Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
172e76a8
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
172e76a8
编写于
10月 20, 2020
作者:
L
LielinJiang
提交者:
GitHub
10月 20, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
transform add pil backend (#28132)
上级
f63f8d73
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
2556 addition
and
829 deletion
+2556
-829
python/paddle/tests/test_callbacks.py
python/paddle/tests/test_callbacks.py
+1
-1
python/paddle/tests/test_transforms.py
python/paddle/tests/test_transforms.py
+251
-46
python/paddle/vision/__init__.py
python/paddle/vision/__init__.py
+5
-1
python/paddle/vision/datasets/folder.py
python/paddle/vision/datasets/folder.py
+18
-3
python/paddle/vision/image.py
python/paddle/vision/image.py
+162
-0
python/paddle/vision/transforms/functional.py
python/paddle/vision/transforms/functional.py
+529
-218
python/paddle/vision/transforms/functional_cv2.py
python/paddle/vision/transforms/functional_cv2.py
+503
-0
python/paddle/vision/transforms/functional_pil.py
python/paddle/vision/transforms/functional_pil.py
+458
-0
python/paddle/vision/transforms/functional_tensor.py
python/paddle/vision/transforms/functional_tensor.py
+40
-0
python/paddle/vision/transforms/transforms.py
python/paddle/vision/transforms/transforms.py
+589
-560
未找到文件。
python/paddle/tests/test_callbacks.py
浏览文件 @
172e76a8
...
...
@@ -105,7 +105,7 @@ class TestCallbacks(unittest.TestCase):
self
.
run_callback
()
def
test_visualdl_callback
(
self
):
# visualdl not support python
3
# visualdl not support python
2
if
sys
.
version_info
<
(
3
,
):
return
...
...
python/paddle/tests/test_transforms.py
浏览文件 @
172e76a8
...
...
@@ -18,14 +18,19 @@ import tempfile
import
cv2
import
shutil
import
numpy
as
np
from
PIL
import
Image
import
paddle
from
paddle.vision
import
get_image_backend
,
set_image_backend
,
image_load
from
paddle.vision.datasets
import
DatasetFolder
from
paddle.vision.transforms
import
transforms
import
paddle.vision.transforms.functional
as
F
class
TestTransforms
(
unittest
.
TestCase
):
class
TestTransforms
CV2
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
backend
=
self
.
get_backend
()
set_image_backend
(
self
.
backend
)
self
.
data_dir
=
tempfile
.
mkdtemp
()
for
i
in
range
(
2
):
sub_dir
=
os
.
path
.
join
(
self
.
data_dir
,
'class_'
+
str
(
i
))
...
...
@@ -40,6 +45,22 @@ class TestTransforms(unittest.TestCase):
(
400
,
300
,
3
))
*
255
).
astype
(
'uint8'
)
cv2
.
imwrite
(
os
.
path
.
join
(
sub_dir
,
str
(
j
)
+
'.jpg'
),
fake_img
)
def
get_backend
(
self
):
return
'cv2'
def
create_image
(
self
,
shape
):
if
self
.
backend
==
'cv2'
:
return
(
np
.
random
.
rand
(
*
shape
)
*
255
).
astype
(
'uint8'
)
elif
self
.
backend
==
'pil'
:
return
Image
.
fromarray
((
np
.
random
.
rand
(
*
shape
)
*
255
).
astype
(
'uint8'
))
def
get_shape
(
self
,
img
):
if
self
.
backend
==
'pil'
:
return
np
.
array
(
img
).
shape
return
img
.
shape
def
tearDown
(
self
):
shutil
.
rmtree
(
self
.
data_dir
)
...
...
@@ -51,27 +72,29 @@ class TestTransforms(unittest.TestCase):
def
test_trans_all
(
self
):
normalize
=
transforms
.
Normalize
(
mean
=
[
123.675
,
116.28
,
103.53
],
std
=
[
58.395
,
57.120
,
57.375
])
mean
=
[
123.675
,
116.28
,
103.53
],
std
=
[
58.395
,
57.120
,
57.375
],
)
trans
=
transforms
.
Compose
([
transforms
.
RandomResizedCrop
(
224
),
transforms
.
GaussianNoise
(),
transforms
.
RandomResizedCrop
(
224
),
transforms
.
ColorJitter
(
brightness
=
0.4
,
contrast
=
0.4
,
saturation
=
0.4
,
hue
=
0.4
),
transforms
.
RandomHorizontalFlip
(),
transforms
.
Permute
(
mode
=
'CHW'
),
normalize
brightness
=
0.4
,
contrast
=
0.4
,
saturation
=
0.4
,
hue
=
0.4
),
transforms
.
RandomHorizontalFlip
(),
transforms
.
Transpose
(),
normalize
,
])
self
.
do_transform
(
trans
)
def
test_normalize
(
self
):
normalize
=
transforms
.
Normalize
(
mean
=
0.5
,
std
=
0.5
)
trans
=
transforms
.
Compose
([
transforms
.
Permute
(
mode
=
'CHW'
),
normalize
])
trans
=
transforms
.
Compose
([
transforms
.
Transpose
(
),
normalize
])
self
.
do_transform
(
trans
)
def
test_trans_resize
(
self
):
trans
=
transforms
.
Compose
([
transforms
.
Resize
(
300
,
[
0
,
1
]
),
transforms
.
Resize
(
300
),
transforms
.
RandomResizedCrop
((
280
,
280
)),
transforms
.
Resize
(
280
,
[
0
,
1
]
),
transforms
.
Resize
(
280
),
transforms
.
Resize
((
256
,
200
)),
transforms
.
Resize
((
180
,
160
)),
transforms
.
CenterCrop
(
128
),
...
...
@@ -79,13 +102,6 @@ class TestTransforms(unittest.TestCase):
])
self
.
do_transform
(
trans
)
def
test_trans_centerCrop
(
self
):
trans
=
transforms
.
Compose
([
transforms
.
CenterCropResize
(
224
),
transforms
.
CenterCropResize
(
128
,
160
),
])
self
.
do_transform
(
trans
)
def
test_flip
(
self
):
trans
=
transforms
.
Compose
([
transforms
.
RandomHorizontalFlip
(
1.0
),
...
...
@@ -96,7 +112,7 @@ class TestTransforms(unittest.TestCase):
self
.
do_transform
(
trans
)
def
test_color_jitter
(
self
):
trans
=
transforms
.
Batch
Compose
([
trans
=
transforms
.
Compose
([
transforms
.
BrightnessTransform
(
0.0
),
transforms
.
HueTransform
(
0.0
),
transforms
.
SaturationTransform
(
0.0
),
...
...
@@ -106,11 +122,11 @@ class TestTransforms(unittest.TestCase):
def
test_rotate
(
self
):
trans
=
transforms
.
Compose
([
transforms
.
RandomRotat
e
(
90
),
transforms
.
RandomRotat
e
([
-
10
,
10
]),
transforms
.
RandomRotat
e
(
transforms
.
RandomRotat
ion
(
90
),
transforms
.
RandomRotat
ion
([
-
10
,
10
]),
transforms
.
RandomRotat
ion
(
45
,
expand
=
True
),
transforms
.
RandomRotat
e
(
transforms
.
RandomRotat
ion
(
10
,
expand
=
True
,
center
=
(
60
,
80
)),
])
self
.
do_transform
(
trans
)
...
...
@@ -119,20 +135,15 @@ class TestTransforms(unittest.TestCase):
trans
=
transforms
.
Compose
([
transforms
.
Pad
(
2
)])
self
.
do_transform
(
trans
)
fake_img
=
np
.
random
.
rand
(
200
,
150
,
3
).
astype
(
'float32'
)
fake_img
=
self
.
create_image
((
200
,
150
,
3
)
)
trans_pad
=
transforms
.
Pad
(
10
)
fake_img_padded
=
trans_pad
(
fake_img
)
np
.
testing
.
assert_equal
(
fake_img_padded
.
shape
,
(
220
,
170
,
3
))
np
.
testing
.
assert_equal
(
self
.
get_shape
(
fake_img_padded
)
,
(
220
,
170
,
3
))
trans_pad1
=
transforms
.
Pad
([
1
,
2
])
trans_pad2
=
transforms
.
Pad
([
1
,
2
,
3
,
4
])
img
=
trans_pad1
(
fake_img
)
img
=
trans_pad2
(
img
)
def
test_erase
(
self
):
trans
=
transforms
.
Compose
(
[
transforms
.
RandomErasing
(),
transforms
.
RandomErasing
(
value
=
0.0
)])
self
.
do_transform
(
trans
)
def
test_random_crop
(
self
):
trans
=
transforms
.
Compose
([
transforms
.
RandomCrop
(
200
),
...
...
@@ -143,18 +154,19 @@ class TestTransforms(unittest.TestCase):
trans_random_crop1
=
transforms
.
RandomCrop
(
224
)
trans_random_crop2
=
transforms
.
RandomCrop
((
140
,
160
))
fake_img
=
np
.
random
.
rand
(
500
,
400
,
3
).
astype
(
'float32'
)
fake_img
=
self
.
create_image
((
500
,
400
,
3
)
)
fake_img_crop1
=
trans_random_crop1
(
fake_img
)
fake_img_crop2
=
trans_random_crop2
(
fake_img_crop1
)
np
.
testing
.
assert_equal
(
fake_img_crop1
.
shape
,
(
224
,
224
,
3
))
np
.
testing
.
assert_equal
(
self
.
get_shape
(
fake_img_crop1
)
,
(
224
,
224
,
3
))
np
.
testing
.
assert_equal
(
fake_img_crop2
.
shape
,
(
140
,
160
,
3
))
np
.
testing
.
assert_equal
(
self
.
get_shape
(
fake_img_crop2
)
,
(
140
,
160
,
3
))
trans_random_crop_same
=
transforms
.
