Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
1b01f1ea
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1b01f1ea
编写于
9月 19, 2017
作者:
L
Luo Tao
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
implement framework of seq_pool_op and its unitest
上级
d4d4580d
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
139 addition
and
53 deletion
+139
-53
paddle/operators/sequence_pool_op.cc
paddle/operators/sequence_pool_op.cc
+41
-20
paddle/operators/sequence_pool_op.cu
paddle/operators/sequence_pool_op.cu
+4
-5
paddle/operators/sequence_pool_op.h
paddle/operators/sequence_pool_op.h
+45
-14
python/paddle/v2/framework/tests/test_seq_pool.py
python/paddle/v2/framework/tests/test_seq_pool.py
+49
-14
未找到文件。
paddle/operators/sequence_
avg_
pool_op.cc
→
paddle/operators/sequence_pool_op.cc
浏览文件 @
1b01f1ea
...
...
@@ -12,22 +12,22 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/sequence_
avg_
pool_op.h"
#include "paddle/operators/sequence_pool_op.h"
namespace
paddle
{
namespace
operators
{
class
Sequence
Avg
PoolOp
:
public
framework
::
OperatorWithKernel
{
class
SequencePoolOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"X"
),
"Input(X) of SequenceAvg
PoolOp should not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"X"
),
"Input(X) of Sequence
PoolOp should not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
OutputVar
(
"Out"
),
"Output(Out) of Sequence
Avg
PoolOp should not be null."
);
"Output(Out) of SequencePoolOp should not be null."
);
auto
*
x
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
);
auto
dims
=
x
->
dims
();
...
...
@@ -42,21 +42,44 @@ class SequenceAvgPoolOp : public framework::OperatorWithKernel {
}
};
class
Sequence
Avg
PoolOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
class
SequencePoolOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
Sequence
Avg
PoolOpMaker
(
framework
::
OpProto
*
proto
,
SequencePoolOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of SequenceAvgPoolOp."
);
AddOutput
(
"Out"
,
"The output of SequenceAvgPoolOp."
);
AddInput
(
"X"
,
"A LoDTensor, the variable-length input of SequencePoolOp"
);
AddOutput
(
"Out"
,
"A LoDTensor, the variable-length output of SequencePoolOp."
);
AddAttr
<
int
>
(
"strategy"
,
"(int, default AVERAGE) the pooling strategy of SequencePoolOp."
)
.
SetDefault
(
AVERAGE
)
.
InEnum
({
AVERAGE
,
SUM
,
SQRT
,
MAX
,
LAST
,
FIRST
});
AddComment
(
R"DOC(
SequenceAvgPoolOp averages features of all time-steps of each instance.
More detailed comments will be added later.
SequencePoolOp pools features of all time-steps of each instance.
For a mini-batch of 3 variable lengths sentences, containing 2, 3, and 2 words:
X = [[1, 3], [2, 4, 6], [5, 1]],
and X->lod()[0] = [0, 2, 5, 7]
then, for different strategy, we get:
- AVERAGE: Out = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
- SUM: Out = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
- SQRT: Out = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2), 6.93=(2+4+6)/sqrt(3),
4.24=(5+1)/sqrt(2)
- MAX: Out = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
- LAST: Out = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
- FIRST: Out = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
and X->lod() is nullptr.
)DOC"
);
}
};
class
Sequence
Avg
PoolGradOp
:
public
framework
::
OperatorWithKernel
{
class
SequencePoolGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
...
...
@@ -84,12 +107,10 @@ class SequenceAvgPoolGradOp : public framework::OperatorWithKernel {
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
sequence_avg_pool
,
ops
::
SequenceAvgPoolOp
,
ops
::
SequenceAvgPoolOpMaker
,
sequence_avg_pool_grad
,
ops
::
SequenceAvgPoolGradOp
);
REGISTER_OP
(
sequence_pool
,
ops
::
SequencePoolOp
,
ops
::
SequencePoolOpMaker
,
sequence_pool_grad
,
ops
::
SequencePoolGradOp
);
REGISTER_OP_CPU_KERNEL
(
sequence_avg_pool
,
ops
::
SequenceAvgPoolKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
sequence_pool
,
ops
::
SequencePoolKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
sequence_
avg_
pool_grad
,
ops
::
Sequence
Avg
PoolGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
sequence_pool_grad
,
ops
::
SequencePoolGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/sequence_
avg_
pool_op.cu
→
paddle/operators/sequence_pool_op.cu
浏览文件 @
1b01f1ea
...
...
