Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
1bae1e74
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1bae1e74
编写于
4月 08, 2021
作者:
C
cc
提交者:
GitHub
4月 08, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Support converting the model from fp32 to fp16 (#32112)
* Support converting the model from fp32 to fp16
上级
e45c3fa5
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
211 addition
and
20 deletion
+211
-20
paddle/fluid/operators/save_op.cc
paddle/fluid/operators/save_op.cc
+2
-0
python/paddle/fluid/contrib/slim/quantization/post_training_quantization.py
...d/contrib/slim/quantization/post_training_quantization.py
+78
-0
python/paddle/fluid/contrib/slim/tests/test_weight_quantization_mobilenetv1.py
...ontrib/slim/tests/test_weight_quantization_mobilenetv1.py
+131
-20
未找到文件。
paddle/fluid/operators/save_op.cc
浏览文件 @
1bae1e74
...
@@ -88,6 +88,8 @@ REGISTER_OPERATOR(save, ops::SaveOp, ops::SaveOpProtoMaker,
...
@@ -88,6 +88,8 @@ REGISTER_OPERATOR(save, ops::SaveOp, ops::SaveOpProtoMaker,
REGISTER_OP_CPU_KERNEL
(
REGISTER_OP_CPU_KERNEL
(
save
,
ops
::
SaveOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
save
,
ops
::
SaveOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
SaveOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
ops
::
SaveOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
ops
::
SaveOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
paddle
::
platform
::
float16
>
,
ops
::
SaveOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
>
,
ops
::
SaveOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
>
,
ops
::
SaveOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
uint8_t
>
,
ops
::
SaveOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
uint8_t
>
,
ops
::
SaveOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int8_t
>
,
ops
::
SaveOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int8_t
>
,
...
...
python/paddle/fluid/contrib/slim/quantization/post_training_quantization.py
浏览文件 @
1bae1e74
...
@@ -16,9 +16,11 @@ import os
...
@@ -16,9 +16,11 @@ import os
import
re
import
re
import
logging
import
logging
import
numpy
as
np
import
numpy
as
np
import
shutil
from
....
import
io
from
....
import
io
from
....
import
core
from
....
import
core
from
....
import
framework
from
....
import
framework
from
....
import
unique_name
from
....executor
import
global_scope
,
Executor
from
....executor
import
global_scope
,
Executor
from
....framework
import
IrGraph
from
....framework
import
IrGraph
from
....log_helper
import
get_logger
from
....log_helper
import
get_logger
...
@@ -1006,6 +1008,82 @@ class WeightQuantization(object):
...
@@ -1006,6 +1008,82 @@ class WeightQuantization(object):
quantizable_op_type
,
weight_bits
,
weight_quantize_type
,
True
,
quantizable_op_type
,
weight_bits
,
weight_quantize_type
,
True
,
threshold_rate
)
threshold_rate
)
def
convert_weight_to_fp16
(
self
,
save_model_dir
):
"""
Convert all presistable vars from fp32 to fp16.
Note that, this api only changes the data type of variables in
__params__ file, and the __model__ file remains unchanged.
Args:
save_model_dir(str): The path to save the fp16 model.
"""
# Load model
place
=
core
.
CPUPlace
()
exe
=
Executor
(
place
)
scope
=
global_scope
()
[
infer_program
,
feed_list
,
fetch_list
]
=
\
io
.
load_inference_model
(
dirname
=
self
.
_model_dir
,
executor
=
exe
,
model_filename
=
self
.
_model_filename
,
params_filename
=
self
.
_params_filename
)
# Clone and save fp16 weights
save_program
=
framework
.
Program
()
save_block
=
save_program
.
global_block
()
save_var_map
=
{}
for
var
in
infer_program
.
list_vars
():
if
(
var
.
type
==
core
.
VarDesc
.
VarType
.
RAW
)
or
\
(
not
var
.
persistable
)
or
(
var
.
name
in
[
'feed'
,
'fetch'
])
\
or
(
var
.
dtype
!=
core
.
VarDesc
.
VarType
.
FP32
):
continue
#new_var = _clone_var_to_block_(var, save_block)
new_var
=
save_block
.
