_key.value_type_) {}
// sizes are full signal, including batch size and always two-sided
CuFFTConfig(const std::vector<int64_t>& sizes, const int64_t signal_ndim,
FFTTransformType fft_type, ScalarType dtype)
: fft_type_(fft_type), value_type_(dtype) {
// signal sizes (excluding batch dim)
std::vector<plan_size_type> signal_sizes(sizes.begin() + 1, sizes.end());
// input batch size
const auto batch = static_cast<plan_size_type>(sizes[0]);
// const int64_t signal_ndim = sizes.size() - 1;
PADDLE_ENFORCE_EQ(signal_ndim, sizes.size() - 1,
platform::errors::InvalidArgument(
"The signal_ndim must be equal to sizes.size() - 1,"
"But signal_ndim is: [%d], sizes.size() - 1 is: [%d]",
signal_ndim, sizes.size() - 1));
#ifdef __HIPCC__
hipfftType exec_type = [&] {
if (dtype == framework::proto::VarType::FP32) {
switch (fft_type) {
case FFTTransformType::C2C:
return HIPFFT_C2C;
case FFTTransformType::R2C:
return HIPFFT_R2C;
case FFTTransformType::C2R:
return HIPFFT_C2R;
}
} else if (dtype == framework::proto::VarType::FP64) {
switch (fft_type) {
case FFTTransformType::C2C:
return HIPFFT_Z2Z;
case FFTTransformType::R2C:
return HIPFFT_D2Z;
case FFTTransformType::C2R:
return HIPFFT_Z2D;
}
}
PADDLE_THROW(platform::errors::InvalidArgument(
"hipFFT only support transforms of type float32 and float64"));
}();
#else
cudaDataType itype, otype, exec_type;
const auto complex_input = has_complex_input(fft_type);
const auto complex_output = has_complex_output(fft_type);
if (dtype == framework::proto::VarType::FP32) {
itype = complex_input ? CUDA_C_32F : CUDA_R_32F;
otype = complex_output ? CUDA_C_32F : CUDA_R_32F;
exec_type = CUDA_C_32F;
} else if (dtype == framework::proto::VarType::FP64) {
itype = complex_input ? CUDA_C_64F : CUDA_R_64F;
otype = complex_output ? CUDA_C_64F : CUDA_R_64F;
exec_type = CUDA_C_64F;
} else if (dtype == framework::proto::VarType::FP16) {
itype = complex_input ? CUDA_C_16F : CUDA_R_16F;
otype = complex_output ? CUDA_C_16F : CUDA_R_16F;
exec_type = CUDA_C_16F;
} else {
PADDLE_THROW(platform::errors::InvalidArgument(
"cuFFT only support transforms of type float16, float32 and "
"float64"));
}
#endif
// Execute a pre-planned transform
static void exec_cufft_plan_raw(const CuFFTConfig& config, void* in_data,
void* out_data, bool forward) {
auto& plan = config.plan();
// disable auto allocation of workspace to use allocator from the framework
CUFFT_CHECK(platform::dynload::cufftSetAutoAllocation(
plan(), /* autoAllocate */ 0));
size_t ws_size_t;
// make plan
#ifdef __HIPCC__
CUFFT_CHECK(hipfftMakePlanMany(
plan(), signal_ndim, signal_sizes.data(),
/* inembed */ nullptr, /* base_istride */ 1, /* idist */ 1,
/* onembed */ nullptr, /* base_ostride */ 1, /* odist */ 1, exec_type,
batch, &ws_size_t));
#else
CUFFT_CHECK(platform::dynload::cufftXtMakePlanMany(
plan(), signal_ndim, signal_sizes.data(),
/* inembed */ nullptr, /* base_istride */ 1, /* idist */ 1, itype,
/* onembed */ nullptr, /* base_ostride */ 1, /* odist */ 1, otype,
batch, &ws_size_t, exec_type));
#endif
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cufftXtExec(
plan, in_data, out_data, forward ? CUFFT_FORWARD : CUFFT_INVERSE));
}
ws_size = ws_size_t;
template <typename DeviceContext, typename Ti, typename To>
void exec_cufft_plan(const DeviceContext& ctx, const CuFFTConfig& config,
framework::Tensor* input, framework::Tensor* output,