@@ -14,12 +14,11 @@
#define EIGEN_USE_GPU
#include "paddle/operators/sequence_
avg_
pool_op.h"
#include "paddle/operators/sequence_pool_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
sequence_avg_pool
,
ops
::
SequenceAvgPoolKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
sequence_pool
,
ops
::
SequencePoolKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
REGISTER_OP_GPU_KERNEL
(
sequence_
avg_
pool_grad
,
ops
::
Sequence
Avg
PoolGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
sequence_pool_grad
,
ops
::
SequencePoolGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
paddle/operators/sequence_
avg_
pool_op.h
→
paddle/operators/sequence_pool_op.h
浏览文件 @
1b01f1ea
...
...
@@ -28,54 +28,85 @@ template <typename T, int MajorType = Eigen::RowMajor,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenMatrix
=
framework
::
EigenMatrix
<
T
,
MajorType
,
IndexType
>
;
enum
SeqPoolType
{
AVERAGE
=
0
,
SUM
=
1
,
SQRT
=
2
,
// square_root_n
MAX
=
3
,
LAST
=
4
,
FIRST
=
5
};
template
<
typename
Place
,
typename
T
>
class
Sequence
Avg
PoolKernel
:
public
framework
::
OpKernel
{
class
SequencePoolKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
in
=
context
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
out
=
context
.
Output
<
LoDTensor
>
(
"Out"
);
int
strategy
=
context
.
Attr
<
int
>
(
"strategy"
);
auto
dims
=
in
->
dims
();
auto
lod
=
in
->
lod
();
auto
lod
=
in
->
lod
()
[
0
]
;
int64_t
w
=
in
->
numel
()
/
dims
[
0
];
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
lod
[
0
]
.
size
())
-
1
;
++
i
)
{
Tensor
in_t
=
in
->
Slice
<
T
>
(
static_cast
<
int
>
(
lod
[
0
][
i
]),
static_cast
<
int
>
(
lod
[
0
]
[
i
+
1
]));
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
lod
.
size
())
-
1
;
++
i
)
{
Tensor
in_t
=
in
->
Slice
<
T
>
(
static_cast
<
int
>
(
lod
[
i
]),
static_cast
<
int
>
(
lod
[
i
+
1
]));
Tensor
out_t
=
out
->
Slice
<
T
>
(
i
,
i
+
1
);
int64_t
h
=
static_cast
<
int64_t
>
(
lod
[
0
][
i
+
1
]
-
lod
[
0
]
[
i
]);
int64_t
h
=
static_cast
<
int64_t
>
(
lod
[
i
+
1
]
-
lod
[
i
]);
auto
in_e
=
EigenMatrix
<
T
>::
From
(
in_t
,
framework
::
make_ddim
({
h
,
w
}));
auto
out_e
=
EigenVector
<
T
>::
Flatten
(
out_t
);
switch
(
strategy
)
{
case
AVERAGE
:
out_e
.
device
(
place
)
=
in_e
.
mean
(
Eigen
::
array
<
int
,
1
>
({{
0
}}));
break
;
case
SUM
:
out_e
.
device
(
place
)
=
in_e
.
sum
(
Eigen
::
array
<
int
,
1
>
({{
0
}}));
break
;
default:
LOG
(
FATAL
)
<<
"unsupported pooling strategy"
;
}
}
}
};
template
<
typename
Place
,
typename
T
>
class
Sequence
Avg
PoolGradKernel
:
public
framework
::
OpKernel
{
class
SequencePoolGradKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
in
=
context
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
out_g
=
context
.
Input
<
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
in_g
=
context
.
Output
<
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
int
strategy
=
context
.
Attr
<
int
>
(
"strategy"
);
auto
dims
=
in
->
dims
();
auto
lod
=
in
->
lod
();
auto
lod
=
in
->
lod
()
[
0
]
;
int64_t
w
=
in
->
numel
()
/
dims
[
0
];
in_g
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
lod
[
0
]
.
size
())
-
1
;
++
i
)
{
auto
in_g_t
=
in_g
->
Slice
<
T
>
(
static_cast
<
int
>
(
lod
[
0
][
i
]),
static_cast
<
int
>
(
lod
[
0
][
i
+
1
]));
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
lod
.
size
())
-
1
;
++
i
)
{
auto
in_g_t
=
in_g
->
Slice
<
T
>
(
static_cast
<
int
>
(
lod
[
i
]),
static_cast
<
int
>
(
lod
[
i
+
1
]));
auto
out_g_t
=
out_g
->
Slice
<
T
>
(
i
,
i
+
1
);
int64_t
h
=
static_cast
<
int64_t
>
(
lod
[
0
][
i
+
1
]
-
lod
[
0
]
[
i
]);
int64_t
h
=
static_cast
<
int64_t
>
(
lod
[
i
+
1
]
-
lod
[
i
]);
auto
in_g_e
=
EigenMatrix
<
T
>::
From
(
in_g_t
,
{
h
,
w
});
auto
out_g_e
=
EigenMatrix
<
T
>::
From
(
out_g_t
,
{
1
,
w
});
Eigen
::
DSizes
<
int
,
2
>
bcast
(
h
,
1
);
switch
(
strategy
)
{
case
AVERAGE
:
in_g_e
.
device
(
place
)
=
(
out_g_e
/
static_cast
<
T
>
(
h
)).
broadcast
(
bcast
);
break
;
case
SUM
:
in_g_e
.
device
(
place
)
=
(
out_g_e
).
broadcast
(
bcast
);
break
;
default:
LOG
(
FATAL
)
<<
"unsupported pooling strategy"
;
}
}
}
};
...