_clone_variable
(
var
)
if
self
.
_params_filename
is
not
None
:
save_var_map
[
new_var
.
name
]
=
new_var
else
:
save_file_path
=
os
.
path
.
join
(
os
.
path
.
normpath
(
save_model_dir
),
new_var
.
name
)
save_block
.
append_op
(
type
=
'save'
,
inputs
=
{
'X'
:
[
new_var
]},
outputs
=
{},
attrs
=
{
'file_path'
:
os
.
path
.
normpath
(
save_file_path
),
'save_as_fp16'
:
True
})
if
self
.
_params_filename
is
not
None
:
save_var_list
=
[]
for
name
in
sorted
(
save_var_map
.
keys
()):
save_var_list
.
append
(
save_var_map
[
name
])
saved_params_var
=
save_block
.
create_var
(
type
=
core
.
VarDesc
.
VarType
.
RAW
,
name
=
unique_name
.
generate
(
"saved_params"
))
saved_params_var
.
desc
.
set_persistable
(
True
)
save_path
=
os
.
path
.
join
(
os
.
path
.
normpath
(
save_model_dir
),
self
.
_params_filename
)
save_block
.
append_op
(
type
=
'save_combine'
,
inputs
=
{
'X'
:
save_var_list
},
outputs
=
{
'Y'
:
saved_params_var
},
attrs
=
{
'file_path'
:
save_path
,
'save_as_fp16'
:
True
})
save_program
.
_sync_with_cpp
()
exe
.
run
(
save_program
)
# Copy model
model_filename
=
"__model__"
if
self
.
_model_filename
is
None
\
else
self
.
_model_filename
src_model
=
os
.
path
.
join
(
self
.
_model_dir
,
model_filename
)
dest_model
=
os
.
path
.
join
(
save_model_dir
,
model_filename
)
shutil
.
copyfile
(
src_model
,
dest_model
)
def
_quantize_weight_to_int
(
self
,
save_model_dir
,
save_model_filename
,
def
_quantize_weight_to_int
(
self
,
save_model_dir
,
save_model_filename
,
save_params_filename
,
quantizable_op_type
,
save_params_filename
,
quantizable_op_type
,
weight_bits
,
weight_quantize_type
,
for_test
,
weight_bits
,
weight_quantize_type
,
for_test
,
...
...
python/paddle/fluid/contrib/slim/tests/test_weight_quantization_mobilenetv1.py
浏览文件 @
1bae1e74
...
@@ -15,6 +15,7 @@
...
@@ -15,6 +15,7 @@
import
unittest
import
unittest
import
os
import
os
import
time
import
time
import
numpy
as
np
from
paddle.dataset.common
import
download
,
DATA_HOME
from
paddle.dataset.common
import
download
,
DATA_HOME
from
paddle.fluid.contrib.slim.quantization
import
WeightQuantization
from
paddle.fluid.contrib.slim.quantization
import
WeightQuantization
import
paddle
import
paddle
...
@@ -22,6 +23,28 @@ import paddle
...
@@ -22,6 +23,28 @@ import paddle
paddle
.
enable_static
()
paddle
.
enable_static
()
def
_load_variable_data
(
scope
,
var_name
):
'''
Load variable value from scope
'''
var_node
=
scope
.
find_var
(
var_name
)
assert
var_node
is
not
None
,
\
"Cannot find "
+
var_name
+
" in scope."
return
np
.
array
(
var_node
.
get_tensor
())
def
_set_variable_data
(
scope
,
place
,
var_name
,
np_value
):
'''
Set the value of var node by name, if the node exits,
'''
assert
isinstance
(
np_value
,
np
.
ndarray
),
\
'The type of value should be numpy array.'
var_node
=
scope
.
find_var
(
var_name
)
if
var_node
!=
None
:
tensor
=
var_node
.
get_tensor
()
tensor
.
set
(
np_value
,
place
)
class
TestWeightQuantization
(
unittest
.
TestCase
):
class
TestWeightQuantization
(
unittest
.
TestCase
):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
weight_quantization_dir
=
'weight_quantization'
self
.
weight_quantization_dir
=
'weight_quantization'
...