bool forward) {
// execute transform plan
auto fft_type = config.transform_type();
if (fft_type == FFTTransformType::C2R && forward) {
forward = false;
framework::Tensor input_conj(input->type());
input_conj.mutable_data<Ti>(input->dims(), ctx.GetPlace());
platform::ForRange<DeviceContext> for_range(ctx, input->numel());
math::ConjFunctor<Ti> functor(input->data<Ti>(), input->numel(),
input_conj.data<Ti>());
for_range(functor);
exec_cufft_plan_raw(config, input_conj.data<void>(), output->data<void>(),
forward);
} else if (fft_type == FFTTransformType::R2C && !forward) {
forward = true;
framework::Tensor out_conj(output->type());
out_conj.mutable_data<To>(output->dims(), ctx.GetPlace());
exec_cufft_plan_raw(config, input->data<void>(), out_conj.data<void>(),
forward);
platform::ForRange<DeviceContext> for_range(ctx, output->numel());
math::ConjFunctor<To> functor(out_conj.data<To>(), output->numel(),
output->data<To>());
for_range(functor);
} else {
exec_cufft_plan_raw(config, input->data<void>(), output->data<void>(),
forward);
}
}
const cufftHandle& plan() const { return plan_ptr.get(); }
#elif defined(PADDLE_WITH_HIP)
FFTTransformType transform_type() const { return fft_type_; }
ScalarType data_type() const { return value_type_; }
size_t workspace_size() const { return ws_size; }
HIPFFTConfig create_hipfft_config(const framework::Tensor& input,
const framework::Tensor& output,
int signal_ndim) {
// Create the transform plan (either from cache or locally)
const auto value_type = framework::IsComplexType(input.type())
? framework::ToRealType(input.type())
: input.type();
auto fft_type = GetFFTTransformType(input.type(), output.type());
// signal sizes
std::vector<int64_t> signal_size(signal_ndim + 1);
private:
CuFFTHandle plan_ptr;
size_t ws_size;
FFTTransformType fft_type_;
ScalarType value_type_;
};
signal_size[0] = input.dims()[0];
for (int64_t i = 1; i <= signal_ndim; ++i) {
auto in_size = input.dims()[i];
auto out_size = output.dims()[i];
signal_size[i] = std::max(in_size, out_size);
}
PlanKey key(framework::vectorize(input.dims()),
framework::vectorize(output.dims()), signal_size, fft_type,
value_type);
return HIPFFTConfig(key);
}
// Execute a pre-planned transform
static void exec_cufft_plan(const CuFFTConfig& config, void* in_data,
void* out_data, bool forward) {
static void exec_hipfft_plan_raw(const HIPFFTConfig& config, void* in_data,
void* out_data, bool forward) {
auto& plan = config.plan();
#ifdef __HIPCC__
auto value_type = config.data_type();
if (value_type == framework::proto::VarType::FP32) {
switch (config.transform_type()) {
case FFTTransformType::C2C: {
CUFFT_CHECK(hipfftExecC2C(plan, static_cast<hipfftComplex*>(in_data),
static_cast<hipfftComplex*>(out_data),
forward ? HIPFFT_FORWARD : HIPFFT_BACKWARD));
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::hipfftExecC2C(
plan, static_cast<hipfftComplex*>(in_data),
static_cast<hipfftComplex*>(out_data),
forward ? HIPFFT_FORWARD : HIPFFT_BACKWARD));
return;
}
case FFTTransformType::R2C: {
CUFFT_CHECK(hipfftExecR2C(plan, static_cast<hipfftReal*>(in_data),
static_cast<hipfftComplex*>(out_data)));
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::hipfftExecR2C(
plan, static_cast<hipfftReal*>(in_data),
static_cast<hipfftComplex*>(out_data)));
return;
}
case FFTTransformType::C2R: {
