未验证 提交 187248f5 编写于 作者: L liym27 提交者: GitHub

[NPU] Support npu op pow and pow grad (#31247)

* [NPU] Support npu op: (1) pow (2) pow_grad

* Support fp16
上级 821c2f4e
...@@ -208,8 +208,16 @@ void Copy<platform::NPUPlace, platform::CPUPlace>(platform::NPUPlace dst_place, ...@@ -208,8 +208,16 @@ void Copy<platform::NPUPlace, platform::CPUPlace>(platform::NPUPlace dst_place,
if (UNLIKELY(num == 0)) return; if (UNLIKELY(num == 0)) return;
platform::SetNPUDeviceId(dst_place.device); platform::SetNPUDeviceId(dst_place.device);
// NOTE(ascendrc): NPU memcpy async from host to device is a "real" async,
// which is different from CUDA. In Paddle, when async is called, "sync"
// is run actually, which means Paddle doesn't fully supported async.
// TODO(ascendrc): Support NPU memcpy async for better performance.
stream = nullptr;
VLOG(4) << "memory::Copy " << num << " Bytes from " << src_place << " to " VLOG(4) << "memory::Copy " << num << " Bytes from " << src_place << " to "
<< dst_place << " by thream(" << stream << ")"; << dst_place << " by thream(" << stream << ")";
if (stream) { if (stream) {
platform::RecordEvent record_event("NpuMemcpyAsync:CPU->NPU"); platform::RecordEvent record_event("NpuMemcpyAsync:CPU->NPU");
platform::NPUMemcpyAsync(dst, src, num, ACL_MEMCPY_HOST_TO_DEVICE, stream); platform::NPUMemcpyAsync(dst, src, num, ACL_MEMCPY_HOST_TO_DEVICE, stream);
...@@ -228,8 +236,16 @@ void Copy<platform::CPUPlace, platform::NPUPlace>(platform::CPUPlace dst_place, ...@@ -228,8 +236,16 @@ void Copy<platform::CPUPlace, platform::NPUPlace>(platform::CPUPlace dst_place,
if (UNLIKELY(num == 0)) return; if (UNLIKELY(num == 0)) return;
platform::SetNPUDeviceId(src_place.device); platform::SetNPUDeviceId(src_place.device);
// NOTE(ascendrc): NPU memcpy async from device to host is a "real" async,
// which is different from CUDA. In Paddle, when async is called, "sync"
// is run actually, which means Paddle doesn't fully supported async.
// TODO(ascendrc): Support NPU memcpy async for better performance.
stream = nullptr;
VLOG(4) << "memory::Copy " << num << " Bytes from " << src_place << " to " VLOG(4) << "memory::Copy " << num << " Bytes from " << src_place << " to "
<< dst_place << " by thream(" << stream << ")"; << dst_place << " by thream(" << stream << ")";
if (stream) { if (stream) {
platform::RecordEvent record_event("NpuMemcpyAsync:NPU->CPU"); platform::RecordEvent record_event("NpuMemcpyAsync:NPU->CPU");
platform::NPUMemcpyAsync(dst, src, num, ACL_MEMCPY_DEVICE_TO_HOST, stream); platform::NPUMemcpyAsync(dst, src, num, ACL_MEMCPY_DEVICE_TO_HOST, stream);
......
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the Licnse. */
#ifdef PADDLE_WITH_ASCEND_CL
#include <memory>
#include <string>
#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/activation_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename DeviceContext, typename T>
class PowNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x = ctx.Input<Tensor>("X");
auto* out = ctx.Output<Tensor>("Out");
auto factor = ctx.Attr<float>("factor");
out->mutable_data<T>(ctx.GetPlace());
auto runner = NpuOpRunner("Power", {*x}, {*out},
{{"power", factor},
{"scale", static_cast<float>(1.0)},
{"shift", static_cast<float>(0.0)}});
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
runner.Run(stream);
}
};
template <typename DeviceContext, typename T>
class PowGradNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x = ctx.Input<Tensor>("X");
auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
auto factor = ctx.Attr<float>("factor");
auto x_dims = x->dims();
auto place = ctx.GetPlace();
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
// NOTE(liym27): dx = dout * factor * x.pow(factor-1)
// Step1: Compute x_pow = x.pow(factor-1)
Tensor x_pow(x->type());
x_pow.mutable_data<T>(x->dims(), place);
auto runner_pow = NpuOpRunner("Power", {*x}, {x_pow},
{{"power", factor - static_cast<float>(1)}});
runner_pow.Run(stream);
// Step 2: Construct a broadcast factor, which has the same shape with x.
// 2.1 Get the shape of x
Tensor x_shape(framework::proto::VarType::INT32);
x_shape.mutable_data<int32_t>({x_dims.size()}, place);
TensorFromVector(framework::vectorize<int32_t>(x_dims),
ctx.device_context(), &x_shape);
// 2.2 Get a factor tensor with shape [1].
Tensor factor_tensor(framework::proto::VarType::FP32);
factor_tensor.mutable_data<float>({1}, place);
