From 187d1c38ef93567b2bee7aa9ce6c6187f472757b Mon Sep 17 00:00:00 2001 From: GaoWei8 <53294385+GaoWei8@users.noreply.github.com> Date: Thu, 19 Dec 2019 10:40:48 +0800 Subject: [PATCH] Remove self-set accuracy parameters of op tests: max_relative_error (#21744) * Remove self-set accuracy parameters of op tests: max_relative_error test=develop * fix errors test=develop --- .../tests/unittests/test_activation_op.py | 52 +++++++++---------- 1 file changed, 26 insertions(+), 26 deletions(-) diff --git a/python/paddle/fluid/tests/unittests/test_activation_op.py b/python/paddle/fluid/tests/unittests/test_activation_op.py index b27952321a..a607c7b2ee 100644 --- a/python/paddle/fluid/tests/unittests/test_activation_op.py +++ b/python/paddle/fluid/tests/unittests/test_activation_op.py @@ -58,7 +58,7 @@ class TestActivation(OpTest): def test_check_grad(self): if self.dtype == np.float16: return - self.check_grad(['X'], 'Out', max_relative_error=0.007) + self.check_grad(['X'], 'Out') def init_dtype(self): self.dtype = np.float32 @@ -115,7 +115,7 @@ class TestTanh(TestActivation): def test_check_grad(self): if self.dtype == np.float16: return - self.check_grad(['X'], 'Out', max_relative_error=0.007) + self.check_grad(['X'], 'Out') class TestAtan(TestActivation): @@ -132,7 +132,7 @@ class TestAtan(TestActivation): def test_check_grad(self): if self.dtype == np.float16: return - self.check_grad(['X'], 'Out', max_relative_error=0.007) + self.check_grad(['X'], 'Out') class TestTanhShrink(TestActivation): @@ -149,7 +149,7 @@ class TestTanhShrink(TestActivation): def test_check_grad(self): if self.dtype == np.float16: return - self.check_grad(['X'], 'Out', max_relative_error=0.008) + self.check_grad(['X'], 'Out') class TestHardShrink(TestActivation): @@ -169,7 +169,7 @@ class TestHardShrink(TestActivation): def test_check_grad(self): if self.dtype == np.float16: return - self.check_grad(['X'], 'Out', max_relative_error=0.005) + self.check_grad(['X'], 'Out') class TestSoftShrink(TestActivation): @@ -190,7 +190,7 @@ class TestSoftShrink(TestActivation): def test_check_grad(self): if self.dtype == np.float16: return - self.check_grad(['X'], 'Out', max_relative_error=0.007) + self.check_grad(['X'], 'Out') class TestSqrt(TestActivation): @@ -207,7 +207,7 @@ class TestSqrt(TestActivation): def test_check_grad(self): if self.dtype == np.float16: return - self.check_grad(['X'], 'Out', max_relative_error=0.007) + self.check_grad(['X'], 'Out') class TestRsqrt(TestActivation): @@ -246,7 +246,7 @@ class TestAbs(TestActivation): def test_check_grad(self): if self.dtype == np.float16: return - self.check_grad(['X'], 'Out', max_relative_error=0.007) + self.check_grad(['X'], 'Out') class TestCeil(TestActivation): @@ -297,7 +297,7 @@ class TestCos(TestActivation): def test_check_grad(self): if self.dtype == np.float16: return - self.check_grad(['X'], 'Out', max_relative_error=0.007) + self.check_grad(['X'], 'Out') class TestAcos(TestActivation): @@ -314,7 +314,7 @@ class TestAcos(TestActivation): def test_check_grad(self): if self.dtype == np.float16: return - self.check_grad(['X'], 'Out', max_relative_error=0.007) + self.check_grad(['X'], 'Out') class TestSin(TestActivation): @@ -331,7 +331,7 @@ class TestSin(TestActivation): def test_check_grad(self): if self.dtype == np.float16: return - self.check_grad(['X'], 'Out', max_relative_error=0.007) + self.check_grad(['X'], 'Out') class TestAsin(TestActivation): @@ -348,7 +348,7 @@ class TestAsin(TestActivation): def test_check_grad(self): if self.dtype == np.float16: return - self.check_grad(['X'], 