CUFFT_CHECK(hipfftExecC2R(plan, static_cast<hipfftComplex*>(in_data),
static_cast<hipfftReal*>(out_data)));
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::hipfftExecC2R(
plan, static_cast<hipfftComplex*>(in_data),
static_cast<hipfftReal*>(out_data)));
return;
}
}
} else if (value_type == framework::proto::VarType::FP64) {
switch (config.transform_type()) {
case FFTTransformType::C2C: {
CUFFT_CHECK(hipfftExecZ2Z(plan,
static_cast<hipfftDoubleComplex*>(in_data),
static_cast<hipfftDoubleComplex*>(out_data),
forward ? HIPFFT_FORWARD : HIPFFT_BACKWARD));
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::hipfftExecZ2Z(
plan, static_cast<hipfftDoubleComplex*>(in_data),
static_cast<hipfftDoubleComplex*>(out_data),
forward ? HIPFFT_FORWARD : HIPFFT_BACKWARD));
return;
}
case FFTTransformType::R2C: {
CUFFT_CHECK(hipfftExecD2Z(plan, static_cast<hipfftDoubleReal*>(in_data),
static_cast<hipfftDoubleComplex*>(out_data)));
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::hipfftExecD2Z(
plan, static_cast<hipfftDoubleReal*>(in_data),
static_cast<hipfftDoubleComplex*>(out_data)));
return;
}
case FFTTransformType::C2R: {
CUFFT_CHECK(hipfftExecZ2D(plan,
static_cast<hipfftDoubleComplex*>(in_data),
static_cast<hipfftDoubleReal*>(out_data)));
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::hipfftExecZ2D(
plan, static_cast<hipfftDoubleComplex*>(in_data),
static_cast<hipfftDoubleReal*>(out_data)));
return;
}
}
}
PADDLE_THROW(platform::errors::InvalidArgument(
"hipFFT only support transforms of type float32 and float64"));
#else
CUFFT_CHECK(platform::dynload::cufftXtExec(
plan, in_data, out_data, forward ? CUFFT_FORWARD : CUFFT_INVERSE));
#endif
}
template <typename DeviceContext, typename Ti, typename To>
void exec_hipfft_plan(const DeviceContext& ctx, const HIPFFTConfig& config,
framework::Tensor* input, framework::Tensor* output,
bool forward) {
auto fft_type = config.transform_type();
if (fft_type == FFTTransformType::C2R && forward) {
forward = false;
framework::Tensor input_conj(input->type());
input_conj.mutable_data<Ti>(input->dims(), ctx.GetPlace());
platform::ForRange<DeviceContext> for_range(ctx, input->numel());
math::ConjFunctor<Ti> functor(input->data<Ti>(), input->numel(),
input_conj.data<Ti>());
for_range(functor);
exec_hipfft_plan_raw(config, input_conj.data<void>(), output->data<void>(),
forward);
} else if (fft_type == FFTTransformType::R2C && !forward) {
forward = true;
framework::Tensor out_conj(output->type());
out_conj.mutable_data<To>(output->dims(), ctx.GetPlace());
exec_hipfft_plan_raw(config, input->data<void>(), out_conj.data<void>(),
forward);
platform::ForRange<DeviceContext> for_range(ctx, output->numel());
math::ConjFunctor<To> functor(out_conj.data<To>(), output->numel(),
output->data<To>());
for_range(functor);
} else {
exec_hipfft_plan_raw(config, input->data<void>(), output->data<void>(),
forward);
}
}
#endif
// Execute a general unnormalized fft operation (can be c2c, onesided r2c or
// onesided c2r)
template <typename DeviceContext, typename Ti, typename To>
void exec_fft(const DeviceContext& ctx, const Tensor* X, Tensor* out,
const std::vector<int64_t>& dim, bool forward) {
const auto x_dims = framework::vectorize(X->dims());
const auto out_dims = framework::vectorize(out->dims());
const int64_t ndim = static_cast<int64_t>(X->dims().size());
