Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
17879045
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
17879045
编写于
12月 07, 2022
作者:
Z
zhoutianzi666
提交者:
GitHub
12月 07, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
optimize nchw<->nhwc kernel in fp16 model (#48692)
上级
e5bc2eec
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
105 addition
and
5 deletion
+105
-5
paddle/phi/kernels/funcs/math_function.cu
paddle/phi/kernels/funcs/math_function.cu
+76
-5
paddle/phi/kernels/funcs/math_function.h
paddle/phi/kernels/funcs/math_function.h
+3
-0
paddle/phi/kernels/transfer_layout_kernel.cc
paddle/phi/kernels/transfer_layout_kernel.cc
+26
-0
未找到文件。
paddle/phi/kernels/funcs/math_function.cu
浏览文件 @
17879045
...
...
@@ -27,11 +27,83 @@ limitations under the License. */
namespace
phi
{
namespace
funcs
{
// The following part of the code refers to NVIDIA-cutlass
// https://github.com/NVIDIA/cutlass/blob/master/tools/util/include/cutlass/util/device_nchw_to_nhwc.h
// Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights
// reserved. SPDX-License-Identifier: BSD-3-Clause
template
<
typename
T
>
__global__
void
batch_transpose_kernel
(
T
*
output
,
const
T
*
input
,
const
int
batch
,
const
int
M
,
const
int
N
)
{
const
int
num
=
M
*
N
;
// "+1" to avoid smem bank conflict
__shared__
T
shbuf
[
32
*
(
32
+
1
)];
const
int32_t
tid
=
threadIdx
.
y
*
blockDim
.
x
+
threadIdx
.
x
;
const
int32_t
wid
=
tid
/
32
;
const
int32_t
lid
=
tid
%
32
;
const
int32_t
batch_i
=
blockIdx
.
z
;
const
int32_t
mi0
=
blockIdx
.
y
*
32
;
const
int32_t
ni0
=
blockIdx
.
x
*
32
;
const
size_t
input_idx
=
batch_i
*
num
+
(
mi0
+
wid
)
*
N
+
ni0
;
const
T
*
A
=
input
+
input_idx
;
if
(
ni0
+
lid
<
N
)
{
const
int
lid_x_33
=
lid
*
33
;
if
((
mi0
+
32
)
<=
M
)
{
int
mi
=
wid
;
// between 0 and 7
#pragma unroll
for
(
int
mLoopIdx
=
0
;
mLoopIdx
<
4
;
mLoopIdx
++
)
{
shbuf
[
lid_x_33
+
mi
]
=
A
[
lid
];
A
=
&
A
[
8
*
N
];
mi
+=
8
;
}
}
else
{
for
(
int
mi
=
wid
;
mi
<
32
;
mi
+=
8
)
{
if
((
mi
+
mi0
)
<
M
)
{
shbuf
[
lid_x_33
+
mi
]
=
A
[
lid
];
}
A
=
&
A
[
8
*
N
];
}
}
}
__syncthreads
();
const
int32_t
miOut
=
mi0
+
lid
;
output
=
&
output
[
batch_i
*
num
+
miOut
];
if
(
miOut
<
M
)
{
if
(
ni0
+
32
<
N
)
{
int
nI
=
wid
;
#pragma unroll
for
(
int
nLoopIdx
=
0
;
nLoopIdx
<
4
;
++
nLoopIdx
)
{
output
[(
ni0
+
nI
)
*
M
]
=
shbuf
[(
nI
)
*
33
+
lid
];
nI
+=
8
;
}
}
else
{
for
(
int
nI
=
wid
;
nI
<
32
;
nI
+=
8
)
{
if
(
ni0
+
nI
<
N
)
{
output
[(
ni0
+
nI
)
*
M
]
=
shbuf
[(
nI
)
*
33
+
lid
];
}
}
}
}
}
template
<
typename
T
>
void
BatchTranspose
(
T
*
output
,
const
T
*
input
,
int
batch
,
int
m
,
int
n
)
{
dim3
grid
((
n
+
31
)
/
32
,
(
m
+
31
)
/
32
,
batch
);
dim3
block
(
32
,
8
);
batch_transpose_kernel
<<<
grid
,
block
>>>
(
output
,
input
,
batch
,
m
,
n
);
}
using
float16
=
phi
::
dtype
::
float16
;
using
bfloat16
=
phi
::
dtype
::
bfloat16
;
template
struct
SetConstant
<
phi
::
GPUContext
,
phi
::
dtype
::
float16
>;
template
struct
SetConstant
<
phi
::
GPUContext
,
phi
::
dtype
::
bfloat16
>;
template
void
BatchTranspose
(
float16
*
output
,
const
float16
*
input
,
int
batch
,
int
m
,
int
n
);
template
void
BatchTranspose
(
float
*
output
,
const
float
*
input
,
int
batch
,
int
m
,
int
n
);
template
struct
SetConstant
<
phi
::
GPUContext
,
float16
>;
template
struct
SetConstant
<
phi
::
GPUContext
,
bfloat16
>;
template
struct
SetConstant
<
phi
::
GPUContext
,
float
>;
template
struct
SetConstant
<
phi
::
GPUContext
,
double
>;
template
struct
SetConstant
<
phi
::
GPUContext
,
uint8_t
>;
...