TensorFromVector(std::vector<float>{factor}, ctx.device_context(),
&factor_tensor);
// 2.3 Get the factor which has the shape with x and the same value with
// factor.
Tensor factor_bc_tensor(framework::proto::VarType::FP32);
factor_bc_tensor.mutable_data<float>(x_dims, place);
auto runner_bc = NpuOpRunner("BroadcastTo", {factor_tensor, x_shape},
{factor_bc_tensor}, {});
runner_bc.Run(stream);
// Step 3: Compute x_power_mul_factor = factor * x.pow(factor-1)
Tensor x_power_mul_factor(x->type());
x_power_mul_factor.mutable_data<T>(x->dims(), place);
auto runner_mul_1 =
NpuOpRunner("Mul", {factor_bc_tensor, *x}, {x_power_mul_factor}, {});
runner_mul_1.Run(stream);
// Step 4: Compute dx = dout * factor * x.pow(factor-1)
dx->mutable_data<T>(place);
auto runner_mul_2 =
NpuOpRunner("Mul", {*dout, x_power_mul_factor}, {*dx}, {});
runner_mul_2.Run(stream);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_NPU_KERNEL(
pow, ops::PowNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::PowNPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);
REGISTER_OP_NPU_KERNEL(
pow_grad, ops::PowGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::PowGradNPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);
#endif
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import unittest
import sys
sys.path.append("..")
from op_test import OpTest
import paddle
import paddle.fluid as fluid
paddle.enable_static()
SEED = 2021
@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestPow(OpTest):
def setUp(self):
self.set_npu()
self.op_type = "pow"
self.place = paddle.NPUPlace(0)
self.init_dtype()
np.random.seed(SEED)
x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
out = np.power(x, 3)
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
self.attrs = {'factor': 3.0}
self.outputs = {'Out': out}
def set_npu(self):
self.__class__.use_npu = True
def init_dtype(self):
self.dtype = np.float32
def test_check_output(self):
self.check_output_with_place(self.place, check_dygraph=False)
# TODO(ascendrc): Add grad test
# def test_check_grad(self):
# if self.dtype == np.float16:
# return
# self.check_grad(['X'], 'Out')
#
@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestPowFp16(OpTest):
def setUp(self):
self.set_npu()
self.op_type = "pow"
self.place = paddle.NPUPlace(0)
self.init_dtype()
np.random.seed(SEED)
x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
out = np.power(x, 3)
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
self.attrs = {'factor': 3.0}
self.outputs = {'Out': out}
def set_npu(self):
self.__class__.use_npu = True
def init_dtype(self):
self.dtype = np.float16
def test_check_output(self):
self.check_output_with_place(self.place, check_dygraph=False)
@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestSubtractNet(unittest.TestCase):
def _test(self, run_npu=True):
main_prog = paddle.static.Program()
startup_prog = paddle.static.Program()
main_prog.random_seed = SEED
startup_prog.random_seed = SEED
np.random.seed(SEED)
a_np = np.random.random(size=(32, 32)).astype('float32')
b_np = np.random.random(size=(32, 32)).astype('float32')
label_np = np.random.randint(2, size=(32, 1)).astype('int64')
with paddle.static.program_guard(main_prog, startup_prog):
a = paddle.static.data(name="a", shape=[32, 32], dtype='float32')
b = paddle.static.data(name="b", shape=[32, 32], dtype='float32')
label = paddle.static.data(
name="label", shape=[32, 1], dtype='int64')
sum = paddle.add(a, b)
z = paddle.pow(sum, 2.0)
fc_1 = fluid.layers.fc(input=z, size=128)
prediction = fluid.layers.fc(input=fc_1, size=2, act='softmax')
cost = fluid.layers.cross_entropy(input=prediction, label=label)
loss = fluid.layers.reduce_mean(cost)
sgd = fluid.optimizer.SGD(learning_rate=0.01)
sgd.minimize(loss)
if run_npu:
place = paddle.NPUPlace(0)
else:
place = paddle.CPUPlace()
exe = paddle.static.Executor(place)
exe.run(startup_prog)
for epoch in range(100):
pred_res, loss_res = exe.run(
main_prog,
feed={"a": a_np,
"b": b_np,
"label": label_np},
fetch_list=[prediction, loss])
if epoch % 10 == 0:
print("Epoch {} | Prediction[0]: {}, Loss: {}".format(
epoch, pred_res[0], loss_res))
return pred_res, loss_res
def test_npu(self):
cpu_pred, cpu_loss = self._test(False)
npu_pred, npu_loss = self._test(True)
self.assertTrue(np.allclose(npu_pred, cpu_pred))
self.assertTrue(np.allclose(npu_loss, cpu_loss))
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册