Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
1d19eb2b
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1d19eb2b
编写于
11月 15, 2018
作者:
B
baojun-nervana
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Implemented ngraph engine
test=develop
上级
b4de023e
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
449 addition
and
26 deletion
+449
-26
paddle/fluid/framework/CMakeLists.txt
paddle/fluid/framework/CMakeLists.txt
+2
-1
paddle/fluid/framework/ngraph_bridge.cc
paddle/fluid/framework/ngraph_bridge.cc
+85
-3
paddle/fluid/framework/ngraph_bridge.h
paddle/fluid/framework/ngraph_bridge.h
+6
-8
paddle/fluid/framework/ngraph_operator.cc
paddle/fluid/framework/ngraph_operator.cc
+355
-8
paddle/fluid/framework/ngraph_operator.h
paddle/fluid/framework/ngraph_operator.h
+1
-6
未找到文件。
paddle/fluid/framework/CMakeLists.txt
浏览文件 @
1d19eb2b
...
@@ -126,8 +126,9 @@ cc_library(version SRCS version.cc)
...
@@ -126,8 +126,9 @@ cc_library(version SRCS version.cc)
cc_test
(
version_test SRCS version_test.cc DEPS version
)
cc_test
(
version_test SRCS version_test.cc DEPS version
)
cc_library
(
proto_desc SRCS var_desc.cc op_desc.cc block_desc.cc program_desc.cc DEPS shape_inference op_info operator glog version
)
cc_library
(
proto_desc SRCS var_desc.cc op_desc.cc block_desc.cc program_desc.cc DEPS shape_inference op_info operator glog version
)
cc_library
(
ngraph_bridge SRCS ngraph_bridge.cc DEPS operator framework_proto
)
if
(
NOT WIN32
)
if
(
NOT WIN32
)
cc_library
(
ngraph_bridge SRCS ngraph_bridge.cc DEPS operator framework_proto ngraph
)
cc_library
(
ngraph_operator SRCS ngraph_operator.cc DEPS ngraph_bridge operator op_info device_context tensor scope glog
cc_library
(
ngraph_operator SRCS ngraph_operator.cc DEPS ngraph_bridge operator op_info device_context tensor scope glog
shape_inference data_transform lod_tensor profiler
)
shape_inference data_transform lod_tensor profiler
)
endif
(
NOT WIN32
)
endif
(
NOT WIN32
)
...
...
paddle/fluid/framework/ngraph_bridge.cc
浏览文件 @
1d19eb2b
...
@@ -15,23 +15,105 @@ limitations under the License. */
...
@@ -15,23 +15,105 @@ limitations under the License. */
#ifdef PADDLE_WITH_NGRAPH
#ifdef PADDLE_WITH_NGRAPH
#include <algorithm>
#include <algorithm>
#include <functional>
#include <functional>
#include <vector>
#include "paddle/fluid/framework/ngraph_bridge.h"
#include "paddle/fluid/framework/ngraph_bridge.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/enforce.h"
#include "ngraph/ngraph.hpp"
#include "ngraph/ngraph.hpp"
namespace
paddle
{
namespace
paddle
{
namespace
framework
{
namespace
framework
{
static
std
::
shared_ptr
<
ngraph
::
Node
>
GetNode
(
const
std
::
shared_ptr
<
OperatorBase
>&
op
,
const
std
::
string
prm
,
const
VariableNameMap
&
var_map
,
std
::
shared_ptr
<
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
ngraph
::
Node
>>>
ngb_node_map
)
{
auto
&
var_names
=
var_map
.
at
(
prm
);
PADDLE_ENFORCE_EQ
(
var_names
.
size
(),
1
,
"op %s prm %s expects one associated var"
,
op
->
Type
(),
prm
);
if
(
ngb_node_map
->
find
(
var_names
[
0
])
!=
ngb_node_map
->
end
())
{
return
(
*
ngb_node_map
)[
var_names
[
0
]];
}
else
{
return
nullptr
;
}
}
static
std
::
shared_ptr
<
ngraph
::
Node
>
GetInputNode
(
const
std
::
shared_ptr
<
OperatorBase
>&
op
,
const
std
::
string
prm
,
std
::
shared_ptr
<
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
ngraph
::
Node
>>>
ngb_node_map
)
{
return
GetNode
(
op
,
prm
,
op
->
Inputs
(),
ngb_node_map
);
}
static
std
::
shared_ptr
<
ngraph
::
Node
>
GetOutputNode
(
const
std
::
shared_ptr
<
OperatorBase
>&
op
,
const
std
::
string
prm
,
std
::
shared_ptr
<
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
ngraph
::
Node
>>>
ngb_node_map
)
{
return
GetNode
(
op
,
prm
,
op
->
Outputs
(),
ngb_node_map
);
}
static
void
SetOutputNode
(
const
std
::
shared_ptr
<
OperatorBase
>&
op
,
const
std
::
string
prm
,
std
::
shared_ptr
<
ngraph
::
Node
>
node
,
std
::
shared_ptr
<
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
ngraph
::
Node
>>>
ngb_node_map
)
{
auto
&
var_names
=
op
->
Outputs
().
