Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
187248f5
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
187248f5
编写于
2月 26, 2021
作者:
L
liym27
提交者:
GitHub
2月 26, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[NPU] Support npu op pow and pow grad (#31247)
* [NPU] Support npu op: (1) pow (2) pow_grad * Support fp16
上级
821c2f4e
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
295 addition
and
0 deletion
+295
-0
paddle/fluid/memory/memcpy.cc
paddle/fluid/memory/memcpy.cc
+16
-0
paddle/fluid/operators/activation_op_npu.cc
paddle/fluid/operators/activation_op_npu.cc
+127
-0
python/paddle/fluid/tests/unittests/npu/test_pow_op_npu.py
python/paddle/fluid/tests/unittests/npu/test_pow_op_npu.py
+152
-0
未找到文件。
paddle/fluid/memory/memcpy.cc
浏览文件 @
187248f5
...
@@ -208,8 +208,16 @@ void Copy<platform::NPUPlace, platform::CPUPlace>(platform::NPUPlace dst_place,
...
@@ -208,8 +208,16 @@ void Copy<platform::NPUPlace, platform::CPUPlace>(platform::NPUPlace dst_place,
if
(
UNLIKELY
(
num
==
0
))
return
;
if
(
UNLIKELY
(
num
==
0
))
return
;
platform
::
SetNPUDeviceId
(
dst_place
.
device
);
platform
::
SetNPUDeviceId
(
dst_place
.
device
);
// NOTE(ascendrc): NPU memcpy async from host to device is a "real" async,
// which is different from CUDA. In Paddle, when async is called, "sync"
// is run actually, which means Paddle doesn't fully supported async.
// TODO(ascendrc): Support NPU memcpy async for better performance.
stream
=
nullptr
;
VLOG
(
4
)
<<
"memory::Copy "
<<
num
<<
" Bytes from "
<<
src_place
<<
" to "
VLOG
(
4
)
<<
"memory::Copy "
<<
num
<<
" Bytes from "
<<
src_place
<<
" to "
<<
dst_place
<<
" by thream("
<<
stream
<<
")"
;
<<
dst_place
<<
" by thream("
<<
stream
<<
")"
;
if
(
stream
)
{
if
(
stream
)
{
platform
::
RecordEvent
record_event
(
"NpuMemcpyAsync:CPU->NPU"
);
platform
::
RecordEvent
record_event
(
"NpuMemcpyAsync:CPU->NPU"
);
platform
::
NPUMemcpyAsync
(
dst
,
src
,
num
,
ACL_MEMCPY_HOST_TO_DEVICE
,
stream
);
platform
::
NPUMemcpyAsync
(
dst
,
src
,
num
,
ACL_MEMCPY_HOST_TO_DEVICE
,
stream
);
...
@@ -228,8 +236,16 @@ void Copy<platform::CPUPlace, platform::NPUPlace>(platform::CPUPlace dst_place,
...
@@ -228,8 +236,16 @@ void Copy<platform::CPUPlace, platform::NPUPlace>(platform::CPUPlace dst_place,
if
(
UNLIKELY
(
num
==
0
))
return
;
if
(
UNLIKELY
(
num
==
0
))
return
;
platform
::
SetNPUDeviceId
(
src_place
.
device
);
platform
::
SetNPUDeviceId
(
src_place
.
device
);
// NOTE(ascendrc): NPU memcpy async from device to host is a "real" async,
// which is different from CUDA. In Paddle, when async is called, "sync"
// is run actually, which means Paddle doesn't fully supported async.
// TODO(ascendrc): Support NPU memcpy async for better performance.
stream
=
nullptr
;
VLOG
(
4
)
<<
"memory::Copy "
<<
num
<<
" Bytes from "
<<
src_place
<<
" to "
VLOG
(
4
)
<<
"memory::Copy "
<<
num
<<
" Bytes from "
<<
src_place
<<
" to "
<<
dst_place
<<
" by thream("
<<
stream
<<
")"
;
<<
dst_place
<<
" by thream("
<<
stream
<<
")"
;
if
(
stream
)
{
if
(
stream
)
{
platform
::
RecordEvent
record_event
(
"NpuMemcpyAsync:NPU->CPU"
);
platform
::
RecordEvent
record_event
(
"NpuMemcpyAsync:NPU->CPU"
);
platform
::
NPUMemcpyAsync
(
dst
,
src
,
num
,
ACL_MEMCPY_DEVICE_TO_HOST
,
stream
);
platform
::
NPUMemcpyAsync
(
dst
,
src
,
num
,
ACL_MEMCPY_DEVICE_TO_HOST
,
stream
);
...
