From 18e9aafb2ce229612328598899a9883a71569923 Mon Sep 17 00:00:00 2001 From: zhangkaihuo Date: Tue, 26 Apr 2022 10:36:32 +0800 Subject: [PATCH] Add Sparse MaxPool3D (#42130) --- .../kernels/sparse/cpu/sparse_utils_kernel.cc | 6 +- .../kernels/sparse/gpu/sparse_pool_kernel.cu | 2 +- .../kernels/sparse/gpu/sparse_utils_kernel.cu | 5 +- .../phi/kernels/sparse/sparse_utils_kernel.h | 4 +- .../tests/unittests/test_sparse_pooling_op.py | 112 ++++++++++++++++++ python/paddle/sparse/__init__.py | 4 +- python/paddle/sparse/functional/__init__.py | 3 +- python/paddle/sparse/functional/pooling.py | 97 +++++++++++++++ python/paddle/sparse/layer/__init__.py | 1 + python/paddle/sparse/layer/pooling.py | 105 ++++++++++++++++ python/paddle/utils/code_gen/sparse_api.yaml | 9 ++ .../paddle/utils/code_gen/sparse_bw_api.yaml | 7 ++ 12 files changed, 347 insertions(+), 8 deletions(-) create mode 100644 python/paddle/fluid/tests/unittests/test_sparse_pooling_op.py create mode 100644 python/paddle/sparse/functional/pooling.py create mode 100644 python/paddle/sparse/layer/pooling.py diff --git a/paddle/phi/kernels/sparse/cpu/sparse_utils_kernel.cc b/paddle/phi/kernels/sparse/cpu/sparse_utils_kernel.cc index 0499371a4d..685aa6b30b 100644 --- a/paddle/phi/kernels/sparse/cpu/sparse_utils_kernel.cc +++ b/paddle/phi/kernels/sparse/cpu/sparse_utils_kernel.cc @@ -256,9 +256,11 @@ void SparseCooToDenseKernel(const Context& dev_ctx, } const int64_t dense_dim = values.dims().size() - 1; - const auto place = dev_ctx.GetPlace(); const T* x_data = values.data(); - T* out_data = out->mutable_data(place); + *out = phi::Empty( + dev_ctx, + DenseTensorMeta(x.dtype(), x.dims(), x.non_zero_elements().layout())); + T* out_data = out->data(); int64_t base_offset = 1; for (int64_t i = 0; i < dense_dim; i++) { base_offset *= dense_dims[sparse_dim + i]; diff --git a/paddle/phi/kernels/sparse/gpu/sparse_pool_kernel.cu b/paddle/phi/kernels/sparse/gpu/sparse_pool_kernel.cu index b76b61f83b..e3eb7aa243 100644 --- a/paddle/phi/kernels/sparse/gpu/sparse_pool_kernel.cu +++ b/paddle/phi/kernels/sparse/gpu/sparse_pool_kernel.cu @@ -104,7 +104,7 @@ void MaxPoolGPUKernel(const GPUContext& dev_ctx, #endif out_features_ptr, out_features_ptr + out->non_zero_elements().numel(), - static_cast(-FLT_MAX)); + static_cast(0)); // TODO(zhangkaihuo) Replacing multiple calls with one kernel may be faster for (int i = 0; i < kernel_size; i++) { if (counter[i] <= 0) { diff --git a/paddle/phi/kernels/sparse/gpu/sparse_utils_kernel.cu b/paddle/phi/kernels/sparse/gpu/sparse_utils_kernel.cu index 0b6ac1aed0..960d7eab26 100644 --- a/paddle/phi/kernels/sparse/gpu/sparse_utils_kernel.cu +++ b/paddle/phi/kernels/sparse/gpu/sparse_utils_kernel.cu @@ -503,7 +503,10 @@ void SparseCooToDenseKernel(const Context& dev_ctx, const auto place = dev_ctx.GetPlace(); const T* x_data = values.data(); - T* out_data = out->mutable_data(place); + *out = phi::Empty(dev_ctx, + phi::DenseTensorMeta( + x.dtype(), x.dims(), x.non_zero_elements().layout())); + T* out_data = out->data(); int64_t base_offset = 1; for (int64_t i = 0; i < dense_dim; i++) { base_offset *= dense_dims[sparse_dim + i]; diff --git a/paddle/phi/kernels/sparse/sparse_utils_kernel.h b/paddle/phi/kernels/sparse/sparse_utils_kernel.h index 072e6f141f..d39790fcea 100644 --- a/paddle/phi/kernels/sparse/sparse_utils_kernel.h +++ b/paddle/phi/kernels/sparse/sparse_utils_kernel.h @@ -110,7 +110,7 @@ void SparseCooToDenseKernel(const Context& dev_ctx, template DenseTensor SparseCooToDense(const Context& dev_ctx, const SparseCooTensor& x) { - DenseTensorMeta meta(x.dtype(), x.dims(), x.layout()); + DenseTensorMeta meta(x.dtype(), x.dims(), x.non_zero_elements().layout()); DenseTensor dense = phi::Empty(dev_ctx, std::move(meta)); SparseCooToDenseKernel(dev_ctx, x, &dense); return dense; @@ -129,7 +129,7 @@ void SparseCsrToDenseKernel(const Context& dev_ctx, template DenseTensor SparseCsrToDense(const Context& dev_ctx, const SparseCsrTensor& x) { - DenseTensorMeta meta(x.dtype(), x.dims(), x.layout()); + DenseTensorMeta meta(x.dtype(), x.dims(), x.non_zero_elements().layout()); DenseTensor dense = phi::Empty(dev_ctx, std::move(meta)); SparseCsrToDenseKernel(dev_ctx, x, &dense); return dense; diff --git a/python/paddle/fluid/tests/unittests/test_sparse_pooling_op.py b/python/paddle/fluid/tests/unittests/test_sparse_pooling_op.py new file mode 100644 index 0000000000..a1a3849f71 --- /dev/null +++ b/python/paddle/fluid/tests/unittests/test_sparse_pooling_op.py @@ -0,0 +1,112 @@ +# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function +import unittest +import numpy as np +import paddle +import paddle.fluid.core as core +from paddle import _C_ops +from paddle.fluid.framework import _test_eager_guard + + +class TestMaxPool3DFunc(unittest.TestCase): + def setInput(self): + paddle.seed(0) + self.dense_x = paddle.randn((1, 4, 4, 4, 4)) + + def setKernelSize(self): + self.kernel_sizes = [3, 3, 3] + + def setStride(self): + self.strides = [1, 1, 1] + + def setPadding(self): + self.paddings = [0, 0, 0] + + def setUp(self): + self.setInput() + self.setKernelSize() + self.setStride() + self.setPadding() + + def test(self): + with _test_eager_guard(): + self.setUp() + sparse_x = self.dense_x.to_sparse_coo(4) + out = paddle.sparse.functional.max_pool3d( + sparse_x, + self.kernel_sizes, + stride=self.strides, + padding=self.paddings) + out = out.to_dense() + + dense_out = paddle.nn.functional.max_pool3d( + self.dense_x, + self.kernel_sizes, + stride=self.strides, + padding=self.paddings, + data_format='NDHWC') + #compare with dense + assert np.allclose(dense_out.flatten().numpy(), + out.flatten().numpy()) + + +class TestStride(TestMaxPool3DFunc): + def setStride(self): + self.strides = 1 + + +class TestPadding(TestMaxPool3DFunc): + def setPadding(self): + self.paddings = 1 + + def setInput(self): + self.dense_x = paddle.randn((1, 5, 6, 8, 3)) + + +class TestKernelSize(TestMaxPool3DFunc): + def setKernelSize(self): + self.kernel_sizes = [5, 5, 5] + + def setInput(self): + paddle.seed(0) + self.dense_x = paddle.randn((1, 6, 9, 6, 3)) + + +class TestInput(TestMaxPool3DFunc): + def setInput(self): + paddle.seed(0) + self.dense_x = paddle.randn((2, 6, 7, 9, 3)) + dropout = paddle.nn.Dropout(0.8) + self.dense_x = dropout(self.dense_x) + + +class TestMaxPool3DAPI(unittest.TestCase): + def test(self): + with _test_eager_guard(): + dense_x = paddle.randn((2, 3, 6, 6, 3)) + sparse_x = dense_x.to_sparse_coo(4) + max_pool3d = paddle.sparse.MaxPool3D( + kernel_size=3, data_format='NDHWC') + out = max_pool3d(sparse_x) + out = out.to_dense() + + dense_out = paddle.nn.functional.max_pool3d( + dense_x, 3, data_format='NDHWC') + assert np.allclose(dense_out.numpy(), out.numpy()) + + +if __name__ == "__main__": + unittest.main() diff --git a/python/paddle/sparse/__init__.py b/python/paddle/sparse/__init__.py index 23ee0c5014..93653e09c9 100644 --- a/python/paddle/sparse/__init__.py +++ b/python/paddle/sparse/__init__.py @@ -20,7 +20,9 @@ from .layer.norm import BatchNorm from .layer.conv import Conv3D from .layer.conv import SubmConv3D +from .layer.pooling import MaxPool3D + __all__ = [ 'sparse_coo_tensor', 'sparse_csr_tensor', 'ReLU', 'Conv3D', 'SubmConv3D', - 'BatchNorm' + 'BatchNorm', 'MaxPool3D' ] diff --git a/python/paddle/sparse/functional/__init__.py b/python/paddle/sparse/functional/__init__.py index 93c3ccda4a..f1ca4cc6fc 100644 --- a/python/paddle/sparse/functional/__init__.py +++ b/python/paddle/sparse/functional/__init__.py @@ -15,5 +15,6 @@ from .activation import relu # noqa: F401 from .conv import conv3d # noqa: F401 from .conv import subm_conv3d # noqa: F401 +from .pooling import max_pool3d # noqa: F401 -__all__ = ['relu', 'conv3d', 'subm_conv3d'] +__all__ = ['relu', 'conv3d', 'subm_conv3d', 'max_pool3d'] diff --git a/python/paddle/sparse/functional/pooling.py b/python/paddle/sparse/functional/pooling.py new file mode 100644 index 0000000000..ab5106b316 --- /dev/null +++ b/python/paddle/sparse/functional/pooling.py @@ -0,0 +1,97 @@ +# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from ...fluid.layers import utils +from paddle import _C_ops, in_dynamic_mode +from paddle.nn.functional.pooling import _update_padding_nd + +__all__ = [] + + +def max_pool3d(x, + kernel_size, + stride=None, + padding=0, + ceil_mode=False, + data_format="NDHWC", + name=None): + """ + Implements sparse max pooling 3d operation. + See more details in :ref:`api_sparse_pooling_MaxPool3d` . + + Args: + x (Tensor): The input SparseCooTensor of pooling operator, which is a 5-D tensor with + shape [N, D, H, W, C]. The format of input tensor `"NDHWC"`, where N represents batch size, C represents the number of channels, D, H and W represent the depth, height and width of the feature respectively. + kernel_size (int|list|tuple): The pool kernel size. If the kernel size + is a tuple or list, it must contain three integers, + (kernel_size_Depth, kernel_size_Height, kernel_size_Width). + Otherwise, the pool kernel size will be the cube of an int. + stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list, + it must contain three integers, [stride_Depth, stride_Height, stride_Width). + Otherwise, the pool stride size will be a cube of an int. + padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms. + 1. A string in ['valid', 'same']. + 2. An int, which means the feature map is zero padded by size of `padding` on every sides. + 3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension. + 4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side. + 5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0). + The default value is 0. + ceil_mode (bool): ${ceil_mode_comment} + data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`. + The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of: + `[batch_size, input_channels, input_depth, input_height, input_width]`. Currently only support `"NDHWC"` . + name(str, optional): For detailed information, please refer + to :ref:`api_guide_Name`. Usually name is no need to set and + None by default. + + Returns: + Tensor: The output tensor of pooling result. The data type is same as