at
(
prm
);
if
(
var_names
.
size
()
==
1
)
{
(
*
ngb_node_map
)[
var_names
[
0
]]
=
node
;
}
else
if
(
var_names
.
size
()
==
0
)
{
(
*
ngb_node_map
)[
""
]
=
node
;
}
else
{
PADDLE_THROW
(
"prm %s has more than 1 var_names."
,
prm
);
}
}
static
bool
HasOutput
(
const
std
::
shared_ptr
<
OperatorBase
>&
op
,
const
std
::
string
prm
)
{
auto
&
outputs
=
op
->
Outputs
();
if
(
outputs
.
find
(
prm
)
==
outputs
.
end
())
return
false
;
return
outputs
.
at
(
prm
).
size
()
>
0
;
}
template
<
typename
T
>
static
void
BuildBinaryNode
(
const
std
::
shared_ptr
<
OperatorBase
>&
op
,
std
::
shared_ptr
<
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
ngraph
::
Node
>>>
ngb_node_map
)
{
auto
x
=
GetInputNode
(
op
,
"X"
,
ngb_node_map
);
auto
y
=
GetInputNode
(
op
,
"Y"
,
ngb_node_map
);
auto
out
=
std
::
make_shared
<
T
>
(
x
,
y
);
SetOutputNode
(
op
,
"Out"
,
out
,
ngb_node_map
);
}
template
<
typename
T
>
static
void
BuildUnaryNode
(
const
std
::
shared_ptr
<
OperatorBase
>&
op
,
std
::
shared_ptr
<
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
ngraph
::
Node
>>>
ngb_node_map
)
{
auto
input
=
GetInputNode
(
op
,
"X"
,
ngb_node_map
);
auto
out
=
std
::
make_shared
<
T
>
(
input
);
SetOutputNode
(
op
,
"Out"
,
out
,
ngb_node_map
);
}
std
::
map
<
std
::
string
,
std
::
map
<
std
::
string
,
std
::
function
<
void
(
const
std
::
shared_ptr
<
OperatorBase
>&
,
std
::
function
<
void
(
const
std
::
shared_ptr
<
OperatorBase
>&
,
std
::
shared_ptr
<
std
::
unordered_map
<
std
::
shared_ptr
<
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
ngraph
::
Node
>>>
)
>>
std
::
string
,
std
::
shared_ptr
<
ngraph
::
Node
>>>
)
>>
NgraphBridge
::
NG_NODE_MAP
=
{};
NgraphBridge
::
NG_NODE_MAP
=
{{
"relu"
,
BuildUnaryNode
<
ngraph
::
op
::
Relu
>
},
{
"tanh"
,
BuildUnaryNode
<
ngraph
::
op
::
Tanh
>
}};
void
NgraphBridge
::
build_g
raph
(
const
std
::
shared_ptr
<
OperatorBase
>&
op
)
{
void
NgraphBridge
::
BuildNgG
raph
(
const
std
::
shared_ptr
<
OperatorBase
>&
op
)
{
auto
&
op_type
=
op
->
Type
();
auto
&
op_type
=
op
->
Type
();
NG_NODE_MAP
[
op_type
](
op
,
ngb_node_map
);
NG_NODE_MAP
[
op_type
](
op
,
ngb_node_map
_
);
}
}
}
// namespace framework
}
// namespace framework
...
...
paddle/fluid/framework/ngraph_bridge.h
浏览文件 @
1d19eb2b
...
@@ -20,16 +20,14 @@ limitations under the License. */
...
@@ -20,16 +20,14 @@ limitations under the License. */
#include <map>
#include <map>
#include <string>
#include <string>
#include <unordered_map>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/operator.h"
#include "ngraph/node.hpp"
#include "paddle/fluid/platform/enforce.h"
#include "ngraph/ngraph.hpp"
namespace
paddle
{
namespace
paddle
{
namespace
framework
{
namespace
framework
{
class
OperatorBase
;
class
NgraphBridge
{
class
NgraphBridge
{
public:
public:
static
std
::
map
<
static
std
::
map
<
...