RandomCrop
((
140
,
160
))
img
=
trans_random_crop_same
(
fake_img_crop2
)
trans_random_crop_bigger
=
transforms
.
RandomCrop
((
180
,
200
))
trans_random_crop_bigger
=
transforms
.
RandomCrop
(
(
180
,
200
),
pad_if_needed
=
True
)
img
=
trans_random_crop_bigger
(
img
)
trans_random_crop_pad
=
transforms
.
RandomCrop
((
224
,
256
),
2
,
True
)
...
...
@@ -165,21 +177,38 @@ class TestTransforms(unittest.TestCase):
self
.
do_transform
(
trans
)
trans_gray
=
transforms
.
Grayscale
()
fake_img
=
np
.
random
.
rand
(
500
,
400
,
3
).
astype
(
'float32'
)
fake_img
=
self
.
create_image
((
500
,
400
,
3
)
)
fake_img_gray
=
trans_gray
(
fake_img
)
np
.
testing
.
assert_equal
(
len
(
fake_img_gray
.
shape
),
3
)
np
.
testing
.
assert_equal
(
fake_img_gray
.
shape
[
0
],
500
)
np
.
testing
.
assert_equal
(
fake_img_gray
.
shape
[
1
],
400
)
np
.
testing
.
assert_equal
(
self
.
get_shape
(
fake_img_gray
)[
0
],
500
)
np
.
testing
.
assert_equal
(
self
.
get_shape
(
fake_img_gray
)[
1
],
400
)
trans_gray3
=
transforms
.
Grayscale
(
3
)
fake_img
=
np
.
random
.
rand
(
500
,
400
,
3
).
astype
(
'float32'
)
fake_img
=
self
.
create_image
((
500
,
400
,
3
)
)
fake_img_gray
=
trans_gray3
(
fake_img
)
def
test_tranpose
(
self
):
trans
=
transforms
.
Compose
([
transforms
.
Transpose
()])
self
.
do_transform
(
trans
)
fake_img
=
self
.
create_image
((
50
,
100
,
3
))
converted_img
=
trans
(
fake_img
)
np
.
testing
.
assert_equal
(
self
.
get_shape
(
converted_img
),
(
3
,
50
,
100
))
def
test_to_tensor
(
self
):
trans
=
transforms
.
Compose
([
transforms
.
ToTensor
()])
fake_img
=
self
.
create_image
((
50
,
100
,
3
))
tensor
=
trans
(
fake_img
)
assert
isinstance
(
tensor
,
paddle
.
Tensor
)
np
.
testing
.
assert_equal
(
tensor
.
shape
,
(
3
,
50
,
100
))
def
test_exception
(
self
):
trans
=
transforms
.
Compose
([
transforms
.
Resize
(
-
1
)])
trans_batch
=
transforms
.
Batch
Compose
([
transforms
.
Resize
(
-
1
)])
trans_batch
=
transforms
.
Compose
([
transforms
.
Resize
(
-
1
)])
with
self
.
assertRaises
(
Exception
):
self
.
do_transform
(
trans
)
...
...
@@ -203,35 +232,211 @@ class TestTransforms(unittest.TestCase):
transforms
.
Pad
([
1.0
,
2.0
,
3.0
])
with
self
.
assertRaises
(
TypeError
):
fake_img
=
np
.
random
.
rand
(
100
,
120
,
3
).
astype
(
'float32'
)
fake_img
=
self
.
create_image
((
100
,
120
,
3
)
)
F
.
pad
(
fake_img
,
'1'
)
with
self
.
assertRaises
(
TypeError
):
fake_img
=
np
.
random
.
rand
(
100
,
120
,
3
).
astype
(
'float32'
)
fake_img
=
self
.
create_image
((
100
,
120
,
3
)
)
F
.
pad
(
fake_img
,
1
,
{})
with
self
.
assertRaises
(
TypeError
):
fake_img
=
np
.
random
.
rand
(
100
,
120
,
3
).
astype
(
'float32'
)
fake_img
=
self
.
create_image
((
100
,
120
,
3
)
)
F
.
pad
(
fake_img
,
1
,
padding_mode
=-
1
)
with
self
.
assertRaises
(
ValueError
):
fake_img
=
np
.
random
.
rand
(
100
,
120
,
3
).
astype
(
'float32'
)
fake_img
=
self
.
create_image
((
100
,
120
,
3
)
)
F
.
pad
(
fake_img
,
[
1.0
,
2.0
,
3.0
])
with
self
.
assertRaises
(
ValueError
):
transforms
.
RandomRotat
e
(
-
2
)
transforms
.
RandomRotat
ion
(
-
2
)
with
self
.
assertRaises
(
ValueError
):
transforms
.
RandomRotat
e
([
1
,
2
,
3
])
transforms
.
RandomRotat
ion
([
1
,
2
,
3
])
with
self
.
assertRaises
(
ValueError
):
trans_gray
=
transforms
.
Grayscale
(
5
)
fake_img
=
np
.
random
.
rand
(
100
,
120
,
3
).
astype
(
'float32'
)
fake_img
=
self
.
create_image
((
100
,
120
,
3
)
)
trans_gray
(
fake_img
)
with
self
.
assertRaises
(
TypeError
):
transform
=
transforms
.
RandomResizedCrop
(
64
)
transform
(
1
)
with
self
.
assertRaises
(
ValueError
):
transform
=
transforms
.
BrightnessTransform
([
-
0.1
,
-
0.2
])
with
self
.
assertRaises
(
TypeError
):
transform
=
transforms
.
BrightnessTransform
(
'0.1'
)
with
self
.
assertRaises
(
ValueError
):
transform
=
transforms
.
BrightnessTransform
(
'0.1'
,
keys
=
1
)
with
self
.
assertRaises
(
NotImplementedError
):
transform
=
transforms
.
BrightnessTransform
(
'0.1'
,
keys
=
'a'
)
def
test_info
(
self
):
str
(
transforms
.
Compose
([
transforms
.
Resize
((
224
,
224
))]))
str
(
transforms
.
BatchCompose
([
transforms
.
Resize
((
224
,
224
))]))
str
(
transforms
.
Compose
([
transforms
.
Resize
((
224
,
224
))]))
class
TestTransformsPIL
(
TestTransformsCV2
):
def
get_backend
(
self
):
return
'pil'
class
TestFunctional
(
unittest
.
TestCase
):
def
test_errors
(
self
):
with
self
.
assertRaises
(
TypeError
):
F
.
to_tensor
(
1
)
with
self
.
assertRaises
(
ValueError
):
fake_img
=
Image
.
fromarray
((
np
.
random
.
rand
(
28
,
28
,
3
)
*
255
).
astype
(
'uint8'
))
F
.
to_tensor
(
fake_img
,
data_format
=
1
)
with
self
.
assertRaises
(
TypeError
):
fake_img
=
Image
.
fromarray
((
np
.
random
.
rand
(
28
,
28
,
3
)
*
255
).
astype
(
'uint8'
))
F
.
resize
(
fake_img
,
'1'
)
with
self
.
assertRaises
(
TypeError
):
F
.
resize
(
1
,
1
)
with
self
.
assertRaises
(
TypeError
):
F
.
pad
(
1
,
1
)
with
self
.
assertRaises
(
TypeError
):
F
.
crop
(
1
,
1
,
1
,
1
,
1
)
with
self
.
assertRaises
(
TypeError
):
F
.
hflip
(
1
)
with
self
.
assertRaises
(
TypeError
):
F
.
vflip
(
1
)
with
self
.
assertRaises
(
TypeError
):
F
.
adjust_brightness
(
1
,
0.1
)
with
self
.
assertRaises
(
TypeError
):
F
.
adjust_contrast
(
1
,
0.1
)
with
self
.
assertRaises
(
TypeError
):
F
.
adjust_hue
(
1
,
0.1
)
with
self
.
assertRaises
(
TypeError
):
F
.
adjust_saturation
(
1
,
0.1
)
with
self
.
assertRaises
(
TypeError
):
F
.
rotate
(
1
,
0.1
)
with
self
.
assertRaises
(
TypeError
):
F
.
to_grayscale
(
1
)
with
self
.
assertRaises
(
ValueError
):
set_image_backend
(
1
)
with
self
.
assertRaises
(
ValueError
):
image_load
(
'tmp.jpg'
,
backend
=
1
)
def
test_normalize
(
self
):
np_img
=
(
np
.
random
.
rand
(
28
,
24
,
3
)).
astype
(
'uint8'
)
pil_img
=
Image
.
fromarray
(
np_img
)
tensor_img
=
F
.
to_tensor
(
pil_img
)
tensor_img_hwc
=
F
.
to_tensor
(
pil_img
,
data_format
=
'HWC'
)
mean
=
[
0.5
,
0.5
,
0.5
]
std
=
[
0.5
,
0.5
,
0.5
]
normalized_img
=
F
.
normalize
(
tensor_img
,
mean
,
std
)
normalized_img
=
F
.
normalize
(
tensor_img_hwc
,
mean
,
std
,
data_format
=
'HWC'
)
normalized_img
=
F
.