const int64_t signal_ndim = static_cast<int64_t>(dim.size());
const int64_t batch_dims = ndim - signal_ndim;
auto tensor_place = ctx.GetPlace();
// Transpose batch dimensions first, then with transforming dims
// make a dim permutation
std::vector<int> dim_permute(ndim);
std::vector<int> reverse_dim_permute(ndim);
std::vector<int64_t> trans_dims(ndim);
std::iota(dim_permute.begin(), dim_permute.end(), int{0});
std::vector<bool> is_transformed_dim(ndim);
for (const auto& d : dim) {
......@@ -340,160 +271,89 @@ void exec_fft(const DeviceContext& ctx, const Tensor* X, Tensor* out,
std::sort(dim_permute.begin(), batch_end);
std::copy(dim.cbegin(), dim.cend(), batch_end);
for (size_t i = 0; i < ndim; i++) {
trans_dims[i] = x_dims[dim_permute[i]]; // shape of input transpose
reverse_dim_permute[dim_permute[i]] =
static_cast<int>(i); // reverse of dim permute
}
framework::Tensor input;
input.Resize(framework::make_ddim(trans_dims));
input.mutable_data<Ti>(tensor_place);
/*
auto in_ret = TransposeSimple<Ti>::run(ctx, *X, dim_permute, input);
if (!in_ret) {
TransCompute<DeviceContext, Ti>(ndim, ctx, *X, input, dim_permute);
}
*/
TransCompute<DeviceContext, Ti>(ndim, ctx, *X, &input, dim_permute);
// transpose input according to dim permutation
auto transposed_input_shape = X->dims().transpose(dim_permute);
framework::Tensor transposed_input;
transposed_input.Resize(transposed_input_shape);
transposed_input.mutable_data<Ti>(tensor_place);
TransCompute<DeviceContext, Ti>(ndim, ctx, *X, &transposed_input,
dim_permute);
// Reshape batch dimensions into a single dimension
std::vector<int64_t> batched_sizes(signal_ndim + 1);
const int64_t signal_ndim = static_cast<int64_t>(dim.size());
std::vector<int64_t> collapsed_input_shape(signal_ndim + 1);
auto transposed_input_shape_ = framework::vectorize(transposed_input_shape);
const int64_t batch_dims = ndim - signal_ndim;
auto batch_size =
std::accumulate(trans_dims.begin(), trans_dims.begin() + batch_dims,
std::accumulate(transposed_input_shape_.begin(),
transposed_input_shape_.begin() + batch_dims,
static_cast<int>(1), std::multiplies<int>());
batched_sizes[0] = batch_size;
std::copy(trans_dims.begin() + batch_dims, trans_dims.end(),
batched_sizes.begin() + 1);
input.Resize(framework::make_ddim(batched_sizes));
collapsed_input_shape[0] = batch_size;
// Check the shape of transforming dims with input and output
std::vector<int64_t> signal_size(signal_ndim + 1);
signal_size[0] = batch_size;
for (int64_t i = 0; i < signal_ndim; ++i) {
auto in_size = input.dims()[i + 1];
auto out_size = out_dims[dim[i]];
signal_size[i + 1] = std::max(in_size, out_size);
PADDLE_ENFORCE_EQ(
(in_size == signal_size[i + 1] ||
in_size == (signal_size[i + 1] / 2) + 1),
true,
platform::errors::InvalidArgument(
"The dimension[%d] of Input size: [%d] must be equal or half to "
"The dimension[%d] of Output size: [%d]",
dim[i], in_size, dim[i], out_size));
PADDLE_ENFORCE_EQ(
(out_size == signal_size[i + 1] ||
out_size == (signal_size[i + 1] / 2) + 1),
true,
platform::errors::InvalidArgument(
"The dimension[%d] of Output size: [%d] must be equal or half to "
"The dimension[%d] of Input size: [%d]",
dim[i], out_size, dim[i], in_size));
}
std::copy(transposed_input_shape_.begin() + batch_dims,
transposed_input_shape_.end(), collapsed_input_shape.begin() + 1);
std::vector<int64_t> reshape_out_sizes(ndim);