@@ -43,14 +41,14 @@ class NgraphBridge {
...
@@ -43,14 +41,14 @@ class NgraphBridge {
std
::
shared_ptr
<
std
::
shared_ptr
<
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
ngraph
::
Node
>>>
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
ngraph
::
Node
>>>
var_node_map
)
var_node_map
)
:
ngb_node_map
(
var_node_map
)
{}
:
ngb_node_map
_
(
var_node_map
)
{}
void
build_g
raph
(
const
std
::
shared_ptr
<
OperatorBase
>&
op
);
void
BuildNgG
raph
(
const
std
::
shared_ptr
<
OperatorBase
>&
op
);
private:
private:
std
::
shared_ptr
<
std
::
shared_ptr
<
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
ngraph
::
Node
>>>
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
ngraph
::
Node
>>>
ngb_node_map
;
ngb_node_map
_
;
};
};
}
// namespace framework
}
// namespace framework
...
...
paddle/fluid/framework/ngraph_operator.cc
浏览文件 @
1d19eb2b
...
@@ -19,14 +19,29 @@ limitations under the License. */
...
@@ -19,14 +19,29 @@ limitations under the License. */
#include <map>
#include <map>
#include "paddle/fluid/framework/feed_fetch_type.h"
#include "paddle/fluid/framework/feed_fetch_type.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/ngraph_bridge.h"
#include "paddle/fluid/framework/ngraph_operator.h"
#include "paddle/fluid/framework/ngraph_operator.h"
#include "paddle/fluid/framework/
shape_inference
.h"
#include "paddle/fluid/framework/
tensor
.h"
#include "paddle/fluid/framework/var_desc.h"
#include "paddle/fluid/framework/var_desc.h"
#include "paddle/fluid/framework/var_type.h"
#include "paddle/fluid/framework/var_type.h"
#include "ngraph/ngraph.hpp"
namespace
paddle
{
namespace
paddle
{
namespace
framework
{
namespace
framework
{
static
ngraph
::
Shape
Ddim2Shape
(
const
DDim
&
dims
)
{
ngraph
::
Shape
sp
;
for
(
int
i
=
0
;
i
<
dims
.
size
();
++
i
)
{
int
k
=
dims
[
i
];
k
=
k
==
0
?
1
:
k
;
sp
.
push_back
(
k
);
}
return
sp
;
}
static
std
::
map
<
proto
::
VarType
::
Type
,
ngraph
::
element
::
Type
>
pd2ng_type_map
=
{
static
std
::
map
<
proto
::
VarType
::
Type
,
ngraph
::
element
::
Type
>
pd2ng_type_map
=
{
{
proto
::
VarType
::
FP32
,
ngraph
::
element
::
f32
},
{
proto
::
VarType
::
FP32
,
ngraph
::
element
::
f32
},
{
proto
::
VarType
::
FP64
,
ngraph
::
element
::
f64
},
{
proto
::
VarType
::
FP64
,
ngraph
::
element
::
f64
},
...
@@ -59,13 +74,23 @@ class NgraphOperator {
...
@@ -59,13 +74,23 @@ class NgraphOperator {
persistables_
(
persist
),
persistables_
(
persist
),
fetches_
(
fetches
),
fetches_
(
fetches
),
post_op_inputs_
(
post_op_inputs
),
post_op_inputs_
(
post_op_inputs
),
ng_op_state_
(
ng_op_state
)
{}
ng_op_state_
(
ng_op_state
)
{
var_in_node_map_
=
std
::
make_shared
<
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
ngraph
::
Node
>>>
();
var_node_map_
=
std
::
make_shared
<
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
ngraph
::
Node
>>>
();
BuildNgIO
();
GetNgFunction
();
}
void
Run
(
const
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
;
void
Run
(
const
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
;
private:
private:
static
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
ngraph
::
Function
>>
static
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
ngraph
::
Function
>>
func_cache
;
func_cache
_
;
const
Scope
&
scope_
;
const
Scope
&
scope_
;
const
platform
::
Place
&
place_
;
const
platform
::
Place
&
place_
;
std
::
vector
<
std
::
shared_ptr
<
OperatorBase
>>
fused_ops_
;
std
::
vector
<
std
::
shared_ptr
<
OperatorBase
>>
fused_ops_
;
...