normalize
(
pil_img
,
mean
,
std
,
data_format
=
'HWC'
)
normalized_img
=
F
.
normalize
(
np_img
,
mean
,
std
,
data_format
=
'HWC'
,
to_rgb
=
True
)
def
test_center_crop
(
self
):
np_img
=
(
np
.
random
.
rand
(
28
,
24
,
3
)).
astype
(
'uint8'
)
pil_img
=
Image
.
fromarray
(
np_img
)
np_cropped_img
=
F
.
center_crop
(
np_img
,
4
)
pil_cropped_img
=
F
.
center_crop
(
pil_img
,
4
)
np
.
testing
.
assert_almost_equal
(
np_cropped_img
,
np
.
array
(
pil_cropped_img
))
def
test_pad
(
self
):
np_img
=
(
np
.
random
.
rand
(
28
,
24
,
3
)).
astype
(
'uint8'
)
pil_img
=
Image
.
fromarray
(
np_img
)
np_padded_img
=
F
.
pad
(
np_img
,
[
1
,
2
],
padding_mode
=
'reflect'
)
pil_padded_img
=
F
.
pad
(
pil_img
,
[
1
,
2
],
padding_mode
=
'reflect'
)
np
.
testing
.
assert_almost_equal
(
np_padded_img
,
np
.
array
(
pil_padded_img
))
pil_p_img
=
pil_img
.
convert
(
'P'
)
pil_padded_img
=
F
.
pad
(
pil_p_img
,
[
1
,
2
])
pil_padded_img
=
F
.
pad
(
pil_p_img
,
[
1
,
2
],
padding_mode
=
'reflect'
)
def
test_resize
(
self
):
np_img
=
(
np
.
zeros
([
28
,
24
,
3
])).
astype
(
'uint8'
)
pil_img
=
Image
.
fromarray
(
np_img
)
np_reseized_img
=
F
.
resize
(
np_img
,
40
)
pil_reseized_img
=
F
.
resize
(
pil_img
,
40
)
np
.
testing
.
assert_almost_equal
(
np_reseized_img
,
np
.
array
(
pil_reseized_img
))
gray_img
=
(
np
.
zeros
([
28
,
32
])).
astype
(
'uint8'
)
gray_resize_img
=
F
.
resize
(
gray_img
,
40
)
def
test_to_tensor
(
self
):
np_img
=
(
np
.
random
.
rand
(
28
,
28
)
*
255
).
astype
(
'uint8'
)
pil_img
=
Image
.
fromarray
(
np_img
)
np_tensor
=
F
.
to_tensor
(
np_img
,
data_format
=
'HWC'
)
pil_tensor
=
F
.
to_tensor
(
pil_img
,
data_format
=
'HWC'
)
np
.
testing
.
assert_allclose
(
np_tensor
.
numpy
(),
pil_tensor
.
numpy
())
# test float dtype
float_img
=
np
.
random
.
rand
(
28
,
28
)
float_tensor
=
F
.
to_tensor
(
float_img
)
pil_img
=
Image
.
fromarray
(
np_img
).
convert
(
'I'
)
pil_tensor
=
F
.
to_tensor
(
pil_img
)
pil_img
=
Image
.
fromarray
(
np_img
).
convert
(
'I;16'
)
pil_tensor
=
F
.
to_tensor
(
pil_img
)
pil_img
=
Image
.
fromarray
(
np_img
).
convert
(
'F'
)
pil_tensor
=
F
.
to_tensor
(
pil_img
)
pil_img
=
Image
.
fromarray
(
np_img
).
convert
(
'1'
)
pil_tensor
=
F
.
to_tensor
(
pil_img
)
pil_img
=
Image
.
fromarray
(
np_img
).
convert
(
'YCbCr'
)
pil_tensor
=
F
.
to_tensor
(
pil_img
)
def
test_image_load
(
self
):
fake_img
=
Image
.
fromarray
((
np
.
random
.
random
((
32
,
32
,
3
))
*
255
).
astype
(
'uint8'
))
path
=
'temp.jpg'
fake_img
.
save
(
path
)
set_image_backend
(
'pil'
)
pil_img
=
image_load
(
path
).
convert
(
'RGB'
)
print
(
type
(
pil_img
))
set_image_backend
(
'cv2'
)
np_img
=
image_load
(
path
)
os
.
remove
(
path
)
if
__name__
==
'__main__'
:
...
...
python/paddle/vision/__init__.py
浏览文件 @
172e76a8
...
...
@@ -21,6 +21,10 @@ from .transforms import *
from
.
import
datasets
from
.datasets
import
*
from
.
import
image
from
.image
import
*
__all__
=
models
.
__all__
\
+
transforms
.
__all__
\
+
datasets
.
__all__
+
datasets
.
__all__
\
+
image
.
__all__
python/paddle/vision/datasets/folder.py
浏览文件 @
172e76a8
...
...
@@ -14,6 +14,7 @@
import
os
import
sys
from
PIL
import
Image
import
paddle
from
paddle.io
import
Dataset
...
...
@@ -136,7 +137,7 @@ class DatasetFolder(Dataset):
"Found 0 files in subfolders of: "
+
self
.
root
+
"
\n
"
"Supported extensions are: "
+
","
.
join
(
extensions
)))
self
.
loader
=
cv2
_loader
if
loader
is
None
else
loader
self
.
loader
=
default
_loader
if
loader
is
None
else
loader
self
.
extensions
=
extensions
self
.
classes
=
classes
...
...
@@ -193,9 +194,23 @@ IMG_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif',
'.tiff'
,
'.webp'
)
def
pil_loader
(
path
):
with
open
(
path
,
'rb'
)
as
f
:
img
=
Image
.
open
(
f
)
return
img
.
convert
(
'RGB'
)
def
cv2_loader
(
path
):
cv2
=
try_import
(
'cv2'
)
return
cv2
.
imread
(
path
)
return
cv2
.
cvtColor
(
cv2
.
imread
(
path
),
cv2
.
COLOR_BGR2RGB
)
def
default_loader
(
path
):
from
paddle.vision
import
get_image_backend
if
get_image_backend
()
==
'cv2'
:
return
cv2_loader
(
path
)
else
:
return
pil_loader
(
path
)
class
ImageFolder
(
Dataset
):
...
...
@@ -280,7 +295,7 @@ class ImageFolder(Dataset):
"Found 0 files in subfolders of: "
+
self
.
root
+
"
\n
"
"Supported extensions are: "
+
","
.
join
(
extensions
)))
self
.
loader
=
cv2
_loader
if
loader
is
None
else
loader
self
.
loader
=
default
_loader
if
loader
is
None
else
loader
self
.
extensions
=
extensions
self
.
samples
=
samples
self
.
transform
=
transform
...
...
python/paddle/vision/image.py
0 → 100644
浏览文件 @
172e76a8
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
PIL
import
Image
from
paddle.utils
import
try_import
__all__
=
[
'set_image_backend'
,
'get_image_backend'
,
'image_load'
]
_image_backend
=
'pil'
def
set_image_backend
(
backend
):
"""
Specifies the backend used to load images in class ``paddle.vision.datasets.ImageFolder``
and ``paddle.vision.datasets.DatasetFolder`` . Now support backends are pillow and opencv.
If backend not set, will use 'pil' as default.
Args:
backend (str): Name of the image load backend, should be one of {'pil', 'cv2'}.
Examples:
.. code-block:: python
import os
import shutil
import tempfile
import numpy as np
from PIL import Image
from paddle.vision import DatasetFolder
from paddle.vision import set_image_backend
set_image_backend('pil')
def make_fake_dir():
data_dir = tempfile.mkdtemp()
for i in range(2):
sub_dir = os.path.join(data_dir, 'class_' + str(i))
if not os.path.exists(sub_dir):
os.makedirs(sub_dir)
for j in range(2):
fake_img = Image.fromarray((np.random.random((32, 32, 3)) * 255).astype('uint8'))
fake_img.save(os.path.join(sub_dir, str(j) + '.png'))
return data_dir
temp_dir = make_fake_dir()
pil_data_folder = DatasetFolder(temp_dir)
for items in pil_data_folder:
break
# should get PIL.Image.Image
print(type(items[0]))
# use opencv as backend
# set_image_backend('cv2')
# cv2_data_folder = DatasetFolder(temp_dir)
# for items in cv2_data_folder:
# break
# should get numpy.ndarray
# print(type(items[0]))
shutil.rmtree(temp_dir)
"""
global
_image_backend
if
backend
not
in
[
'pil'
,
'cv2'
]:
raise
ValueError
(
"Expected backend are one of ['pil', 'cv2'], but got {}"
.
format
(
backend
))
_image_backend
=
backend
def
get_image_backend
():
"""
Gets the name of the package used to load images
Returns:
str: backend of image load.
Examples:
.. code-block:: python
from paddle.vision import get_image_backend
backend = get_image_backend()
print(backend)
"""
return
_image_backend
def
image_load
(
path
,
backend
=
None
):
"""Load an image.
Args:
path (str): Path of the image.
backend (str, optional): The image decoding backend type. Options are
`cv2`, `pil`, `None`. If backend is None, the global _imread_backend
specified by ``paddle.vision.set_image_backend`` will be used. Default: None.