...
python/paddle/v2/framework/tests/test_seq_pool.py
浏览文件 @
1b01f1ea
...
...
@@ -3,20 +3,37 @@ import numpy as np
from
op_test
import
OpTest
class
TestSeqAvgPool1D
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
'sequence_avg_pool'
class
SeqPoolType
(
OpTest
):
AVERAGE
=
0
SUM
=
1
SQRT
=
2
MAX
=
3
LAST
=
4
FIRST
=
5
class
TestSeqAvgPool
(
OpTest
):
def
set_data
(
self
):
self
.
op_type
=
'sequence_pool'
# one level, batch size is 4
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
11
,
23
]).
astype
(
'float32'
)
lod
=
[[
0
,
4
,
5
,
8
,
11
]]
self
.
inputs
=
{
'X'
:
(
x
,
lod
)}
out
=
np
.
zeros
((
4
,
23
)).
astype
(
'float32'
)
self
.
outputs
=
{
'Out'
:
out
}
def
compute
(
self
):
self
.
attrs
=
{
'strategy'
:
SeqPoolType
.
AVERAGE
}
x
,
lod
=
self
.
inputs
[
'X'
]
out
=
self
.
outputs
[
'Out'
]
for
i
in
range
(
4
):
sub_x
=
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:]
out
[
i
]
=
sub_x
.
mean
(
axis
=
0
)
self
.
inputs
=
{
'X'
:
(
x
,
lod
)}
self
.
outputs
=
{
'Out'
:
out
}
def
setUp
(
self
):
self
.
set_data
()
self
.
compute
()
def
test_check_output
(
self
):
self
.
check_output
()
...
...
@@ -25,26 +42,44 @@ class TestSeqAvgPool1D(OpTest):
self
.
check_grad
([
"X"
],
"Out"
)
class
TestSeqAvgPool2D
(
OpTest
):
def
set
Up
(
self
):
self
.
op_type
=
'sequence_
avg_
pool'
class
TestSeqAvgPool2D
(
TestSeqAvgPool
):
def
set
_data
(
self
):
self
.
op_type
=
'sequence_pool'
# one level, batch size is 4
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
3
,
17
]).
astype
(
'float32'
)
lod
=
[[
0
,
4
,
5
,
8
,
13
]]
self
.
inputs
=
{
'X'
:
(
x
,
lod
)}
out
=
np
.
zeros
((
4
,
3
,
17
)).
astype
(
'float32'
)
self
.
outputs
=
{
'Out'
:
out
}
def
compute
(
self
):
self
.
attrs
=
{
'strategy'
:
SeqPoolType
.
AVERAGE
}
x
,
lod
=
self
.
inputs
[
'X'
]
out
=
self
.
outputs
[
'Out'
]
for
i
in
range
(
4
):
sub_x
=
np
.
reshape
(
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:],
(
-
1
,
3
*
17
))
out
[
i
]
=
np
.
reshape
(
sub_x
.
mean
(
axis
=
0
),
(
3
,
17
))
self
.
inputs
=
{
'X'
:
(
x
,
lod
)}
self
.
outputs
=
{
'Out'
:
out
}
def
test_check_output
(
self
):
self
.
check_output
()
class
TestSeqSumPool
(
TestSeqAvgPool
):
def
compute
(
self
):
self
.
attrs
=
{
'strategy'
:
SeqPoolType
.
SUM
}
x
,
lod
=
self
.
inputs
[
'X'
]
out
=
self
.
outputs
[
'Out'
]
for
i
in
range
(
4
):
sub_x
=
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:]
out
[
i
]
=
sub_x
.
sum
(
axis
=
0
)
def
test_check_grad
(
self
):
self
.
check_grad
([
"X"
],
"Out"
)
class
TestSeqSumPool2D
(
TestSeqAvgPool2D
):
def
compute
(
self
):
self
.
attrs
=
{
'strategy'
:
SeqPoolType
.
SUM
}
x
,
lod
=
self
.
inputs
[
'X'
]
out
=
self
.
outputs
[
'Out'
]
for
i
in
range
(
4
):
sub_x
=
np
.
reshape
(
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:],
(
-
1
,
3
*
17
))
out
[
i
]
=
np
.
reshape
(
sub_x
.
sum
(
axis
=
0
),
(
3
,
17
))
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录