@@ -74,6 +99,35 @@ class NgraphOperator {
...
@@ -74,6 +99,35 @@ class NgraphOperator {
std
::
unordered_set
<
std
::
string
>
fetches_
;
std
::
unordered_set
<
std
::
string
>
fetches_
;
std
::
unordered_set
<
std
::
string
>
post_op_inputs_
;
std
::
unordered_set
<
std
::
string
>
post_op_inputs_
;
op_state
ng_op_state_
;
op_state
ng_op_state_
;
static
std
::
shared_ptr
<
ngraph
::
runtime
::
Backend
>
backend_
;
std
::
shared_ptr
<
ngraph
::
Function
>
ngraph_function_
;
// var_name of inputs
std
::
vector
<
std
::
string
>
var_in_
;
// var_name of outputs from fetch in order
std
::
vector
<
std
::
string
>
var_out_
;
std
::
shared_ptr
<
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
ngraph
::
Node
>>>
var_in_node_map_
;
// map each var name with a ngraph node
std
::
shared_ptr
<
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
ngraph
::
Node
>>>
var_node_map_
;
std
::
shared_ptr
<
std
::
string
>
GetCacheKey
();
void
GetNgInputShape
(
std
::
shared_ptr
<
OperatorBase
>
op
);
void
BuildNgNode
();
void
BuildNgIO
();
void
BuildNgFunction
();
void
GetNgFunction
();
};
};
std
::
vector
<
std
::
vector
<
std
::
vector
<
std
::
unique_ptr
<
OperatorBase
>>::
iterator
>>
std
::
vector
<
std
::
vector
<
std
::
vector
<
std
::
unique_ptr
<
OperatorBase
>>::
iterator
>>
...
@@ -86,7 +140,7 @@ FusedOperator::FusedOpIntervals(
...
@@ -86,7 +140,7 @@ FusedOperator::FusedOpIntervals(
}
}
size_t
size
=
ops
->
size
();
size_t
size
=
ops
->
size
();
size_t
left
=
0
;
size_t
left
=
0
;
while
(
left
<
size
&&
ops
.
at
(
left
)
->
Type
()
!=
kFeedOpType
)
{
while
(
left
<
size
&&
ops
->
at
(
left
)
->
Type
()
!=
kFeedOpType
)
{
++
left
;
++
left
;
}
}
if
(
left
==
size
)
{
if
(
left
==
size
)
{
...
@@ -116,7 +170,7 @@ FusedOperator::FusedOpIntervals(
...
@@ -116,7 +170,7 @@ FusedOperator::FusedOpIntervals(
size_t
start
=
pivot
,
end
=
start
;
size_t
start
=
pivot
,
end
=
start
;
while
(
pivot
<
right
&&
while
(
pivot
<
right
&&
(
paddle
::
framework
::
NgraphBridge
::
NG_NODE_MAP
.
find
(
(
paddle
::
framework
::
NgraphBridge
::
NG_NODE_MAP
.
find
(
ops
.
at
(
pivot
)
->
Type
())
!=
ops
->
at
(
pivot
)
->
Type
())
!=
paddle
::
framework
::
NgraphBridge
::
NG_NODE_MAP
.
end
()))
{
paddle
::
framework
::
NgraphBridge
::
NG_NODE_MAP
.
end
()))
{
++
pivot
;
++
pivot
;
++
end
;
++
end
;
...
@@ -136,7 +190,9 @@ FusedOperator::FusedOperator(
...
@@ -136,7 +190,9 @@ FusedOperator::FusedOperator(
std
::
vector
<
std
::
unique_ptr
<
OperatorBase
>>::
iterator
end
,
std
::
vector
<
std
::
unique_ptr
<
OperatorBase
>>::
iterator
end
,
const
std
::
string
&
type
,
const
VariableNameMap
&
inputs
,
const
std
::
string
&
type
,
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
AttributeMap
&
attrs
)
const
VariableNameMap
&
outputs
,
const
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
),
pdesc
(
prog
),
block
(
block_id
)
{
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
),
pdesc_
(
prog
),
block_
(
block_id
)
{
for
(
std
::
vector
<
std
::
unique_ptr
<
OperatorBase
>>::
iterator
it
=
start
;
for
(
std
::
vector
<
std
::
unique_ptr
<
OperatorBase
>>::
iterator
it
=
start
;
it
!=
end
;
++
it
)
{
it
!=
end
;
++
it
)
{
fused_ops_
.
push_back
(
std
::
move
(
*
it
));
fused_ops_
.
push_back
(
std
::
move
(
*
it
));
...