Returns:
PIL.Image or np.array: Loaded image.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision import image_load, set_image_backend
fake_img = Image.fromarray((np.random.random((32, 32, 3)) * 255).astype('uint8'))
path = 'temp.png'
fake_img.save(path)
set_image_backend('pil')
pil_img = image_load(path).convert('RGB')
# should be PIL.Image.Image
print(type(pil_img))
# use opencv as backend
# set_image_backend('cv2')
# np_img = image_load(path)
# # should get numpy.ndarray
# print(type(np_img))
"""
if
backend
is
None
:
backend
=
_image_backend
if
backend
not
in
[
'pil'
,
'cv2'
]:
raise
ValueError
(
"Expected backend are one of ['pil', 'cv2'], but got {}"
.
format
(
backend
))
if
backend
==
'pil'
:
return
Image
.
open
(
path
)
else
:
cv2
=
try_import
(
'cv2'
)
return
cv2
.
imread
(
path
)
python/paddle/vision/transforms/functional.py
浏览文件 @
172e76a8
...
...
@@ -12,16 +12,18 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
division
import
sys
import
collections
import
random
import
math
import
functools
import
numbers
import
numpy
as
np
import
warnings
import
collections
from
paddle.utils
import
try_import
import
numpy
as
np
from
PIL
import
Image
from
numpy
import
sin
,
cos
,
tan
import
paddle
if
sys
.
version_info
<
(
3
,
3
):
Sequence
=
collections
.
Sequence
...
...
@@ -30,314 +32,623 @@ else:
Sequence
=
collections
.
abc
.
Sequence
Iterable
=
collections
.
abc
.
Iterable
__all__
=
[
'flip'
,
'resize'
,
'pad'
,
'rotate'
,
'to_grayscale'
]
from
.
import
functional_pil
as
F_pil
from
.
import
functional_cv2
as
F_cv2
from
.
import
functional_tensor
as
F_t
__all__
=
[
'to_tensor'
,
'hflip'
,
'vflip'
,
'resize'
,
'pad'
,
'rotate'
,
'to_grayscale'
,
'crop'
,
'center_crop'
,
'adjust_brightness'
,
'adjust_contrast'
,
'adjust_hue'
,
'to_grayscale'
,
'normalize'
]
def
keepdims
(
func
):
"""Keep the dimension of input images unchanged"""
@
functools
.
wraps
(
func
)
def
wrapper
(
image
,
*
args
,
**
kwargs
):
if
len
(
image
.
shape
)
!=
3
:
raise
ValueError
(
"Expect image have 3 dims, but got {} dims"
.
format
(
len
(
image
.
shape
)))
ret
=
func
(
image
,
*
args
,
**
kwargs
)
if
len
(
ret
.
shape
)
==
2
:
ret
=
ret
[:,
:,
np
.
newaxis
]
return
ret
def
_is_pil_image
(
img
):
return
isinstance
(
img
,
Image
.
Image
)
return
wrapper
def
_is_tensor_image
(
img
):
return
isinstance
(
img
,
paddle
.
Tensor
)
@
keepdims
def
flip
(
image
,
code
):
"""
Accordding to the code (the type of flip), flip the input image
def
_is_numpy_image
(
img
):
return
isinstance
(
img
,
np
.
ndarray
)
and
(
img
.
ndim
in
{
2
,
3
})
def
to_tensor
(
pic
,
data_format
=
'CHW'
):
"""Converts a ``PIL.Image`` or ``numpy.ndarray`` to paddle.Tensor.
See ``ToTensor`` for more details.
Args:
image (np.ndarray): Input image, with (H, W, C) shape
code (int): Code that indicates the type of flip.
-1 : Flip horizontally and vertically
0 : Flip vertically
1 : Flip horizontally
pic (PIL.Image|np.ndarray): Image to be converted to tensor.
data_format (str, optional): Data format of input img, should be 'HWC' or
'CHW'. Default: 'CHW'.
Returns:
Tensor: Converted image. Data format is same as input img.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import functional as F
fake_img =
np.random.rand(224, 224, 3
)
fake_img =
(np.random.rand(256, 300, 3) * 255.).astype('uint8'
)
# flip horizontally and vertically
F.flip(fake_img, -1)
fake_img = Image.fromarray(fake_img)
# flip vertically
F.flip(fake_img, 0
)
tensor = F.to_tensor(fake_img)
print(tensor.shape
)
# flip horizontally
F.flip(fake_img, 1)
"""
cv2
=
try_import
(
'cv2'
)
return
cv2
.
flip
(
image
,
flipCode
=
code
)
if
not
(
_is_pil_image
(
pic
)
or
_is_numpy_image
(
pic
)):
raise
TypeError
(
'pic should be PIL Image or ndarray. Got {}'
.
format
(
type
(
pic
)))
if
_is_pil_image
(
pic
):
return
F_pil
.
to_tensor
(
pic
,
data_format
)
else
:
return
F_cv2
.
to_tensor
(
pic
,
data_format
)
@
keepdims
def
resize
(
img
,
size
,
interpolation
=
1
):
def
resize
(
img
,
size
,
interpolation
=
'bilinear'
):
"""
resize the input data
to given size
Resizes the image
to given size
Args:
input (
np.ndarray): Input data, could be image or masks, with (H, W, C) shape
input (
PIL.Image|np.ndarray): Image to be resized.
size (int|list|tuple): Target size of input data, with (height, width) shape.
interpolation (int, optional): Interpolation method.
0 : cv2.INTER_NEAREST
1 : cv2.INTER_LINEAR
2 : cv2.INTER_CUBIC
3 : cv2.INTER_AREA
4 : cv2.INTER_LANCZOS4
5 : cv2.INTER_LINEAR_EXACT
7 : cv2.INTER_MAX
8 : cv2.WARP_FILL_OUTLIERS
16: cv2.WARP_INVERSE_MAP
interpolation (int|str, optional): Interpolation method. when use pil backend,
support method are as following:
- "nearest": Image.NEAREST,
- "bilinear": Image.BILINEAR,
- "bicubic": Image.BICUBIC,
- "box": Image.BOX,
- "lanczos": Image.LANCZOS,
- "hamming": Image.HAMMING
when use cv2 backend, support method are as following:
- "nearest": cv2.INTER_NEAREST,
- "bilinear": cv2.INTER_LINEAR,
- "area": cv2.INTER_AREA,
- "bicubic": cv2.INTER_CUBIC,
- "lanczos": cv2.INTER_LANCZOS4
Returns:
PIL.Image or np.array: Resized image.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import functional as F
fake_img =
np.random.rand(256, 256, 3
)
fake_img =
(np.random.rand(256, 300, 3) * 255.).astype('uint8'
)
F.resize(fake_img, 224
)
fake_img = Image.fromarray(fake_img
)
F.resize(fake_img, (200, 150))
converted_img = F.resize(fake_img, 224)
print(converted_img.size)
converted_img = F.resize(fake_img, (200, 150))
print(converted_img.size)
"""
cv2
=
try_import
(
'cv2'
)
if
isinstance
(
interpolation
,
Sequence
):
interpolation
=
random
.
choice
(
interpolation
)
if
isinstance
(
size
,
int
):
h
,
w
=
img
.
shape
[:
2
]
if
(
w
<=
h
and
w
==
size
)
or
(
h
<=
w
and
h
==
size
):
return
img
if
w
<
h
:
ow
=
size
oh
=
int
(
size
*
h
/
w
)
return
cv2
.
resize
(
img
,
(
ow
,
oh
),
interpolation
=
interpolation
)
else
:
oh
=
size
ow
=
int
(
size
*
w
/
h
)
return
cv2
.
resize
(
img
,
(
ow
,
oh
),
interpolation
=
interpolation
)
if
not
(
_is_pil_image
(
img
)
or
_is_numpy_image
(
img
)):
raise
TypeError
(
'img should be PIL Image or ndarray with dim=[2 or 3]. Got {}'
.
format
(
type
(
img
)))
if
_is_pil_image
(
img
):
return
F_pil
.
resize
(
img
,
size
,
interpolation
)
else
:
return
cv2
.
resize
(
img
,
size
[::
-
1
],
interpolation
=
interpolation
)
return
F_cv2
.
resize
(
img
,
size
,
interpolation
)
@
keepdims
def
pad
(
img
,
padding
,
fill
=
(
0
,
0
,
0
),
padding_mode
=
'constant'
):
"""Pads the given CV Image on all sides with spefi
cified padding mode and fill value.
def
pad
(
img
,
padding
,
fill
=
0
,
padding_mode
=
'constant'
):
"""
Pads the given PIL.Image or numpy.array on all sides with spe
cified padding mode and fill value.
Args:
img (
np.nd
array): Image to be padded.
padding (int|tuple): Padding on each border. If a single int is provided this
img (
PIL.Image|np.
array): Image to be padded.
padding (int|
list|
tuple): Padding on each border. If a single int is provided this
is used to pad all borders. If tuple of length 2 is provided this is the padding
on left/right and top/bottom respectively. If a tuple of length 4 is provided
this is the padding for the left, top, right and bottom borders
respectively.
fill (
int|tuple): Pixel fill value for constant fill. Default is 0
. If a tuple of
fill (
float, optional): Pixel fill value for constant fill
. If a tuple of
length 3, it is used to fill R, G, B channels respectively.
This value is only used when the padding_mode is constant
padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
``constant`` means padding with a constant value, this value is specified with fill.
``edge`` means padding with the last value at the edge of the image.
``reflect`` means padding with reflection of image (without repeating the last value on the edge)
padding ``[1, 2, 3, 4]`` with 2 elements on both sides in reflect mode
will result in ``[3, 2, 1, 2, 3, 4, 3, 2]``.