...
paddle/fluid/operators/activation_op_npu.cc
0 → 100644
浏览文件 @
187248f5
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the Licnse. */
#ifdef PADDLE_WITH_ASCEND_CL
#include <memory>
#include <string>
#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/activation_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
DeviceContext
,
typename
T
>
class
PowNPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
factor
=
ctx
.
Attr
<
float
>
(
"factor"
);
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
runner
=
NpuOpRunner
(
"Power"
,
{
*
x
},
{
*
out
},
{{
"power"
,
factor
},
{
"scale"
,
static_cast
<
float
>
(
1.0
)},
{
"shift"
,
static_cast
<
float
>
(
0.0
)}});
auto
stream
=
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>()
.
stream
();
runner
.
Run
(
stream
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
PowGradNPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
dout
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
factor
=
ctx
.
Attr
<
float
>
(
"factor"
);
auto
x_dims
=
x
->
dims
();
auto
place
=
ctx
.
GetPlace
();
auto
stream
=
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>()
.
stream
();
// NOTE(liym27): dx = dout * factor * x.pow(factor-1)
// Step1: Compute x_pow = x.pow(factor-1)
Tensor
x_pow
(
x
->
type
());
x_pow
.
mutable_data
<
T
>
(
x
->
dims
(),
place
);
auto
runner_pow
=
NpuOpRunner
(
"Power"
,
{
*
x
},
{
x_pow
},
{{
"power"
,
factor
-
static_cast
<
float
>
(
1
)}});
runner_pow
.
Run
(
stream
);
// Step 2: Construct a broadcast factor, which has the same shape with x.
// 2.1 Get the shape of x
Tensor
x_shape
(
framework
::
proto
::
VarType
::
INT32
);
x_shape
.
mutable_data
<
int32_t
>
({
x_dims
.
size
()},
place
);
TensorFromVector
(
framework
::
vectorize
<
int32_t
>
(
x_dims
),
ctx
.
device_context
(),
&
x_shape
);
// 2.2 Get a factor tensor with shape [1].
Tensor
factor_tensor
(
framework
::
proto
::
VarType
::
FP32
);
factor_tensor
.
mutable_data
<
float
>
({
1
},
place
);
TensorFromVector
(
std
::
vector
<
float
>
{
factor
},
ctx
.
device_context
(),
&
factor_tensor
);
// 2.3 Get the factor which has the shape with x and the same value with
// factor.
Tensor
factor_bc_tensor
(
framework
::
proto
::
VarType
::
FP32
);
factor_bc_tensor
.
mutable_data
<
float
>
(
x_dims
,
place
);
auto
runner_bc
=
NpuOpRunner
(
"BroadcastTo"
,
{
factor_tensor
,
x_shape
},
{
factor_bc_tensor
},
{});
runner_bc
.
Run
(
stream
);
// Step 3: Compute x_power_mul_factor = factor * x.pow(factor-1)
Tensor
x_power_mul_factor
(
x
->
type
());
x_power_mul_factor
.
mutable_data
<
T
>
(
x
->
dims
(),
place
);
auto
runner_mul_1
=
NpuOpRunner
(
"Mul"
,
{
factor_bc_tensor
,
*
x
},
{
x_power_mul_factor
},
{});
runner_mul_1
.
Run
(
stream
);
// Step 4: Compute dx = dout * factor * x.pow(factor-1)
dx
->
mutable_data
<
T
>
(
place
);
auto
runner_mul_2
=
NpuOpRunner
(
"Mul"
,
{
*
dout
,
x_power_mul_factor
},
{
*
dx
},
{});
runner_mul_2
.