for (size_t i = 0; i < ndim; ++i) {
reshape_out_sizes[i] = out_dims[dim_permute[i]];
}
std::vector<int64_t> batched_out_sizes(batched_sizes.begin(),
batched_sizes.end());
framework::Tensor& collapsed_input = transposed_input;
collapsed_input.Resize(framework::make_ddim(collapsed_input_shape));
// make a collpased output
const auto out_dims = framework::vectorize(out->dims());
std::vector<int64_t> collapsed_output_shape(1 + signal_ndim);
collapsed_output_shape[0] = batch_size;
for (size_t i = 0; i < dim.size(); ++i) {
batched_out_sizes[i + 1] = out_dims[dim[i]];
collapsed_output_shape[i + 1] = out_dims[dim[i]];
}
// output
framework::Tensor output;
output.Resize(framework::make_ddim(batched_out_sizes));
output.mutable_data<To>(tensor_place);
// Create the transform plan (either from cache or locally)
const auto value_type = framework::IsComplexType(input.type())
? framework::ToRealType(input.type())
: input.type();
auto fft_type = GetFFTTransformType(input.type(), output.type());
PlanKey Key(framework::vectorize(input.dims()),
framework::vectorize(output.dims()), signal_size, fft_type,
value_type);
CuFFTConfig uncached_plan(Key);
CuFFTConfig* config = &uncached_plan;
auto& plan = config->plan();
framework::Tensor collapsed_output;
collapsed_output.Resize(framework::make_ddim(collapsed_output_shape));
collapsed_output.mutable_data<To>(tensor_place);
#if defined(PADDLE_WITH_CUDA)
// create plan
CuFFTConfig config =
create_cufft_config(collapsed_input, collapsed_output, signal_ndim);
// prepare cufft for execution
CUFFT_CHECK(platform::dynload::cufftSetStream(plan, ctx.stream()));
PADDLE_ENFORCE_CUDA_SUCCESS(
platform::dynload::cufftSetStream(config.plan(), ctx.stream()));
framework::Tensor workspace_tensor;
workspace_tensor.mutable_data<To>(tensor_place, config->workspace_size());
CUFFT_CHECK(
platform::dynload::cufftSetWorkArea(plan, workspace_tensor.data<To>()));
workspace_tensor.mutable_data<To>(tensor_place, config.workspace_size());
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cufftSetWorkArea(
config.plan(), workspace_tensor.data<To>()));
// execute transform plan
exec_cufft_plan<DeviceContext, Ti, To>(ctx, config, &collapsed_input,
&collapsed_output, forward);
#elif defined(PADDLE_WITH_HIP)
// create plan
HIPFFTConfig config =
create_hipfft_config(collapsed_input, collapsed_output, signal_ndim);
// prepare cufft for execution
PADDLE_ENFORCE_CUDA_SUCCESS(
platform::dynload::hipfftSetStream(config.plan(), ctx.stream()));
framework::Tensor workspace_tensor;
workspace_tensor.mutable_data<To>(tensor_place, config.workspace_size());
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::hipfftSetWorkArea(
config.plan(), workspace_tensor.data<To>()));
// execute transform plan
if (fft_type == FFTTransformType::C2R && forward) {
forward = false;
framework::Tensor input_conj(input.type());
input_conj.mutable_data<Ti>(input.dims(), ctx.GetPlace());
platform::ForRange<DeviceContext> for_range(ctx, input.numel());
math::ConjFunctor<Ti> functor(input.data<Ti>(), input.numel(),
input_conj.data<Ti>());
for_range(functor);
exec_cufft_plan(*config, input_conj.data<void>(), output.data<void>(),
forward);
} else if (fft_type == FFTTransformType::R2C && !forward) {
forward = true;
framework::Tensor out_conj(output.type());
out_conj.mutable_data<To>(output.dims(), ctx.GetPlace());