``symmetric`` menas pads with reflection of image (repeating the last value on the edge)
padding ``[1, 2, 3, 4]`` with 2 elements on both sides in symmetric mode
will result in ``[2, 1, 1, 2, 3, 4, 4, 3]``.
This value is only used when the padding_mode is constant. Default: 0.
padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default: 'constant'.
- constant: pads with a constant value, this value is specified with fill
- edge: pads with the last value on the edge of the image
- reflect: pads with reflection of image (without repeating the last value on the edge)
padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
will result in [3, 2, 1, 2, 3, 4, 3, 2]
- symmetric: pads with reflection of image (repeating the last value on the edge)
padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
will result in [2, 1, 1, 2, 3, 4, 4, 3]
Returns:
numpy ndarray: Padded image.
PIL.Image or np.array: Padded image.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import functional as F
fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')
fake_img = Image.fromarray(fake_img)
padded_img = F.pad(fake_img, padding=1)
print(padded_img.size)
padded_img = F.pad(fake_img, padding=(2, 1))
print(padded_img.size)
"""
if
not
(
_is_pil_image
(
img
)
or
_is_numpy_image
(
img
)):
raise
TypeError
(
'img should be PIL Image or ndarray with dim=[2 or 3]. Got {}'
.
format
(
type
(
img
)))
if
_is_pil_image
(
img
):
return
F_pil
.
pad
(
img
,
padding
,
fill
,
padding_mode
)
else
:
return
F_cv2
.
pad
(
img
,
padding
,
fill
,
padding_mode
)
def
crop
(
img
,
top
,
left
,
height
,
width
):
"""Crops the given Image.
Args:
img (PIL.Image|np.array): Image to be cropped. (0,0) denotes the top left
corner of the image.
top (int): Vertical component of the top left corner of the crop box.
left (int): Horizontal component of the top left corner of the crop box.
height (int): Height of the crop box.
width (int): Width of the crop box.
Returns:
PIL.Image or np.array: Cropped image.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import functional as F
f
rom paddle.vision.transforms.functional import pad
f
ake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')
fake_img =
np.random.rand(500, 500, 3).astype('float32'
)
fake_img =
Image.fromarray(fake_img
)
fake_img = pad(fake_img, 2
)
print(
fake_img.shap
e)
cropped_img = F.crop(fake_img, 56, 150, 200, 100
)
print(
cropped_img.siz
e)
"""
if
not
(
_is_pil_image
(
img
)
or
_is_numpy_image
(
img
)):
raise
TypeError
(
'img should be PIL Image or ndarray with dim=[2 or 3]. Got {}'
.
format
(
type
(
img
)))
if
_is_pil_image
(
img
):
return
F_pil
.
crop
(
img
,
top
,
left
,
height
,
width
)
else
:
return
F_cv2
.
crop
(
img
,
top
,
left
,
height
,
width
)
def
center_crop
(
img
,
output_size
):
"""Crops the given Image and resize it to desired size.
Args:
img (PIL.Image|np.array): Image to be cropped. (0,0) denotes the top left corner of the image.
output_size (sequence or int): (height, width) of the crop box. If int,
it is used for both directions
Returns:
PIL.Image or np.array: Cropped image.
if
not
isinstance
(
padding
,
(
numbers
.
Number
,
list
,
tuple
)):
raise
TypeError
(
'Got inappropriate padding arg'
)
if
not
isinstance
(
fill
,
(
numbers
.
Number
,
str
,
list
,
tuple
)):
raise
TypeError
(
'Got inappropriate fill arg'
)
if
not
isinstance
(
padding_mode
,
str
):
raise
TypeError
(
'Got inappropriate padding_mode arg'
)
if
isinstance
(
padding
,
collections
.
Sequence
)
and
len
(
padding
)
not
in
[
2
,
4
]:
raise
ValueError
(
"Padding must be an int or a 2, or 4 element tuple, not a "
+
"{} element tuple"
.
format
(
len
(
padding
)))
assert
padding_mode
in
[
'constant'
,
'edge'
,
'reflect'
,
'symmetric'
],
\
'Expected padding mode be either constant, edge, reflect or symmetric, but got {}'
.
format
(
padding_mode
)
cv2
=
try_import
(
'cv2'
)
PAD_MOD
=
{
'constant'
:
cv2
.
BORDER_CONSTANT
,
'edge'
:
cv2
.
BORDER_REPLICATE
,
'reflect'
:
cv2
.
BORDER_DEFAULT
,
'symmetric'
:
cv2
.
BORDER_REFLECT
}
if
isinstance
(
padding
,
int
):
pad_left
=
pad_right
=
pad_top
=
pad_bottom
=
padding
if
isinstance
(
padding
,
collections
.
Sequence
)
and
len
(
padding
)
==
2
:
pad_left
=
pad_right
=
padding
[
0
]
pad_top
=
pad_bottom
=
padding
[
1
]
if
isinstance
(
padding
,
collections
.
Sequence
)
and
len
(
padding
)
==
4
:
pad_left
,
pad_top
,
pad_right
,
pad_bottom
=
padding
if
isinstance
(
fill
,
numbers
.
Number
):
fill
=
(
fill
,
)
*
(
2
*
len
(
img
.
shape
)
-
3
)
if
padding_mode
==
'constant'
:
assert
(
len
(
fill
)
==
3
and
len
(
img
.
shape
)
==
3
)
or
(
len
(
fill
)
==
1
and
len
(
img
.
shape
)
==
2
),
\
'channel of image is {} but length of fill is {}'
.
format
(
img
.
shape
[
-
1
],
len
(
fill
))
img
=
cv2
.
copyMakeBorder
(
src
=
img
,
top
=
pad_top
,
bottom
=
pad_bottom
,
left
=
pad_left
,
right
=
pad_right
,
borderType
=
PAD_MOD
[
padding_mode
],
value
=
fill
)
return
img
@
keepdims
def
rotate
(
img
,
angle
,
interpolation
=
1
,
expand
=
False
,
center
=
None
):
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import functional as F
fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')
fake_img = Image.fromarray(fake_img)
cropped_img = F.center_crop(fake_img, (150, 100))
print(cropped_img.size)
"""
if
not
(
_is_pil_image
(
img
)
or
_is_numpy_image
(
img
)):
raise
TypeError
(
'img should be PIL Image or ndarray with dim=[2 or 3]. Got {}'
.
format
(
type
(
img
)))
if
_is_pil_image
(
img
):
return
F_pil
.
center_crop
(
img
,
output_size
)
else
:
return
F_cv2
.
center_crop
(
img
,
output_size
)
def
hflip
(
img
,
backend
=
'pil'
):
"""Horizontally flips the given Image or np.array.
Args:
img (PIL.Image|np.array): Image to be flipped.
backend (str, optional): The image proccess backend type. Options are `pil`,
`cv2`. Default: 'pil'.
Returns:
PIL.Image or np.array: Horizontall flipped image.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import functional as F
fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')
fake_img = Image.fromarray(fake_img)
flpped_img = F.hflip(fake_img)
print(flpped_img.size)
"""
if
not
(
_is_pil_image
(
img
)
or
_is_numpy_image
(
img
)):
raise
TypeError
(
'img should be PIL Image or ndarray with dim=[2 or 3]. Got {}'
.
format
(
type
(
img
)))
if
_is_pil_image
(
img
):
return
F_pil
.
hflip
(
img
)
else
:
return
F_cv2
.
hflip
(
img
)
def
vflip
(
img
):
"""Vertically flips the given Image or np.array.
Args:
img (PIL.Image|np.array): Image to be flipped.
Returns:
PIL.Image or np.array: Vertically flipped image.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import functional as F
fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')
fake_img = Image.fromarray(fake_img)
flpped_img = F.vflip(fake_img)
print(flpped_img.size)
"""
if
not
(
_is_pil_image
(
img
)
or
_is_numpy_image
(
img
)):
raise
TypeError
(
'img should be PIL Image or ndarray with dim=[2 or 3]. Got {}'
.
format
(
type
(
img
)))
if
_is_pil_image
(
img
):
return
F_pil
.
vflip
(
img
)
else
:
return
F_cv2
.
vflip
(
img
)
def
adjust_brightness
(
img
,
brightness_factor
):
"""Adjusts brightness of an Image.
Args:
img (PIL.Image|np.array): Image to be adjusted.
brightness_factor (float): How much to adjust the brightness. Can be
any non negative number. 0 gives a black image, 1 gives the
original image while 2 increases the brightness by a factor of 2.
Returns:
PIL.Image or np.array: Brightness adjusted image.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import functional as F
fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')
fake_img = Image.fromarray(fake_img)
converted_img = F.adjust_brightness(fake_img, 0.4)
print(converted_img.size)
"""
if
not
(
_is_pil_image
(
img
)
or
_is_numpy_image
(
img
)):
raise
TypeError
(
'img should be PIL Image or ndarray with dim=[2 or 3]. Got {}'
.
format
(
type
(
img
)))
if
_is_pil_image
(
img
):
return
F_pil
.
adjust_brightness
(
img
,
brightness_factor
)
else
:
return
F_cv2
.
adjust_brightness
(
img
,
brightness_factor
)
def
adjust_contrast
(
img
,
contrast_factor
):
"""Adjusts contrast of an Image.