@@ -152,7 +208,7 @@ FusedOperator::FusedOperator(
...
@@ -152,7 +208,7 @@ FusedOperator::FusedOperator(
}
}
if
((
*
(
start
-
1
))
->
Type
()
==
kFeedOpType
&&
(
*
end
)
->
Type
()
==
kFetchOpType
)
{
if
((
*
(
start
-
1
))
->
Type
()
==
kFeedOpType
&&
(
*
end
)
->
Type
()
==
kFetchOpType
)
{
is_
complete
=
true
;
is_
full_
=
true
;
}
}
Process
();
Process
();
...
@@ -205,7 +261,7 @@ void FusedOperator::RunImpl(const Scope& scope,
...
@@ -205,7 +261,7 @@ void FusedOperator::RunImpl(const Scope& scope,
}
}
}
}
if
(
is_full
)
{
if
(
is_full
_
)
{
ng_op_state
=
ng_op_state
==
PARTIAL_TEST
?
FULL_TEST
:
FULL_TRAIN
;
ng_op_state
=
ng_op_state
==
PARTIAL_TEST
?
FULL_TEST
:
FULL_TRAIN
;
}
}
...
@@ -215,6 +271,297 @@ void FusedOperator::RunImpl(const Scope& scope,
...
@@ -215,6 +271,297 @@ void FusedOperator::RunImpl(const Scope& scope,
ngraph_op
.
Run
(
scope
,
place
);
ngraph_op
.
Run
(
scope
,
place
);
}
}
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
ngraph
::
Function
>>
NgraphOperator
::
func_cache_
=
{};
std
::
shared_ptr
<
ngraph
::
runtime
::
Backend
>
NgraphOperator
::
backend_
=
ngraph
::
runtime
::
Backend
::
create
(
"CPU"
);
void
NgraphOperator
::
GetNgInputShape
(
std
::
shared_ptr
<
OperatorBase
>
op
)
{
RuntimeInferShapeContext
infer_shape_ctx
(
*
op
,
scope_
);
std
::
shared_ptr
<
OperatorWithKernel
>
op_k
=
std
::
dynamic_pointer_cast
<
OperatorWithKernel
>
(
op
);
op_k
->
InferShape
(
&
infer_shape_ctx
);
for
(
auto
&
var_name_item
:
op
->
Inputs
())
{
std
::
vector
<
ngraph
::
Shape
>
vshape
;
auto
&
var_prm_name
=
var_name_item
.
first
;
auto
var_name_size
=
var_name_item
.
second
.
size
();
if
(
var_name_size
==
1
)
{
auto
dim
=
infer_shape_ctx
.
GetInputDim
(
var_prm_name
);
vshape
.
push_back
(
Ddim2Shape
(
dim
));
}
else
if
(
var_name_item
.
second
.
size
()
>
1
)
{
auto
vdim
=
infer_shape_ctx
.
GetInputsDim
(
var_prm_name
);
PADDLE_ENFORCE_EQ
(
vdim
.
size
(),
var_name_item
.
second
.
size
(),
"Need dim info for each var"
);
for
(
auto
&
dim
:
vdim
)
{
vshape
.
push_back
(
Ddim2Shape
(
dim
));
}
}
else
{
// 0 size : conv2d Bias
}
for
(
size_t
i
=
0
;
i
<
var_name_item
.
second
.
size
();
++
i
)
{
auto
var_name
=
var_name_item
.
second
.
at
(
i
);
if
(
std
::
find
(
var_in_
.
begin
(),
var_in_
.
end
(),
var_name
)
!=
var_in_
.
end
())
{
if
(
var_node_map_
->
find
(
var_name
)
==
var_node_map_
->
end
())
{
auto
ng_type
=
var_type_map_
.
at
(
var_name
);
auto
prm
=
std
::
make_shared
<
ngraph
::
op
::
Parameter
>
(
ng_type
,
vshape
.
at
(
i
),
true
);
(
*
var_node_map_
)[
var_name
]
=
prm
;
(
*
var_in_node_map_
)[
var_name
]
=
prm
;
}
}
}
}
}
void
NgraphOperator
::
BuildNgNode
()
{
for
(
auto
&
var_name
:
var_out_
)
{
if
(
var_node_map_
->
find
(
var_name
)
==
var_node_map_
->
end
())
{
auto
*
var
=
scope_
.