exec_cufft_plan(*config, input.data<void>(), out_conj.data<void>(),
forward);
platform::ForRange<DeviceContext> for_range(ctx, output.numel());
math::ConjFunctor<To> functor(out_conj.data<To>(), output.numel(),
output.data<To>());
for_range(functor);
} else {
exec_cufft_plan(*config, input.data<void>(), output.data<void>(), forward);
}
exec_hipfft_plan<DeviceContext, Ti, To>(ctx, config, &collapsed_input,
&collapsed_output, forward);
#endif
// Inverting output by reshape and transpose to original batch and dimension
output.Resize(framework::make_ddim(reshape_out_sizes));
out->Resize(framework::make_ddim(out_dims));
TransCompute<DeviceContext, To>(ndim, ctx, output, out, reverse_dim_permute);
}
auto transposed_out_shape = out->dims().transpose(dim_permute);
// Calculates the normalization constant
double fft_normalization_scale(FFTNormMode normalization,
const std::vector<int64_t>& sizes,
const std::vector<int64_t>& dims) {
// auto norm = static_cast<fft_norm_mode>(normalization);
if (normalization == FFTNormMode::none) {
return static_cast<double>(1.0);
}
collapsed_output.Resize(transposed_out_shape);
auto& transposed_output = collapsed_output;
int64_t signal_numel = 1;
for (auto dim : dims) {
signal_numel *= sizes[dim];
std::vector<int> reverse_dim_permute(ndim);
for (size_t i = 0; i < ndim; i++) {
reverse_dim_permute[dim_permute[i]] = i;
}
const double scale_denom = (normalization == FFTNormMode::by_sqrt_n)
? std::sqrt(signal_numel)
: static_cast<double>(signal_numel);
return static_cast<double>(1.0 / scale_denom);
}
template <typename DeviceContext, typename T>
void exec_normalization(const DeviceContext& ctx, const Tensor* in, Tensor* out,
FFTNormMode normalization,
const std::vector<int64_t>& sizes,
const std::vector<int64_t>& axes) {
double scale = fft_normalization_scale(normalization, sizes, axes);
if (scale != 1.0) {
auto eigen_out = framework::EigenVector<T>::Flatten(*out);
auto eigen_in = framework::EigenVector<T>::Flatten(*in);
auto dev = ctx.eigen_device();
EigenScale<Eigen::GpuDevice, T>::Eval(*dev, eigen_out, eigen_in,
static_cast<T>(scale),
static_cast<T>(0), false);
} else {
framework::TensorCopy(*in, ctx.GetPlace(), out);
}
TransCompute<DeviceContext, To>(ndim, ctx, transposed_output, out,
reverse_dim_permute);
}
} // anonymous namespace
// Use the optimized path to perform single R2C or C2R if transformation dim is
......
......@@ -7,7 +7,7 @@ if (NOT WITH_NV_JETSON)
endif()
if (WITH_ROCM)
list(APPEND HIP_SRCS rocblas.cc miopen.cc hiprand.cc)
list(APPEND HIP_SRCS rocblas.cc miopen.cc hiprand.cc hipfft.cc)
endif()
# There is no macOS version of NCCL.
......
......@@ -356,6 +356,16 @@ void* GetCurandDsoHandle() {
#endif
}
#ifdef PADDLE_WITH_HIP
void* GetROCFFTDsoHandle() {
#if defined(__APPLE__) || defined(__OSX__)
return GetDsoHandleFromSearchPath(FLAGS_rocm_dir, "librocfft.dylib");
#else
return GetDsoHandleFromSearchPath(FLAGS_rocm_dir, "librocfft.so");
#endif
}
#endif
void* GetNvjpegDsoHandle() {
#if defined(__APPLE__) || defined(__OSX__)
return GetDsoHandleFromSearchPath(FLAGS_cuda_dir, "libnvjpeg.dylib");
......
......@@ -44,6 +44,7 @@ void* GetOpDsoHandle(const std::string& dso_name);
void* GetNvtxDsoHandle();
void* GetCUFFTDsoHandle();
void* GetMKLRTDsoHandle();
void* GetROCFFTDsoHandle();
void SetPaddleLibPath(const std::string&);
} // namespace dynload
......