Args:
img (PIL.Image|np.array): Image to be adjusted.
contrast_factor (float): How much to adjust the contrast. Can be any
non negative number. 0 gives a solid gray image, 1 gives the
original image while 2 increases the contrast by a factor of 2.
Returns:
PIL.Image or np.array: Contrast adjusted image.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import functional as F
fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')
fake_img = Image.fromarray(fake_img)
converted_img = F.adjust_contrast(fake_img, 0.4)
print(converted_img.size)
"""
if
not
(
_is_pil_image
(
img
)
or
_is_numpy_image
(
img
)):
raise
TypeError
(
'img should be PIL Image or ndarray with dim=[2 or 3]. Got {}'
.
format
(
type
(
img
)))
if
_is_pil_image
(
img
):
return
F_pil
.
adjust_contrast
(
img
,
contrast_factor
)
else
:
return
F_cv2
.
adjust_contrast
(
img
,
contrast_factor
)
def
adjust_saturation
(
img
,
saturation_factor
):
"""Adjusts color saturation of an image.
Args:
img (PIL.Image|np.array): Image to be adjusted.
saturation_factor (float): How much to adjust the saturation. 0 will
give a black and white image, 1 will give the original image while
2 will enhance the saturation by a factor of 2.
Returns:
PIL.Image or np.array: Saturation adjusted image.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import functional as F
fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')
fake_img = Image.fromarray(fake_img)
converted_img = F.adjust_saturation(fake_img, 0.4)
print(converted_img.size)
"""
if
not
(
_is_pil_image
(
img
)
or
_is_numpy_image
(
img
)):
raise
TypeError
(
'img should be PIL Image or ndarray with dim=[2 or 3]. Got {}'
.
format
(
type
(
img
)))
if
_is_pil_image
(
img
):
return
F_pil
.
adjust_saturation
(
img
,
saturation_factor
)
else
:
return
F_cv2
.
adjust_saturation
(
img
,
saturation_factor
)
def
adjust_hue
(
img
,
hue_factor
):
"""Adjusts hue of an image.
The image hue is adjusted by converting the image to HSV and
cyclically shifting the intensities in the hue channel (H).
The image is then converted back to original image mode.
`hue_factor` is the amount of shift in H channel and must be in the
interval `[-0.5, 0.5]`.
Args:
img (PIL.Image|np.array): Image to be adjusted.
hue_factor (float): How much to shift the hue channel. Should be in
[-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
HSV space in positive and negative direction respectively.
0 means no shift. Therefore, both -0.5 and 0.5 will give an image
with complementary colors while 0 gives the original image.
Returns:
PIL.Image or np.array: Hue adjusted image.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import functional as F
fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')
fake_img = Image.fromarray(fake_img)
converted_img = F.adjust_hue(fake_img, 0.4)
print(converted_img.size)
"""
if
not
(
_is_pil_image
(
img
)
or
_is_numpy_image
(
img
)):
raise
TypeError
(
'img should be PIL Image or ndarray with dim=[2 or 3]. Got {}'
.
format
(
type
(
img
)))
if
_is_pil_image
(
img
):
return
F_pil
.
adjust_hue
(
img
,
hue_factor
)
else
:
return
F_cv2
.
adjust_hue
(
img
,
hue_factor
)
def
rotate
(
img
,
angle
,
resample
=
False
,
expand
=
False
,
center
=
None
,
fill
=
0
):
"""Rotates the image by angle.
Args:
img (
numpy.nd
array): Image to be rotated.
angle (float
|int): In degrees
clockwise order.
interpolation (int, optional): Interpolation method. Default: 1.
0 :
cv2.INTER_NEAREST
1 : cv2.INTER_LINEAR
2 : cv2.INTER_CUBIC
3 : cv2.INTER_AREA
4 : cv2.INTER_LANCZOS4
5 : cv2.INTER_LINEAR_EXACT
7 : cv2.INTER_MAX
8 : cv2.WARP_FILL_OUTLIERS
16: cv2.WARP_INVERSE_MAP
expand (bool
|
optional): Optional expansion flag.
img (
PIL.Image|np.
array): Image to be rotated.
angle (float
or int): In degrees degrees counter
clockwise order.
resample (int|str, optional): An optional resampling filter. If omitted, or if the
image has only one channel, it is set to PIL.Image.NEAREST or
cv2.INTER_NEAREST
according the backend. when use pil backend, support method are as following:
- "nearest": Image.NEAREST,
- "bilinear": Image.BILINEAR,
- "bicubic": Image.BICUBIC
when use cv2 backend, support method are as following:
- "nearest": cv2.INTER_NEAREST,
- "bilinear": cv2.INTER_LINEAR,
- "bicubic": cv2.INTER_CUBIC
expand (bool
,
optional): Optional expansion flag.
If true, expands the output image to make it large enough to hold the entire rotated image.
If false or omitted, make the output image the same size as the input image.
Note that the expand flag assumes rotation around the center and no translation.
center (2-tuple
|
optional): Optional center of rotation.
center (2-tuple
,
optional): Optional center of rotation.
Origin is the upper left corner.
Default is the center of the image.
fill (3-tuple or int): RGB pixel fill value for area outside the rotated image.
If int, it is used for all channels respectively.
Returns:
numpy nd
array: Rotated image.
PIL.Image or np.
array: Rotated image.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import functional as F
fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')
f
rom paddle.vision.transforms.functional import rotate
f
ake_img = Image.fromarray(fake_img)
fake_img = np.random.rand(500, 500, 3).astype('float32')
rotated_img = F.rotate(fake_img, 90)
print(rotated_img.size)
fake_img = rotate(fake_img, 10)
print(fake_img.shape)
"""
cv2
=
try_import
(
'cv2'
)
dtype
=
img
.
dtype
h
,
w
,
_
=
img
.
shape
point
=
center
or
(
w
/
2
,
h
/
2
)
M
=
cv2
.
getRotationMatrix2D
(
point
,
angle
=-
angle
,
scale
=
1
)
if
expand
:
if
center
is
None
:
cos
=
np
.
abs
(
M
[
0
,
0
])
sin
=
np
.
abs
(
M
[
0
,
1
])
nW
=
int
((
h
*
sin
)
+
(
w
*
cos
))
nH
=
int
((
h
*
cos
)
+
(
w
*
sin
))
M
[
0
,
2
]
+=
(
nW
/
2
)
-
point
[
0
]
M
[
1
,
2
]
+=
(
nH
/
2
)
-
point
[
1
]
dst
=
cv2
.
warpAffine
(
img
,
M
,
(
nW
,
nH
))
else
:
xx
=
[]
yy
=
[]
for
point
in
(
np
.
array
([
0
,
0
,
1
]),
np
.
array
([
w
-
1
,
0
,
1
]),
np
.
array
([
w
-
1
,
h
-
1
,
1
]),
np
.
array
([
0
,
h
-
1
,
1
])):
target
=
np
.
dot
(
M
,
point
)
xx
.
append
(
target
[
0
])
yy
.
append
(
target
[
1
])
nh
=
int
(
math
.
ceil
(
max
(
yy
))
-
math
.
floor
(
min
(
yy
)))
nw
=
int
(
math
.
ceil
(
max
(
xx
))
-
math
.
floor
(
min
(
xx
)))
M
[
0
,
2
]
+=
(
nw
-
w
)
/
2
M
[
1
,
2
]
+=
(
nh
-
h
)
/
2
dst
=
cv2
.
warpAffine
(
img
,
M
,
(
nw
,
nh
),
flags
=
interpolation
)
if
not
(
_is_pil_image
(
img
)
or
_is_numpy_image
(
img
)):
raise
TypeError
(
'img should be PIL Image or ndarray with dim=[2 or 3]. Got {}'
.
format
(
type
(
img
)))
if
_is_pil_image
(
img
):
return
F_pil
.
rotate
(
img
,
angle
,
resample
,
expand
,
center
,
fill
)
else
:
dst
=
cv2
.
warpAffine
(
img
,
M
,
(
w
,
h
),
flags
=
interpolation
)
return
dst
.
astype
(
dtype
)
return
F_cv2
.
rotate
(
img
,
angle
,
resample
,
expand
,
center
,
fill
)
@
keepdims
def
to_grayscale
(
img
,
num_output_channels
=
1
):
"""Converts image to grayscale version of image.
Args:
img (numpy.ndarray): Image to be converted to grayscale.
img (PIL.Image|np.array): Image to be converted to grayscale.
backend (str, optional): The image proccess backend type. Options are `pil`,
`cv2`. Default: 'pil'.
Returns:
numpy.ndarray: Grayscale version of the image.
if num_output_channels == 1, returned image is single channel
if num_output_channels == 3, returned image is 3 channel with r == g == b
PIL.Image or np.array: Grayscale version of the image.
if num_output_channels = 1 : returned image is single channel
if num_output_channels = 3 : returned image is 3 channel with r = g = b
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import functional as F
fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')
fake_img = Image.fromarray(fake_img)
gray_img = F.to_grayscale(fake_img)
print(gray_img.size)
"""
if
not
(
_is_pil_image
(
img
)
or
_is_numpy_image
(
img
)):
raise
TypeError
(
'img should be PIL Image or ndarray with dim=[2 or 3]. Got {}'
.
format
(
type
(
img
)))
if
_is_pil_image
(
img
):
return
F_pil
.
to_grayscale
(
img
,
num_output_channels
)
else
:
return
F_cv2
.
to_grayscale
(
img
,
num_output_channels
)
def
normalize
(
img
,
mean
,
std
,
data_format
=
'CHW'
,
to_rgb
=
False
):
"""Normalizes a tensor or image with mean and standard deviation.