FindVar
(
var_name
);
if
(
var
&&
VarIsTensor
(
*
var
))
{
auto
*
tensor_pd
=
GetLoDTensorOrSelectedRowsValueFromVar
(
*
var
);
auto
&
ddim
=
tensor_pd
->
dims
();
auto
ng_shape
=
Ddim2Shape
(
ddim
);
auto
ng_type
=
var_type_map_
.
at
(
var_name
);
auto
prm
=
std
::
make_shared
<
ngraph
::
op
::
Parameter
>
(
ng_type
,
ng_shape
,
true
);
(
*
var_node_map_
)[
var_name
]
=
prm
;
}
}
}
paddle
::
framework
::
NgraphBridge
ngb
(
var_node_map_
);
for
(
auto
&
op
:
fused_ops_
)
{
ngb
.
BuildNgGraph
(
op
);
}
}
void
NgraphOperator
::
BuildNgIO
()
{
std
::
unordered_set
<
std
::
string
>
inputs
;
std
::
unordered_set
<
std
::
string
>
outputs
;
for
(
auto
&
op
:
fused_ops_
)
{
for
(
auto
&
var_name_item
:
op
->
Inputs
())
{
for
(
auto
&
var_name
:
var_name_item
.
second
)
{
inputs
.
insert
(
var_name
);
const
bool
is_output
=
outputs
.
find
(
var_name
)
!=
outputs
.
end
();
if
(
!
is_output
&&
std
::
find
(
var_in_
.
begin
(),
var_in_
.
end
(),
var_name
)
==
var_in_
.
end
())
{
// fill var_in here to keep lhs and rhs order
var_in_
.
push_back
(
var_name
);
}
}
}
if
(
op
->
Type
()
!=
"fill_constant"
)
{
GetNgInputShape
(
op
);
}
for
(
auto
&
var_name_item
:
op
->
Outputs
())
{
PADDLE_ENFORCE_LE
(
var_name_item
.
second
.
size
(),
1
,
"op %s has more than 1 output - Not handling yet"
,
op
->
Type
());
for
(
auto
&
var_name
:
var_name_item
.
second
)
{
outputs
.
insert
(
var_name
);
}
}
}
// var_out.clear();
for
(
auto
&
op
:
fused_ops_
)
{
for
(
auto
&
var_name_item
:
op
->
Outputs
())
{
PADDLE_ENFORCE_LE
(
var_name_item
.
second
.
size
(),
1
,
"op %s has more than 1 output - Not handling yet"
,
op
->
Type
());
for
(
auto
&
var_name
:
var_name_item
.
second
)
{
switch
(
ng_op_state_
)
{
case
PARTIAL_TEST
:
if
(
post_op_inputs_
.
find
(
var_name
)
!=
post_op_inputs_
.
end
()
||
fetches_
.
find
(
var_name
)
!=
fetches_
.
end
())
{
var_out_
.
push_back
(
var_name
);
}
break
;
case
FULL_TEST
:
if
(
fetches_
.
find
(
var_name
)
!=
fetches_
.
end
())
{
var_out_
.
push_back
(
var_name
);
}
break
;
case
PARTIAL_TRAIN
:
if
(
fetches_
.
find
(
var_name
)
!=
fetches_
.
end
()
||
post_op_inputs_
.
find
(
var_name
)
!=
post_op_inputs_
.
end
()
||
persistables_
.
find
(
var_name
)
!=
persistables_
.
end
())
{
var_out_
.
push_back
(
var_name
);
}
break
;
case
FULL_TRAIN
:
if
(
fetches_
.
find
(
var_name
)
!=
fetches_
.
end
()
||
persistables_
.
find
(
var_name
)
!=
persistables_
.
end
())
{
var_out_
.
push_back
(
var_name
);
}
break
;
default:
var_out_
.
push_back
(
var_name
);
}
}
}
}
}
void
NgraphOperator
::
BuildNgFunction
()
{
BuildNgNode
();
ngraph_function_
=
nullptr
;
ngraph
::
NodeVector
func_outputs
;
ngraph
::
op
::
ParameterVector
func_inputs
;
for
(
auto
&
vo
:
var_out_
)
{
func_outputs
.
push_back
(
var_node_map_
->
at
(
vo
));
}
for
(
auto
&
vi
:
var_in_
)
{
std
::
shared_ptr
<
ngraph
::
op
::
Parameter
>
prm
=
std
::
dynamic_pointer_cast
<
ngraph
::
op
::
Parameter
>
(
var_in_node_map_
->
at
(
vi
));
func_inputs
.