Run
(
stream
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_NPU_KERNEL
(
pow
,
ops
::
PowNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
float
>
,
ops
::
PowNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
paddle
::
platform
::
float16
>
);
REGISTER_OP_NPU_KERNEL
(
pow_grad
,
ops
::
PowGradNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
float
>
,
ops
::
PowGradNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
paddle
::
platform
::
float16
>
);
#endif
python/paddle/fluid/tests/unittests/npu/test_pow_op_npu.py
0 → 100644
浏览文件 @
187248f5
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
unittest
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
import
paddle
import
paddle.fluid
as
fluid
paddle
.
enable_static
()
SEED
=
2021
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
TestPow
(
OpTest
):
def
setUp
(
self
):
self
.
set_npu
()
self
.
op_type
=
"pow"
self
.
place
=
paddle
.
NPUPlace
(
0
)
self
.
init_dtype
()
np
.
random
.
seed
(
SEED
)
x
=
np
.
random
.
uniform
(
1
,
2
,
[
11
,
17
]).
astype
(
self
.
dtype
)
out
=
np
.
power
(
x
,
3
)
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
x
)}
self
.
attrs
=
{
'factor'
:
3.0
}
self
.
outputs
=
{
'Out'
:
out
}
def
set_npu
(
self
):
self
.
__class__
.
use_npu
=
True
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
check_dygraph
=
False
)
# TODO(ascendrc): Add grad test
# def test_check_grad(self):
# if self.dtype == np.float16:
# return
# self.check_grad(['X'], 'Out')
#
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
TestPowFp16
(
OpTest
):
def
setUp
(
self
):
self
.
set_npu
()
self
.
op_type
=
"pow"
self
.
place
=
paddle
.
NPUPlace
(
0
)
self
.
init_dtype
()
np
.
random
.
seed
(
SEED
)
x
=
np
.
random
.
uniform
(
1
,
2
,
[
11
,
17
]).
astype
(
self
.
dtype
)
out
=
np
.
power
(
x
,
3
)
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
x
)}
self
.
attrs
=
{
'factor'
:
3.0
}
self
.
outputs
=
{
'Out'
:
out
}
def
set_npu
(
self
):
self
.
__class__
.
use_npu
=
True
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float16
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
check_dygraph
=
False
)
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
TestSubtractNet
(
unittest
.
TestCase
):
def
_test
(
self
,
run_npu
=
True
):
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
SEED
startup_prog
.
random_seed
=
SEED
np
.
random
.
seed
(
SEED
)
a_np
=
np
.
random
.
random
(
size
=
(
32
,
32
)).
astype
(
'float32'
)
b_np
=
np
.
random
.
random
(
size
=
(
32
,
32
)).
astype
(
'float32'
)
label_np
=
np
.
random
.
randint
(
2
,
size
=
(
32
,
1
)).
astype
(
'int64'
)
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
a
=
paddle
.
static
.
data
(
name
=
"a"
,
shape
=
[
32
,
32
],
dtype
=
'float32'
)
b
=
paddle
.
static
.
data
(
name
=
"b"
,
shape
=
[
32
,
32
],
dtype
=
'float32'
)
label
=
paddle
.
static
.
data
(
name
=
"label"
,
shape
=
[
32
,
1
],
dtype
=
'int64'
)
sum
=
paddle
.
add
(
a
,
b
)
z
=
paddle
.
pow
(
sum
,
2.0
)
fc_1
=
fluid
.
layers
.
fc
(
input
=
z
,
size
=
128
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
2
,
act
=
'softmax'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
loss
=
fluid
.
layers
.
reduce_mean
(
cost
)
sgd
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.01
)
sgd
.
minimize
(
loss
)
if
run_npu
:
place
=
paddle
.
NPUPlace
(
0
)
else
:
place
=
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
for
epoch
in
range
(
100
):
pred_res
,
loss_res
=
exe
.
run
(
main_prog
,
feed
=
{
"a"
:
a_np
,
"b"
:
b_np
,
"label"
:
label_np
},
fetch_list
=
[
prediction
,
loss
])
if
epoch
%
10
==
0
:
print
(
"Epoch {} | Prediction[0]: {}, Loss: {}"
.
format
(
epoch
,
pred_res
[
0
],
loss_res
))
return
pred_res
,
loss_res
def
test_npu
(
self
):
cpu_pred
,
cpu_loss
=
self
.
_test
(
False
)
npu_pred
,
npu_loss
=
self
.
_test
(
True
)
self
.
assertTrue
(
np
.
allclose
(
npu_pred
,
cpu_pred
))
self
.
assertTrue
(
np
.
allclose
(
npu_loss
,
cpu_loss
))
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录