Args:
img (PIL.Image|np.array|paddle.Tensor): input data to be normalized.
mean (list|tuple): Sequence of means for each channel.
std (list|tuple): Sequence of standard deviations for each channel.
data_format (str, optional): Data format of input img, should be 'HWC' or
'CHW'. Default: 'CHW'.
to_rgb (bool, optional): Whether to convert to rgb. If input is tensor,
this option will be igored. Default: False.
Returns:
Tensor: Normalized mage. Data format is same as input img.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import functional as F
fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')
fake_img = Image.fromarray(fake_img)
from paddle.vision.transforms.functional import to_grayscale
mean = [127.5, 127.5, 127.5]
std = [127.5, 127.5, 127.5]
fake_img = np.random.rand(500, 500, 3).astype('float32')
normalized_img = F.normalize(fake_img, mean, std, data_format='HWC')
print(normalized_img.max(), normalized_img.min())
fake_img = to_grayscale(fake_img)
print(fake_img.shape)
"""
cv2
=
try_import
(
'cv2'
)
if
num_output_channels
==
1
:
img
=
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_RGB2GRAY
)
elif
num_output_channels
==
3
:
img
=
cv2
.
cvtColor
(
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_RGB2GRAY
),
cv2
.
COLOR_GRAY2RGB
)
if
_is_tensor_image
(
img
):
return
F_t
.
normalize
(
img
,
mean
,
std
,
data_format
)
else
:
raise
ValueError
(
'num_output_channels should be either 1 or 3'
)
if
_is_pil_image
(
img
):
img
=
np
.
array
(
img
).
astype
(
np
.
float32
)
return
img
return
F_cv2
.
normalize
(
img
,
mean
,
std
,
data_format
,
to_rgb
)
python/paddle/vision/transforms/functional_cv2.py
0 → 100644
浏览文件 @
172e76a8
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
division
import
sys
import
numbers
import
warnings
import
collections
import
numpy
as
np
from
numpy
import
sin
,
cos
,
tan
import
paddle
from
paddle.utils
import
try_import
if
sys
.
version_info
<
(
3
,
3
):
Sequence
=
collections
.
Sequence
Iterable
=
collections
.
Iterable
else
:
Sequence
=
collections
.
abc
.
Sequence
Iterable
=
collections
.
abc
.
Iterable
def
to_tensor
(
pic
,
data_format
=
'CHW'
):
"""Converts a ``numpy.ndarray`` to paddle.Tensor.
See ``ToTensor`` for more details.
Args:
pic (np.ndarray): Image to be converted to tensor.
data_format (str, optional): Data format of img, should be 'HWC' or
'CHW'. Default: 'CHW'.
Returns:
Tensor: Converted image.
"""
if
not
data_format
in
[
'CHW'
,
'HWC'
]:
raise
ValueError
(
'data_format should be CHW or HWC. Got {}'
.
format
(
data_format
))
if
pic
.
ndim
==
2
:
pic
=
pic
[:,
:,
None
]
if
data_format
==
'CHW'
:
img
=
paddle
.
to_tensor
(
pic
.
transpose
((
2
,
0
,
1
)))
else
:
img
=
paddle
.
to_tensor
(
pic
)
if
paddle
.
fluid
.
data_feeder
.
convert_dtype
(
img
.
dtype
)
==
'uint8'
:
return
paddle
.
cast
(
img
,
np
.
float32
)
/
255.
else
:
return
img
def
resize
(
img
,
size
,
interpolation
=
'bilinear'
):
"""
Resizes the image to given size
Args:
input (np.ndarray): Image to be resized.
size (int|list|tuple): Target size of input data, with (height, width) shape.
interpolation (int|str, optional): Interpolation method. when use cv2 backend,
support method are as following:
- "nearest": cv2.INTER_NEAREST,
- "bilinear": cv2.INTER_LINEAR,
- "area": cv2.INTER_AREA,
- "bicubic": cv2.INTER_CUBIC,
- "lanczos": cv2.INTER_LANCZOS4
Returns:
np.array: Resized image.
"""
cv2
=
try_import
(
'cv2'
)
_cv2_interp_from_str
=
{
'nearest'
:
cv2
.
INTER_NEAREST
,
'bilinear'
:
cv2
.
INTER_LINEAR
,
'area'
:
cv2
.
INTER_AREA
,
'bicubic'
:
cv2
.
INTER_CUBIC
,
'lanczos'
:
cv2
.
INTER_LANCZOS4
}
if
not
(
isinstance
(
size
,
int
)
or
(
isinstance
(
size
,
Iterable
)
and
len
(
size
)
==
2
)):
raise
TypeError
(
'Got inappropriate size arg: {}'
.
format
(
size
))
h
,
w
=
img
.
shape
[:
2
]
if
isinstance
(
size
,
int
):
if
(
w
<=
h
and
w
==
size
)
or
(
h
<=
w
and
h
==
size
):
return
img
if
w
<
h
:
ow
=
size
oh
=
int
(
size
*
h
/
w
)
output
=
cv2
.
resize
(
img
,
dsize
=
(
ow
,
oh
),
interpolation
=
_cv2_interp_from_str
[
interpolation
])
else
:
oh
=
size
ow
=
int
(
size
*
w
/
h
)
output
=
cv2
.
resize
(
img
,
dsize
=
(
ow
,
oh
),
interpolation
=
_cv2_interp_from_str
[
interpolation
])
else
:
output
=
cv2
.
resize
(
img
,
dsize
=
(
size
[
1
],
size
[
0
]),
interpolation
=
_cv2_interp_from_str
[
interpolation
])
if
len
(
img
.
shape
)
==
3
and
img
.
shape
[
2
]
==
1
:
return
output
[:,
:,
np
.
newaxis
]
else
:
return
output
def
pad
(
img
,
padding
,
fill
=
0
,
padding_mode
=
'constant'
):
"""
Pads the given numpy.array on all sides with specified padding mode and fill value.
Args:
img (np.array): Image to be padded.
padding (int|list|tuple): Padding on each border. If a single int is provided this
is used to pad all borders. If tuple of length 2 is provided this is the padding
on left/right and top/bottom respectively. If a tuple of length 4 is provided
this is the padding for the left, top, right and bottom borders
respectively.
fill (float, optional): Pixel fill value for constant fill. If a tuple of
length 3, it is used to fill R, G, B channels respectively.
This value is only used when the padding_mode is constant. Default: 0.
padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default: 'constant'.
- constant: pads with a constant value, this value is specified with fill
- edge: pads with the last value on the edge of the image
- reflect: pads with reflection of image (without repeating the last value on the edge)
padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
will result in [3, 2, 1, 2, 3, 4, 3, 2]
- symmetric: pads with reflection of image (repeating the last value on the edge)
padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
will result in [2, 1, 1, 2, 3, 4, 4, 3]
Returns:
np.array: Padded image.
"""
cv2
=
try_import
(
'cv2'
)
_cv2_pad_from_str
=
{
'constant'
:
cv2
.
BORDER_CONSTANT
,
'edge'
:
cv2
.
BORDER_REPLICATE
,
'reflect'
:
cv2
.
BORDER_REFLECT_101
,
'symmetric'
:
cv2
.
BORDER_REFLECT
}
if
not
isinstance
(
padding
,
(
numbers
.
Number
,
list
,
tuple
)):
raise
TypeError
(
'Got inappropriate padding arg'
)
if
not
isinstance
(
fill
,
(
numbers
.
Number
,
str
,
list
,
tuple
)):
raise
TypeError
(
'Got inappropriate fill arg'
)
if
not
isinstance
(
padding_mode
,
str
):
raise
TypeError
(
'Got inappropriate padding_mode arg'
)
if
isinstance
(
padding
,
Sequence
)
and
len
(
padding
)
not
in
[
2
,
4
]:
raise
ValueError
(
"Padding must be an int or a 2, or 4 element tuple, not a "
+
"{} element tuple"
.
format
(
len
(
padding
)))
assert
padding_mode
in
[
'constant'
,
'edge'
,
'reflect'
,
'symmetric'
],
\
'Padding mode should be either constant, edge, reflect or symmetric'
if
isinstance
(
padding
,
list
):
padding
=
tuple
(
padding
)
if
isinstance
(
padding
,
int
):
pad_left
=
pad_right
=
pad_top
=
pad_bottom
=
padding
if
isinstance
(
padding
,
Sequence
)
and
len
(
padding
)
==
2
:
pad_left
=
pad_right
=
padding
[
0
]
pad_top
=
pad_bottom
=
padding
[
1
]
if
isinstance
(
padding
,
Sequence
)
and
len
(
padding
)
==
4
:
pad_left
=
padding
[
0
]
pad_top
=
padding
[
1
]
pad_right
=
padding
[
2
]
pad_bottom
=
padding
[
3
]
if
len
(
img
.
shape
)
==
3
and
img
.
shape
[
2
]
==
1
:
return
cv2
.
copyMakeBorder
(
img
,
top
=
pad_top
,
bottom
=
pad_bottom
,
left
=
pad_left
,
right
=
pad_right
,
borderType
=
_cv2_pad_from_str
[
padding_mode
],
value
=
fill
)[:,
:,
np
.
newaxis
]
else
:
return
cv2
.
copyMakeBorder
(
img
,
top
=
pad_top
,
bottom
=
pad_bottom
,
left
=
pad_left
,
right
=
pad_right
,
borderType
=
_cv2_pad_from_str
[
padding_mode
],
value
=
fill
)
def
crop
(
img
,
top
,
left
,
height
,
width
):
"""Crops the given image.