push_back
(
prm
);
}
ngraph_function_
=
std
::
make_shared
<
ngraph
::
Function
>
(
func_outputs
,
func_inputs
);
}
std
::
shared_ptr
<
std
::
string
>
NgraphOperator
::
GetCacheKey
()
{
auto
cache_key
=
std
::
make_shared
<
std
::
string
>
(
""
);
*
cache_key
+=
std
::
to_string
(
fused_ops_
.
size
());
for
(
auto
&
op
:
fused_ops_
)
{
*
cache_key
+=
op
->
Type
();
}
for
(
auto
&
var_name
:
var_in_
)
{
auto
shape
=
var_node_map_
->
at
(
var_name
)
->
get_shape
();
*
cache_key
+=
var_name
;
*
cache_key
+=
var_type_map_
.
at
(
var_name
).
c_type_string
();
for
(
size_t
i
=
0
;
i
<
shape
.
size
();
++
i
)
{
*
cache_key
+=
std
::
to_string
(
shape
.
at
(
i
));
}
}
for
(
auto
&
var_name
:
var_out_
)
{
auto
*
var
=
scope_
.
FindVar
(
var_name
);
if
(
var
&&
VarIsTensor
(
*
var
))
{
auto
*
tensor_pd
=
GetLoDTensorOrSelectedRowsValueFromVar
(
*
var
);
auto
&
ddim
=
tensor_pd
->
dims
();
for
(
int
i
=
0
;
i
<
ddim
.
size
();
++
i
)
{
*
cache_key
+=
std
::
to_string
(
ddim
[
i
]);
}
}
}
return
cache_key
;
}
void
NgraphOperator
::
GetNgFunction
()
{
bool
cache_on
=
true
;
if
(
cache_on
)
{
std
::
string
cache_key_val
=
*
GetCacheKey
();
if
(
func_cache_
.
find
(
cache_key_val
)
!=
func_cache_
.
end
())
{
ngraph_function_
=
func_cache_
.
at
(
cache_key_val
);
}
else
{
BuildNgFunction
();
func_cache_
[
cache_key_val
]
=
ngraph_function_
;
}
}
else
{
BuildNgFunction
();
}
}
void
NgraphOperator
::
Run
(
const
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
{
std
::
vector
<
std
::
shared_ptr
<
ngraph
::
runtime
::
Tensor
>>
t_in
;
std
::
vector
<
std
::
shared_ptr
<
ngraph
::
runtime
::
Tensor
>>
t_out
;
for
(
size_t
i
=
0
;
i
<
var_in_
.
size
();
++
i
)
{
auto
vi
=
var_in_
.
at
(
i
);
auto
sp
=
var_node_map_
->
at
(
vi
)
->
get_shape
();
std
::
shared_ptr
<
ngraph
::
runtime
::
Tensor
>
ti
;
auto
*
var
=
scope
.
FindVar
(
vi
);
if
(
var
&&
VarIsTensor
(
*
var
))
{
auto
*
tensor_pd
=
GetLoDTensorOrSelectedRowsValueFromVar
(
*
var
);
PADDLE_ENFORCE
(
sp
==
Ddim2Shape
(
tensor_pd
->
dims
()),
"Ensure ngraph tensor layout align with paddle tensor"
);
if
(
tensor_pd
->
type
().
hash_code
()
==
typeid
(
float
).
hash_code
())
{
// NOLINT
const
float
*
arr
=
tensor_pd
->
data
<
float
>
();
ti
=
backend_
->
create_tensor
(
ngraph
::
element
::
f32
,
sp
,
const_cast
<
float
*>
(
arr
));
}
else
if
(
tensor_pd
->
type
().
hash_code
()
==
typeid
(
int
).
hash_code
())
{
// NOLINT
const
int
*
arr
=
tensor_pd
->
data
<
int
>
();
ti
=
backend_
->
create_tensor
(
ngraph
::
element
::
i32
,
sp
,
const_cast
<
int
*>
(
arr
));
}
else
if
(
tensor_pd
->
type
().
hash_code
()
==
typeid
(
int64_t
).
hash_code
())
{
const
int64_t
*
arr
=
tensor_pd
->
data
<
int64_t
>
();
ti
=
backend_
->
create_tensor
(
ngraph
::
element
::
i64
,
sp
,
const_cast
<
int64_t
*>
(
arr
));
}
else
if
(
tensor_pd
->
type
().
hash_code
()
==
typeid
(
double
).