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/platform/dynload/hipfft.h"
namespace paddle {
namespace platform {
namespace dynload {
std::once_flag hipfft_dso_flag;
void *hipfft_dso_handle;
#define DEFINE_WRAP(__name) DynLoad__##__name __name
HIPFFT_FFT_ROUTINE_EACH(DEFINE_WRAP);
} // namespace dynload
} // namespace platform
} // namespace paddle
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#ifdef PADDLE_WITH_HIP
#include <hipfft.h>
#include <mutex> // NOLINT
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
#include "paddle/fluid/platform/port.h"
namespace paddle {
namespace platform {
namespace dynload {
extern std::once_flag hipfft_dso_flag;
extern void *hipfft_dso_handle;
#define DECLARE_DYNAMIC_LOAD_HIPFFT_WRAP(__name) \
struct DynLoad__##__name { \
template <typename... Args> \
auto operator()(Args... args) -> DECLARE_TYPE(__name, args...) { \
using hipfftFunc = decltype(&::__name); \
std::call_once(hipfft_dso_flag, []() { \
hipfft_dso_handle = paddle::platform::dynload::GetROCFFTDsoHandle(); \
}); \
static void *p_##__name = dlsym(hipfft_dso_handle, #__name); \
return reinterpret_cast<hipfftFunc>(p_##__name)(args...); \
} \
}; \
extern DynLoad__##__name __name
#define HIPFFT_FFT_ROUTINE_EACH(__macro) \
__macro(hipfftPlan1d); \
__macro(hipfftPlan2d); \
__macro(hipfftPlan3d); \
__macro(hipfftPlanMany); \
__macro(hipfftMakePlan1d); \
__macro(hipfftMakePlanMany); \
__macro(hipfftMakePlanMany64); \
__macro(hipfftGetSizeMany64); \
__macro(hipfftEstimate1d); \
__macro(hipfftEstimate2d); \
__macro(hipfftEstimate3d); \
__macro(hipfftEstimateMany); \
__macro(hipfftCreate); \
__macro(hipfftGetSize1d); \
__macro(hipfftGetSizeMany); \
__macro(hipfftGetSize); \
__macro(hipfftSetWorkArea); \
__macro(hipfftSetAutoAllocation); \
__macro(hipfftExecC2C); \
__macro(hipfftExecR2C); \
__macro(hipfftExecC2R); \
__macro(hipfftExecZ2Z); \
__macro(hipfftExecD2Z); \
__macro(hipfftExecZ2D); \
__macro(hipfftSetStream); \
__macro(hipfftDestroy); \
__macro(hipfftGetVersion); \
__macro(hipfftGetProperty);
HIPFFT_FFT_ROUTINE_EACH(DECLARE_DYNAMIC_LOAD_HIPFFT_WRAP);
inline const char *hipfftGetErrorString(hipfftResult_t status) {
switch (status) {
case HIPFFT_SUCCESS:
return "'HIPFFT_SUCCESS'. The hipFFT operation was successful.";
case HIPFFT_INVALID_PLAN:
return "'HIPFFT_INVALID_PLAN'. hipFFT was passed an invalid plan handle.";
case HIPFFT_ALLOC_FAILED:
return "'HIPFFT_ALLOC_FAILED'. hipFFT failed to allocate GPU or CPU "
"memory.";
case HIPFFT_INVALID_TYPE:
return "'HIPFFT_INVALID_TYPE'. No longer used.";
case HIPFFT_INVALID_VALUE:
return "'HIPFFT_INVALID_VALUE'. User specified an invalid pointer or "
"parameter.";
case HIPFFT_INTERNAL_ERROR:
return "'HIPFFT_INTERNAL_ERROR'. Driver or internal hipFFT library "
"error.";
case HIPFFT_EXEC_FAILED:
return "'HIPFFT_EXEC_FAILED'. Failed to execute an FFT on the GPU.";
case HIPFFT_SETUP_FAILED:
return "'HIPFFT_SETUP_FAILED'. The hipFFT library failed to initialize.";
case HIPFFT_INVALID_SIZE:
return "'HIPFFT_INVALID_SIZE'. User specified an invalid transform size.";
case HIPFFT_UNALIGNED_DATA:
return "'HIPFFT_UNALIGNED_DATA'. No longer used.";
case HIPFFT_INCOMPLETE_PARAMETER_LIST:
return "'HIPFFT_INCOMPLETE_PARAMETER_LIST'. Missing parameters in call.";
case HIPFFT_INVALID_DEVICE:
return "'HIPFFT_INVALID_DEVICE'. Execution of a plan was on different "
"GPU than plan creation.";
case HIPFFT_PARSE_ERROR:
return "'HIPFFT_PARSE_ERROR'. Internal plan database error.";
case HIPFFT_NO_WORKSPACE:
return "'HIPFFT_NO_WORKSPACE'. No workspace has been provided prior to "
"plan execution.";
case HIPFFT_NOT_IMPLEMENTED:
return "'HIPFFT_NOT_IMPLEMENTED'. Function does not implement "
"functionality for parameters given.";
case HIPFFT_NOT_SUPPORTED:
return "'HIPFFT_NOT_SUPPORTED'. Operation is not supported for "
"parameters given.";
default:
return "HIPFFT_STATUS_UNKNOWN_ERROR";
}
}
} // namespace dynload
} // namespace platform
} // namespace paddle
#endif
......@@ -86,6 +86,7 @@ limitations under the License. */
#endif // PADDLE_WITH_CUDA
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/dynload/hipfft.h"
#include "paddle/fluid/platform/dynload/hiprand.h"
#include "paddle/fluid/platform/dynload/miopen.h"
#include "paddle/fluid/platform/dynload/rocblas.h"
......@@ -1113,6 +1114,14 @@ inline std::string build_rocm_error_msg(ncclResult_t nccl_result) {
}
#endif // not(__APPLE__) and PADDLE_WITH_NCCL
/***** HIPFFT ERROR *****/
inline bool is_error(hipfftResult_t stat) { return stat != HIPFFT_SUCCESS; }
inline std::string build_rocm_error_msg(hipfftResult_t stat) {
std::string msg(" HIPFFT error, ");
return msg + platform::dynload::hipfftGetErrorString(stat) + " ";
}
namespace details {
template <typename T>
......@@ -1129,6 +1138,7 @@ DEFINE_EXTERNAL_API_TYPE(hipError_t, hipSuccess);
DEFINE_EXTERNAL_API_TYPE(hiprandStatus_t, HIPRAND_STATUS_SUCCESS);
DEFINE_EXTERNAL_API_TYPE(miopenStatus_t, miopenStatusSuccess);
DEFINE_EXTERNAL_API_TYPE(rocblas_status, rocblas_status_success);
DEFINE_EXTERNAL_API_TYPE(hipfftResult_t, HIPFFT_SUCCESS);
#if !defined(__APPLE__) && defined(PADDLE_WITH_RCCL)
DEFINE_EXTERNAL_API_TYPE(ncclResult_t, ncclSuccess);
......
......@@ -331,6 +331,10 @@ TEST(enforce, hip_success) {
CheckCudaStatusFailure(rocblas_status_invalid_handle, "Rocblas error"));
EXPECT_TRUE(
CheckCudaStatusFailure(rocblas_status_invalid_value, "Rocblas error"));
EXPECT_TRUE(CheckCudaStatusSuccess(HIPFFT_SUCCESS));
EXPECT_TRUE(CheckCudaStatusFailure(HIPFFT_INVALID_PLAN, "HIPFFT error"));
EXPECT_TRUE(CheckCudaStatusFailure(HIPFFT_ALLOC_FAILED, "HIPFFT error"));
#if !defined(__APPLE__) && defined(PADDLE_WITH_RCCL)
EXPECT_TRUE(CheckCudaStatusSuccess(ncclSuccess));
EXPECT_TRUE(CheckCudaStatusFailure(ncclUnhandledCudaError, "Rccl error"));
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册