input tensor. + + Examples: + .. code-block:: python + + import paddle + from paddle.fluid.framework import _test_eager_guard + + with _test_eager_guard(): + dense_x = paddle.randn((1, 4, 4, 4, 3)) + sparse_x = dense_x.to_sparse_coo(4) + kernel_sizes = [3, 3, 3] + paddings = [0, 0, 0] + strides = [1, 1, 1] + out = paddle.sparse.functional.max_pool3d(sparse_x, kernel_sizes, stride=strides, padding=paddings) + #[1, 2, 2, 2, 3] + """ + + assert in_dynamic_mode(), "Currently, Sparse API only support dynamic mode" + assert x.is_sparse_coo( + ), "Currently, sparse.relu only support the input of SparseCooTensor" + assert data_format == 'NDHWC', "Currently, sparse.max_pool3d only support data format of 'NDHWC'" + + kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size') + if stride is None: + stride = kernel_size + else: + stride = utils.convert_to_list(stride, 3, 'pool_stride') + + channel_last = True + + padding, padding_algorithm = _update_padding_nd( + padding, 3, channel_last=channel_last, ceil_mode=ceil_mode) + + #TODO(zkh2016): remove the dependency on dilation from the backend + dilation = [1, 1, 1] + + return _C_ops.final_state_sparse_maxpool(x, kernel_size, padding, dilation, + stride) diff --git a/python/paddle/sparse/layer/__init__.py b/python/paddle/sparse/layer/__init__.py index ee32e5027b..3a6d99392e 100644 --- a/python/paddle/sparse/layer/__init__.py +++ b/python/paddle/sparse/layer/__init__.py @@ -16,5 +16,6 @@ from .activation import ReLU from .norm import BatchNorm from .conv import Conv3D from .conv import SubmConv3D +from .pooling import MaxPool3D __all__ = [] diff --git a/python/paddle/sparse/layer/pooling.py b/python/paddle/sparse/layer/pooling.py new file mode 100644 index 0000000000..9cfe463eed --- /dev/null +++ b/python/paddle/sparse/layer/pooling.py @@ -0,0 +1,105 @@ +# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from paddle.nn import Layer +from .. import functional as F + + +class MaxPool3D(Layer): + """ + This operation applies 3D max pooling over input features based on the sparse input, + and kernel_size, stride, padding parameters. Input(X) and Output(Out) are + in NDHWC format, where N is batch size, C is the number of channels, + H is the height of the feature, D is the depth of the feature, and W is the width of the feature. + + Parameters: + kernel_size(int|list|tuple): The pool kernel size. If the kernel size + is a tuple or list, it must contain three integers, + (kernel_size_Depth, kernel_size_Height, kernel_size_Width). + Otherwise, the pool kernel size will be the cube of an int. + stride(int|list|tuple, optional): The pool stride size. If pool stride size is a tuple or list, + it must contain three integers, [stride_Depth, stride_Height, stride_Width). + Otherwise, the pool stride size will be a cube of an int. + Default None, then stride will be equal to the kernel_size. + padding(str|int|list|tuple, optional): The padding size. Padding could be in one of the following forms. + 1. A string in ['valid', 'same']. + 2. An int, which means the feature map is zero padded by size of `padding` on every sides. + 3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension. + 4. A list[int] or tuple(int) whose length is \6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side. + 5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0). + The default value is 