'Out', max_relative_error=0.007) + self.check_grad(['X'], 'Out') class TestRound(TestActivation): @@ -382,7 +382,7 @@ class TestRelu(TestActivation): def test_check_grad(self): if self.dtype == np.float16: return - self.check_grad(['X'], 'Out', max_relative_error=0.007) + self.check_grad(['X'], 'Out') class TestLeakyRelu(TestActivation): @@ -401,7 +401,7 @@ class TestLeakyRelu(TestActivation): def test_check_grad(self): if self.dtype == np.float16: return - self.check_grad(['X'], 'Out', max_relative_error=0.007) + self.check_grad(['X'], 'Out') class TestGelu(TestActivation): @@ -418,7 +418,7 @@ class TestGelu(TestActivation): def test_check_grad(self): if self.dtype == np.float16: return - self.check_grad(['X'], 'Out', max_relative_error=0.007) + self.check_grad(['X'], 'Out') class TestBRelu(TestActivation): @@ -443,7 +443,7 @@ class TestBRelu(TestActivation): def test_check_grad(self): if self.dtype == np.float16: return - self.check_grad(['X'], 'Out', max_relative_error=0.02) + self.check_grad(['X'], 'Out') class TestRelu6(TestActivation): @@ -465,7 +465,7 @@ class TestRelu6(TestActivation): def test_check_grad(self): if self.dtype == np.float16: return - self.check_grad(['X'], 'Out', max_relative_error=0.02) + self.check_grad(['X'], 'Out') class TestHardSwish(TestActivation): @@ -489,7 +489,7 @@ class TestHardSwish(TestActivation): def test_check_grad(self): if self.dtype == np.float16: return - self.check_grad(['X'], 'Out', max_relative_error=0.02) + self.check_grad(['X'], 'Out') class TestSoftRelu(TestActivation): @@ -534,7 +534,7 @@ class TestELU(TestActivation): def test_check_grad(self): if self.dtype == np.float16: return - self.check_grad(['X'], 'Out', max_relative_error=0.02) + self.check_grad(['X'], 'Out') class TestELUOpError(unittest.TestCase): @@ -580,7 +580,7 @@ class TestLog(TestActivation): def test_check_grad(self): if self.dtype == np.float16: return - self.check_grad(['X'], 'Out', max_relative_error=0.007) + self.check_grad(['X'], 'Out') class TestSquare(TestActivation): @@ -615,7 +615,7 @@ class TestPow(TestActivation): def test_check_grad(self): if self.dtype == np.float16: return - self.check_grad(['X'], 'Out', max_relative_error=0.02) + self.check_grad(['X'], 'Out') class TestPow_factor_tensor(TestActivation): @@ -640,7 +640,7 @@ class TestPow_factor_tensor(TestActivation): def test_check_grad(self): if self.dtype == np.float16: return - self.check_grad(['X'], 'Out', max_relative_error=0.02) + self.check_grad(['X'], 'Out') def test_api(self): import paddle.fluid as fluid @@ -680,7 +680,7 @@ class TestSTanh(TestActivation): def test_check_grad(self): if self.dtype == np.float16: return - self.check_grad(['X'], 'Out', max_relative_error=0.007) + self.check_grad(['X'], 'Out') class TestSoftplus(TestActivation): @@ -698,7 +698,7 @@ class TestSoftplus(TestActivation): def test_check_grad(self): if self.dtype == np.float16: return - self.check_grad(['X'], 'Out', max_relative_error=0.007) + self.check_grad(['X'], 'Out') class TestSoftsign(TestActivation): @@ -715,7 +715,7 @@ class TestSoftsign(TestActivation): def test_check_grad(self): if self.dtype == np.float16: return - self.check_grad(['X'], 'Out', max_relative_error=0.007) + self.check_grad(['X'], 'Out') class TestThresholdedRelu(TestActivation): @@ -738,7 +738,7 @@ class TestThresholdedRelu(TestActivation): def test_check_grad(self): if self.dtype == np.float16: return - self.check_grad(['X'], 'Out', max_relative_error=self.relative_error) + self.check_grad(['X'], 'Out') class TestHardSigmoid(TestActivation): -- GitLab