@@ -45,18 +68,20 @@ class TestWeightQuantization(unittest.TestCase):
...
@@ -45,18 +68,20 @@ class TestWeightQuantization(unittest.TestCase):
zip_path
)
zip_path
)
os
.
system
(
cmd
)
os
.
system
(
cmd
)
def
run_test
(
self
,
model_name
,
model_data_url
,
model_data_md5
,
weight_bits
,
def
quantize_to_int
(
self
,
model_name
,
model_data_url
,
model_data_md5
,
quantizable_op_type
,
weight_quantize_type
,
generate_test_model
,
weight_bits
,
quantizable_op_type
,
weight_quantize_type
,
threshold_rate
):
generate_test_model
,
threshold_rate
):
model_dir
=
self
.
download_model
(
model_name
,
model_data_url
,
model_dir
=
self
.
download_model
(
model_name
,
model_data_url
,
model_data_md5
)
model_data_md5
)
load_model_dir
=
os
.
path
.
join
(
model_dir
,
model_name
)
timestamp
=
time
.
strftime
(
'%Y-%m-%d-%H-%M-%S'
,
time
.
localtime
())
timestamp
=
time
.
strftime
(
'%Y-%m-%d-%H-%M-%S'
,
time
.
localtime
())
save_model_dir
=
os
.
path
.
join
(
save_model_dir
=
os
.
path
.
join
(
os
.
getcwd
(),
os
.
getcwd
(),
model_name
+
"_wq_"
+
str
(
weight_bits
)
+
"_"
+
timestamp
)
model_name
+
"_wq_"
+
str
(
weight_bits
)
+
"_"
+
timestamp
)
weight_quant
=
WeightQuantization
(
model_dir
=
model_dir
+
"/model"
)
weight_quant
=
WeightQuantization
(
model_dir
=
load_model_dir
)
weight_quant
.
quantize_weight_to_int
(
weight_quant
.
quantize_weight_to_int
(
save_model_dir
=
save_model_dir
,
save_model_dir
=
save_model_dir
,
weight_bits
=
weight_bits
,
weight_bits
=
weight_bits
,
...
@@ -72,11 +97,79 @@ class TestWeightQuantization(unittest.TestCase):
...
@@ -72,11 +97,79 @@ class TestWeightQuantization(unittest.TestCase):
print
(
"Failed to delete {} due to {}"
.
format
(
save_model_dir
,
str
(
print
(
"Failed to delete {} due to {}"
.
format
(
save_model_dir
,
str
(
e
)))
e
)))
def
convert_to_fp16
(
self
,
model_name
,
model_data_url
,
model_data_md5
,
model_filename
,
params_filename
):
model_dir
=
self
.
download_model
(
model_name
,
model_data_url
,
model_data_md5
)
load_model_dir
=
os
.
path
.
join
(
model_dir
,
model_name
)
timestamp
=
time
.
strftime
(
'%Y-%m-%d-%H-%M-%S'
,
time
.
localtime
())
save_model_dir
=
os
.
path
.
join
(
os
.
getcwd
(),
model_name
+
"_wq_fp16_"
+
timestamp
)
weight_quant
=
WeightQuantization
(
load_model_dir
,
model_filename
,
params_filename
)
weight_quant
.
convert_weight_to_fp16
(
save_model_dir
)
print
(
"finish converting the data type of weights to fp16 for "
+
model_name
)
print
(
"fp16 model saved in "
+
save_model_dir
+
"
\n
"
)
input_data
=
np
.
ones
([
1
,
3
,
224
,
224
],
dtype
=
np
.
float32
)
res_fp32
=
self
.
run_models
(
load_model_dir
,
model_filename
,
params_filename
,
input_data
,
False
)
res_fp16
=
self
.
run_models
(
save_model_dir
,
model_filename
,
params_filename
,
input_data
,
True
)
self
.
assertTrue
(
np
.
allclose
(
res_fp32
,
res_fp16
,
rtol
=
1e-5
,
atol
=
1e-08
,
equal_nan
=
True
),
msg
=
'Failed to test the accuracy of the fp32 and fp16 model.'