...
@@ -42,10 +114,9 @@ template struct SetConstant<phi::GPUContext, bool>;
template
struct
SetConstant
<
phi
::
GPUContext
,
phi
::
dtype
::
complex
<
float
>
>
;
template
struct
SetConstant
<
phi
::
GPUContext
,
phi
::
dtype
::
complex
<
double
>
>
;
template
struct
SetConstant
<
paddle
::
platform
::
CUDAPinnedDeviceContext
,
float16
>;
template
struct
SetConstant
<
paddle
::
platform
::
CUDAPinnedDeviceContext
,
phi
::
dtype
::
float16
>;
template
struct
SetConstant
<
paddle
::
platform
::
CUDAPinnedDeviceContext
,
phi
::
dtype
::
bfloat16
>;
bfloat16
>;
template
struct
SetConstant
<
paddle
::
platform
::
CUDAPinnedDeviceContext
,
float
>;
template
struct
SetConstant
<
paddle
::
platform
::
CUDAPinnedDeviceContext
,
double
>;
template
struct
SetConstant
<
paddle
::
platform
::
CUDAPinnedDeviceContext
,
uint8_t
>;
...
...
paddle/phi/kernels/funcs/math_function.h
浏览文件 @
17879045
...
...
@@ -29,6 +29,9 @@ limitations under the License. */
namespace
phi
{
namespace
funcs
{
template
<
typename
T
>
void
BatchTranspose
(
T
*
output
,
const
T
*
input
,
int
batch
,
int
m
,
int
n
);
template
<
typename
DeviceContext
,
typename
T
>
struct
TransposeNormal
{
// for dims >= 7 situation
...
...
paddle/phi/kernels/transfer_layout_kernel.cc
浏览文件 @
17879045
...
...
@@ -70,6 +70,32 @@ void TransferLayoutGeneral(const Context& dev_ctx,
out
->
Resize
(
phi
::
make_ddim
(
dst_dim
));
dev_ctx
.
Alloc
(
out
,
x
.
dtype
());
// In GPU fp16 model, we will insert many transfer_layout ops in
// conv2d_fusion_layout_transfer_pass, so we optimize this kernel on GPU
if
(
std
::
is_same
<
Context
,
phi
::
GPUContext
>::
value
)
{
std
::
vector
<
int
>
axis_nchw_nhwc
=
{
0
,
2
,
3
,
1
};
std
::
vector
<
int
>
axis_nhwc_nchw
=
{
0
,
3
,
1
,
2
};
const
int
batch
=
src_dim
[
0
];
int
row_len
=
src_dim
[
1
];
int
col_len
=
src_dim
[
2
]
*
src_dim
[
3
];
if
(
axis
==
axis_nhwc_nchw
)
{
row_len
=
src_dim
[
1
]
*
src_dim
[
2
];
col_len
=
src_dim
[
3
];
}
if
(
x
.
dtype
()
==
phi
::
DataType
::
FLOAT16
)
{
funcs
::
BatchTranspose
(
out
->
data
<
phi
::
dtype
::
float16
>
(),
x
.
data
<
phi
::
dtype
::
float16
>
(),
batch
,
row_len
,
col_len
);
return
;
}
else
if
(
x
.
dtype
()
==
phi
::
DataType
::
FLOAT32
)
{
funcs
::
BatchTranspose
(
out
->
data
<
float
>
(),
x
.
data
<
float
>
(),
batch
,
row_len
,
col_len
);
return
;
}
}
PD_VISIT_ALL_TYPES
(
x
.
dtype
(),
"CastDataLayout"
,
([
&
]
{
CastDataLayout
<
data_t
,
Context
>
(
dev_ctx
,
x
,
axis
,
out
);
}));
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录