0. + ceil_mode(bool, optional): ${ceil_mode_comment} + return_mask(bool, optional): Whether to return the max indices along with the outputs. + data_format(str, optional): The data format of the input and output data. An optional string from: `"NCDHW"`, + `"NDHWC"`. The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of: + `[batch_size, input_channels, input_depth, input_height, input_width]`. Currently, only support "NDHWC". + name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. + Usually name is no need to set and None by default. + + + Returns: + A callable object of MaxPool3D. + + Shape: + - x(Tensor): The input SparseCooTensor of max pool3d operator, which is a 5-D tensor. + The data type can be float32, float64. + - output(Tensor): The output tensor of max pool3d operator, which is a 5-D tensor. + The data type is same as input x. + + Examples: + .. code-block:: python + + import paddle + from paddle.fluid.framework import _test_eager_guard + + with _test_eager_guard(): + dense_x = paddle.randn((2, 3, 6, 6, 3)) + sparse_x = dense_x.to_sparse_coo(4) + max_pool3d = paddle.sparse.MaxPool3D( + kernel_size=3, data_format='NDHWC') + out = max_pool3d(sparse_x) + #shape=[2, 1, 2, 2, 3] + + """ + + def __init__(self, + kernel_size, + stride=None, + padding=0, + return_mask=False, + ceil_mode=False, + data_format="NDHWC", + name=None): + super(MaxPool3D, self).__init__() + self.ksize = kernel_size + self.stride = stride + self.padding = padding + self.return_mask = return_mask + self.ceil_mode = ceil_mode + self.data_format = data_format + self.name = name + + def forward(self, x): + return F.max_pool3d( + x, + kernel_size=self.ksize, + stride=self.stride, + padding=self.padding, + ceil_mode=self.ceil_mode, + data_format=self.data_format, + name=self.name) + + def extra_repr(self): + return 'kernel_size={ksize}, stride={stride}, padding={padding}'.format( + **self.__dict__) diff --git a/python/paddle/utils/code_gen/sparse_api.yaml b/python/paddle/utils/code_gen/sparse_api.yaml index 100d7ad783..ca4330f2af 100644 --- a/python/paddle/utils/code_gen/sparse_api.yaml +++ b/python/paddle/utils/code_gen/sparse_api.yaml @@ -65,3 +65,12 @@ args : (Tensor x) output : Tensor(out@SparseCsrTensor) invoke : to_sparse_csr_impl(x) + +- api: maxpool + args : (Tensor x, int[] kernel_sizes, int[] paddings, int[] dilations, int[] strides) + output : Tensor(out@SparseCooTensor), Tensor(rulebook@DenseTensor) + kernel : + func : sparse_maxpool + layout : x + intermediate : rulebook + backward : sparse_maxpool_grad diff --git a/python/paddle/utils/code_gen/sparse_bw_api.yaml b/python/paddle/utils/code_gen/sparse_bw_api.yaml index e3946cbf72..74299ed3e3 100644 --- a/python/paddle/utils/code_gen/sparse_bw_api.yaml +++ b/python/paddle/utils/code_gen/sparse_bw_api.yaml @@ -32,6 +32,13 @@ output : Tensor(x_grad@DenseTensor) invoke : to_dense_impl(out_grad) +- backward_api : sparse_maxpool_grad + forward : sparse_maxpool(Tensor x, int[] kernel_sizes, int[] paddings, int[] dilations, int[] strides) -> Tensor(out@SparseCooTensor), Tensor(rulebook@DenseTensor) + args : (Tensor x, Tensor rulebook, Tensor out, Tensor out_grad, int[] kernel_sizes) + output : Tensor(x_grad@SparseCooTensor) + kernel : + func : sparse_maxpool_grad + - backward_api : sparse_relu_grad forward : sparse_relu(Tensor x) -> Tensor(out@SparseCooTensor) args : (Tensor x, Tensor out_grad) -- GitLab