)
try
:
os
.
system
(
"rm -rf {}"
.
format
(
save_model_dir
))
except
Exception
as
e
:
print
(
"Failed to delete {} due to {}"
.
format
(
save_model_dir
,
str
(
e
)))
def
run_models
(
self
,
model_dir
,
model_filename
,
params_filename
,
input_data
,
is_fp16_model
):
print
(
model_dir
)
place
=
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
scope
=
paddle
.
static
.
Scope
()
with
paddle
.
static
.
scope_guard
(
scope
):
[
inference_program
,
feed_target_names
,
fetch_targets
]
=
\
paddle
.
fluid
.
io
.
load_inference_model
(
model_dir
,
exe
,
model_filename
=
model_filename
,
params_filename
=
params_filename
)
if
is_fp16_model
:
for
var
in
inference_program
.
list_vars
():
if
(
var
.
type
==
paddle
.
fluid
.
core
.
VarDesc
.
VarType
.
RAW
)
or
\
(
not
var
.
persistable
)
or
(
var
.
name
in
[
'feed'
,
'fetch'
])
\
or
(
var
.
dtype
!=
paddle
.
fluid
.
core
.
VarDesc
.
VarType
.
FP16
):
continue
tensor
=
_load_variable_data
(
scope
,
var
.
name
)
_set_variable_data
(
scope
,
place
,
var
.
name
,
tensor
.
astype
(
np
.
float32
))
results
=
exe
.
run
(
inference_program
,
feed
=
{
feed_target_names
[
0
]:
input_data
},
fetch_list
=
fetch_targets
)
return
np
.
array
(
results
[
0
])
class
TestWeightQuantizationMobilenetv1
(
TestWeightQuantization
):
class
TestWeightQuantizationMobilenetv1
(
TestWeightQuantization
):
model_name
=
"mobilenetv1"
nocomb_model_name
=
"mobilenetv1_fp32_nocombined"
model_data_url
=
"http://paddle-inference-dist.bj.bcebos.com/int8/mobilenetv1_int8_model.tar.gz"
nocomb_model_data_url
=
"https://paddle-inference-dist.cdn.bcebos.com/Paddle-Inference-Demo/mobilenetv1_fp32_nocombined.tar.gz"
model_data_md5
=
"13892b0716d26443a8cdea15b3c6438b"
nocomb_model_data_md5
=
"c9aae3b04d9d535c84590ae557be0a0b"
comb_model_name
=
"mobilenetv1_fp32_combined"
comb_model_data_url
=
"https://paddle-inference-dist.cdn.bcebos.com/Paddle-Inference-Demo/mobilenetv1_fp32_combined.tar.gz"
comb_model_data_md5
=
"087c67e2b2b0a8b689fcc570a56c005f"
def
test_weight_quantization_mobilenetv1_8bit_abs_max
(
self
):
def
test_weight_quantization_mobilenetv1_8bit_abs_max
(
self
):
weight_bits
=
8
weight_bits
=
8
...
@@ -84,8 +177,9 @@ class TestWeightQuantizationMobilenetv1(TestWeightQuantization):
...
@@ -84,8 +177,9 @@ class TestWeightQuantizationMobilenetv1(TestWeightQuantization):
weight_quantize_type
=
"abs_max"
weight_quantize_type
=
"abs_max"
generate_test_model
=
True
generate_test_model
=
True
threshold_rate
=
0.0
threshold_rate
=
0.0
self
.
run_test
(
self
.
model_name
,
self
.
model_data_url
,
self
.
model_data_md5
,
self
.
quantize_to_int
(
self
.
nocomb_model_name
,
self
.
nocomb_model_data_url
,
weight_bits
,
quantizable_op_type
,
weight_quantize_type
,
self
.
nocomb_model_data_md5
,
weight_bits
,
quantizable_op_type
,
weight_quantize_type
,
generate_test_model
,
threshold_rate
)
generate_test_model
,
threshold_rate
)
def
test_weight_quantization_mobilenetv1_8bit_channel_wise_abs_max
(
self
):
def
test_weight_quantization_mobilenetv1_8bit_channel_wise_abs_max
(
self
):
...