hash_code
())
{
// NOLINT
const
double
*
arr
=
tensor_pd
->
data
<
double
>
();
ti
=
backend_
->
create_tensor
(
ngraph
::
element
::
f64
,
sp
,
const_cast
<
double
*>
(
arr
));
}
else
if
(
tensor_pd
->
type
().
hash_code
()
==
typeid
(
bool
).
hash_code
())
{
// NOLINT
const
bool
*
arr
=
tensor_pd
->
data
<
bool
>
();
ti
=
backend_
->
create_tensor
(
ngraph
::
element
::
boolean
,
sp
,
const_cast
<
bool
*>
(
arr
));
}
else
{
PADDLE_THROW
(
"Data type not handling for var %s"
,
vi
);
}
}
else
{
PADDLE_THROW
(
"Cannot find var or tensor with var name %s"
,
vi
);
}
bool
is_test
=
(
ng_op_state_
==
PARTIAL_TEST
||
ng_op_state_
==
FULL_TEST
)
?
true
:
false
;
bool
is_persistable
=
(
persistables_
.
find
(
vi
)
!=
persistables_
.
end
())
?
true
:
false
;
if
(
is_test
&&
is_persistable
)
{
ti
->
set_stale
(
false
);
}
t_in
.
push_back
(
ti
);
}
for
(
size_t
i
=
0
;
i
<
var_out_
.
size
();
++
i
)
{
auto
var_name
=
var_out_
[
i
];
auto
*
var
=
scope
.
FindVar
(
var_name
);
std
::
shared_ptr
<
ngraph
::
runtime
::
Tensor
>
to
;
if
(
var
&&
VarIsTensor
(
*
var
))
{
auto
*
tensor_pd
=
GetMutableLoDTensorOrSelectedRowsValueFromVar
(
var
);
auto
dd
=
tensor_pd
->
dims
();
ngraph
::
Shape
sp
=
Ddim2Shape
(
dd
);
auto
ng_type
=
var_type_map_
.
at
(
var_name
);
if
(
ng_type
==
ngraph
::
element
::
f32
)
{
auto
pd_arr
=
tensor_pd
->
mutable_data
<
float
>
(
place
);
to
=
backend_
->
create_tensor
(
ngraph
::
element
::
f32
,
sp
,
pd_arr
);
}
else
if
(
ng_type
==
ngraph
::
element
::
i64
)
{
auto
pd_arr
=
tensor_pd
->
mutable_data
<
int64_t
>
(
place
);
to
=
backend_
->
create_tensor
(
ngraph
::
element
::
i64
,
sp
,
pd_arr
);
}
else
if
(
ng_type
==
ngraph
::
element
::
f64
)
{
auto
pd_arr
=
tensor_pd
->
mutable_data
<
double
>
(
place
);
to
=
backend_
->
create_tensor
(
ngraph
::
element
::
f64
,
sp
,
pd_arr
);
}
else
if
(
ng_type
==
ngraph
::
element
::
boolean
)
{
auto
pd_arr
=
tensor_pd
->
mutable_data
<
bool
>
(
place
);
to
=
backend_
->
create_tensor
(
ngraph
::
element
::
boolean
,
sp
,
pd_arr
);
}
else
{
PADDLE_THROW
(
"Data type not handled in for var %s"
,
var_name
);
}
t_out
.
push_back
(
to
);
}
else
{
PADDLE_THROW
(
"Cannot find var or tensor with var name %s"
,
var_name
);
}
}
backend_
->
call
(
ngraph_function_
,
t_out
,
t_in
);
}
// NgraphOperator::RunImpl
}
// namespace framework
}
// namespace framework
}
// namespace paddle
}
// namespace paddle
#endif
#endif
paddle/fluid/framework/ngraph_operator.h
浏览文件 @
1d19eb2b
...
@@ -17,24 +17,19 @@ limitations under the License. */
...
@@ -17,24 +17,19 @@ limitations under the License. */
#ifdef PADDLE_WITH_NGRAPH
#ifdef PADDLE_WITH_NGRAPH
#include <algorithm>
#include <algorithm>
#include <atomic>
#include <string>
#include <string>
#include <unordered_map>
#include <unordered_map>
#include <vector>
#include <vector>
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/ngraph_bridge.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
#include "paddle/fluid/framework/op_kernel_type.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/variant.h"
#include "paddle/fluid/platform/variant.h"
#include "ngraph/
ngraph
.hpp"
#include "ngraph/
type/element_type
.hpp"
namespace
paddle
{
namespace
paddle
{
namespace
framework
{
namespace
framework
{
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录