@@ -94,8 +188,9 @@ class TestWeightQuantizationMobilenetv1(TestWeightQuantization):
...
@@ -94,8 +188,9 @@ class TestWeightQuantizationMobilenetv1(TestWeightQuantization):
weight_quantize_type
=
"channel_wise_abs_max"
weight_quantize_type
=
"channel_wise_abs_max"
generate_test_model
=
True
generate_test_model
=
True
threshold_rate
=
0.0
threshold_rate
=
0.0
self
.
run_test
(
self
.
model_name
,
self
.
model_data_url
,
self
.
model_data_md5
,
self
.
quantize_to_int
(
self
.
nocomb_model_name
,
self
.
nocomb_model_data_url
,
weight_bits
,
quantizable_op_type
,
weight_quantize_type
,
self
.
nocomb_model_data_md5
,
weight_bits
,
quantizable_op_type
,
weight_quantize_type
,
generate_test_model
,
threshold_rate
)
generate_test_model
,
threshold_rate
)
def
test_weight_quantization_mobilenetv1_16bit_abs_max
(
self
):
def
test_weight_quantization_mobilenetv1_16bit_abs_max
(
self
):
...
@@ -103,9 +198,10 @@ class TestWeightQuantizationMobilenetv1(TestWeightQuantization):
...
@@ -103,9 +198,10 @@ class TestWeightQuantizationMobilenetv1(TestWeightQuantization):
quantizable_op_type
=
[
'conv2d'
,
'depthwise_conv2d'
,
'mul'
]
quantizable_op_type
=
[
'conv2d'
,
'depthwise_conv2d'
,
'mul'
]
weight_quantize_type
=
"abs_max"
weight_quantize_type
=
"abs_max"
generate_test_model
=
False
generate_test_model
=
False
threshold_rate
=
1e-9
threshold_rate
=
0
self
.
run_test
(
self
.
model_name
,
self
.
model_data_url
,
self
.
model_data_md5
,
self
.
quantize_to_int
(
self
.
nocomb_model_name
,
self
.
nocomb_model_data_url
,
weight_bits
,
quantizable_op_type
,
weight_quantize_type
,
self
.
nocomb_model_data_md5
,
weight_bits
,
quantizable_op_type
,
weight_quantize_type
,
generate_test_model
,
threshold_rate
)
generate_test_model
,
threshold_rate
)
def
test_weight_quantization_mobilenetv1_16bit_channel_wise_abs_max
(
self
):
def
test_weight_quantization_mobilenetv1_16bit_channel_wise_abs_max
(
self
):
...
@@ -114,10 +210,25 @@ class TestWeightQuantizationMobilenetv1(TestWeightQuantization):
...
@@ -114,10 +210,25 @@ class TestWeightQuantizationMobilenetv1(TestWeightQuantization):
weight_quantize_type
=
"channel_wise_abs_max"
weight_quantize_type
=
"channel_wise_abs_max"
generate_test_model
=
False
generate_test_model
=
False
threshold_rate
=
1e-9
threshold_rate
=
1e-9
self
.
run_test
(
self
.
model_name
,
self
.
model_data_url
,
self
.
model_data_md5
,
self
.
quantize_to_int
(
self
.
nocomb_model_name
,
self
.
nocomb_model_data_url
,
weight_bits
,
quantizable_op_type
,
weight_quantize_type
,
self
.
nocomb_model_data_md5
,
weight_bits
,
quantizable_op_type
,
weight_quantize_type
,
generate_test_model
,
threshold_rate
)
generate_test_model
,
threshold_rate
)
def
test_mobilenetv1_fp16_combined
(
self
):
model_filename
=
'__model__'
params_filename
=
'__params__'
self
.
convert_to_fp16
(
self
.
comb_model_name
,
self
.
comb_model_data_url
,
self
.
comb_model_data_md5
,
model_filename
,
params_filename
)
def
test_mobilenetv1_fp16_nocombined
(
self
):
model_filename
=
None
params_filename
=
None
self
.
convert_to_fp16
(
self
.
nocomb_model_name
,
self
.
nocomb_model_data_url
,
self
.
nocomb_model_data_md5
,
model_filename
,
params_filename
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
unittest
.
main
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录