Args:
img (np.array): Image to be cropped. (0,0) denotes the top left
corner of the image.
top (int): Vertical component of the top left corner of the crop box.
left (int): Horizontal component of the top left corner of the crop box.
height (int): Height of the crop box.
width (int): Width of the crop box.
Returns:
np.array: Cropped image.
"""
return
img
[
top
:
top
+
height
,
left
:
left
+
width
,
:]
def
center_crop
(
img
,
output_size
):
"""Crops the given image and resize it to desired size.
Args:
img (np.array): Image to be cropped. (0,0) denotes the top left corner of the image.
output_size (sequence or int): (height, width) of the crop box. If int,
it is used for both directions
backend (str, optional): The image proccess backend type. Options are `pil`, `cv2`. Default: 'pil'.
Returns:
np.array: Cropped image.
"""
if
isinstance
(
output_size
,
numbers
.
Number
):
output_size
=
(
int
(
output_size
),
int
(
output_size
))
h
,
w
=
img
.
shape
[
0
:
2
]
th
,
tw
=
output_size
i
=
int
(
round
((
h
-
th
)
/
2.
))
j
=
int
(
round
((
w
-
tw
)
/
2.
))
return
crop
(
img
,
i
,
j
,
th
,
tw
)
def
hflip
(
img
):
"""Horizontally flips the given image.
Args:
img (np.array): Image to be flipped.
Returns:
np.array: Horizontall flipped image.
"""
cv2
=
try_import
(
'cv2'
)
return
cv2
.
flip
(
img
,
1
)
def
vflip
(
img
):
"""Vertically flips the given np.array.
Args:
img (np.array): Image to be flipped.
Returns:
np.array: Vertically flipped image.
"""
cv2
=
try_import
(
'cv2'
)
if
len
(
img
.
shape
)
==
3
and
img
.
shape
[
2
]
==
1
:
return
cv2
.
flip
(
img
,
0
)[:,
:,
np
.
newaxis
]
else
:
return
cv2
.
flip
(
img
,
0
)
def
adjust_brightness
(
img
,
brightness_factor
):
"""Adjusts brightness of an image.
Args:
img (np.array): Image to be adjusted.
brightness_factor (float): How much to adjust the brightness. Can be
any non negative number. 0 gives a black image, 1 gives the
original image while 2 increases the brightness by a factor of 2.
Returns:
np.array: Brightness adjusted image.
"""
cv2
=
try_import
(
'cv2'
)
table
=
np
.
array
([
i
*
brightness_factor
for
i
in
range
(
0
,
256
)]).
clip
(
0
,
255
).
astype
(
'uint8'
)
if
len
(
img
.
shape
)
==
3
and
img
.
shape
[
2
]
==
1
:
return
cv2
.
LUT
(
img
,
table
)[:,
:,
np
.
newaxis
]
else
:
return
cv2
.
LUT
(
img
,
table
)
def
adjust_contrast
(
img
,
contrast_factor
):
"""Adjusts contrast of an image.
Args:
img (np.array): Image to be adjusted.
contrast_factor (float): How much to adjust the contrast. Can be any
non negative number. 0 gives a solid gray image, 1 gives the
original image while 2 increases the contrast by a factor of 2.
Returns:
np.array: Contrast adjusted image.
"""
cv2
=
try_import
(
'cv2'
)
table
=
np
.
array
([(
i
-
74
)
*
contrast_factor
+
74
for
i
in
range
(
0
,
256
)]).
clip
(
0
,
255
).
astype
(
'uint8'
)
if
len
(
img
.
shape
)
==
3
and
img
.
shape
[
2
]
==
1
:
return
cv2
.
LUT
(
img
,
table
)[:,
:,
np
.
newaxis
]
else
:
return
cv2
.
LUT
(
img
,
table
)
def
adjust_saturation
(
img
,
saturation_factor
):
"""Adjusts color saturation of an image.
Args:
img (np.array): Image to be adjusted.
saturation_factor (float): How much to adjust the saturation. 0 will
give a black and white image, 1 will give the original image while
2 will enhance the saturation by a factor of 2.
Returns:
np.array: Saturation adjusted image.
"""
cv2
=
try_import
(
'cv2'
)
dtype
=
img
.
dtype
img
=
img
.
astype
(
np
.
float32
)
alpha
=
np
.
random
.
uniform
(
max
(
0
,
1
-
saturation_factor
),
1
+
saturation_factor
)
gray_img
=
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_BGR2GRAY
)
gray_img
=
gray_img
[...,
np
.
newaxis
]
img
=
img
*
alpha
+
gray_img
*
(
1
-
alpha
)
return
img
.
clip
(
0
,
255
).
astype
(
dtype
)
def
adjust_hue
(
img
,
hue_factor
):
"""Adjusts hue of an image.
The image hue is adjusted by converting the image to HSV and
cyclically shifting the intensities in the hue channel (H).
The image is then converted back to original image mode.
`hue_factor` is the amount of shift in H channel and must be in the
interval `[-0.5, 0.5]`.
Args:
img (np.array): Image to be adjusted.
hue_factor (float): How much to shift the hue channel. Should be in
[-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
HSV space in positive and negative direction respectively.
0 means no shift. Therefore, both -0.5 and 0.5 will give an image
with complementary colors while 0 gives the original image.
Returns:
np.array: Hue adjusted image.
"""
cv2
=
try_import
(
'cv2'
)
if
not
(
-
0.5
<=
hue_factor
<=
0.5
):
raise
ValueError
(
'hue_factor is not in [-0.5, 0.5].'
.
format
(
hue_factor
))
dtype
=
img
.
dtype
img
=
img
.
astype
(
np
.
uint8
)
hsv_img
=
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_BGR2HSV_FULL
)
h
,
s
,
v
=
cv2
.
split
(
hsv_img
)
alpha
=
np
.
random
.
uniform
(
hue_factor
,
hue_factor
)
h
=
h
.
astype
(
np
.
uint8
)
# uint8 addition take cares of rotation across boundaries
with
np
.
errstate
(
over
=
"ignore"
):
h
+=
np
.
uint8
(
alpha
*
255
)
hsv_img
=
cv2
.
merge
([
h
,
s
,
v
])
return
cv2
.
cvtColor
(
hsv_img
,
cv2
.
COLOR_HSV2BGR_FULL
).
astype
(
dtype
)
def
rotate
(
img
,
angle
,
resample
=
False
,
expand
=
False
,
center
=
None
,
fill
=
0
):
"""Rotates the image by angle.
Args:
img (np.array): Image to be rotated.
angle (float or int): In degrees degrees counter clockwise order.
resample (int|str, optional): An optional resampling filter. If omitted, or if the
image has only one channel, it is set to cv2.INTER_NEAREST.
when use cv2 backend, support method are as following:
- "nearest": cv2.INTER_NEAREST,
- "bilinear": cv2.INTER_LINEAR,
- "bicubic": cv2.INTER_CUBIC
expand (bool, optional): Optional expansion flag.
If true, expands the output image to make it large enough to hold the entire rotated image.
If false or omitted, make the output image the same size as the input image.
Note that the expand flag assumes rotation around the center and no translation.
center (2-tuple, optional): Optional center of rotation.
Origin is the upper left corner.
Default is the center of the image.
fill (3-tuple or int): RGB pixel fill value for area outside the rotated image.
If int, it is used for all channels respectively.
Returns:
np.array: Rotated image.
"""
cv2
=
try_import
(
'cv2'
)
rows
,
cols
=
img
.
shape
[
0
:
2
]
if
center
is
None
:
center
=
(
cols
/
2
,
rows
/
2
)
M
=
cv2
.
getRotationMatrix2D
(
center
,
angle
,
1
)
if
len
(
img
.
shape
)
==
3
and
img
.
shape
[
2
]
==
1
:
return
cv2
.
warpAffine
(
img
,
M
,
(
cols
,
rows
))[:,
:,
np
.
newaxis
]
else
:
return
cv2
.
warpAffine
(
img
,
M
,
(
cols
,
rows
))
def
to_grayscale
(
img
,
num_output_channels
=
1
):
"""Converts image to grayscale version of image.
Args:
img (np.array): Image to be converted to grayscale.
Returns:
np.array: Grayscale version of the image.
if num_output_channels = 1 : returned image is single channel
if num_output_channels = 3 : returned image is 3 channel with r = g = b
"""
cv2
=
try_import
(
'cv2'
)
if
num_output_channels
==
1
:
img
=
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_RGB2GRAY
)[:,
:,
np
.
newaxis
]
elif
num_output_channels
==
3
:
# much faster than doing cvtColor to go back to gray
img
=
np
.
broadcast_to
(
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_RGB2GRAY
)[:,
:,
np
.
newaxis
],
img
.
shape
)
else
:
raise
ValueError
(
'num_output_channels should be either 1 or 3'
)
return
img
def
normalize
(
img
,
mean
,
std
,
data_format
=
'CHW'
,
to_rgb
=
False
):
"""Normalizes a ndarray imge or image with mean and standard deviation.
Args:
img (np.array): input data to be normalized.
mean (list|tuple): Sequence of means for each channel.
std (list|tuple): Sequence of standard deviations for each channel.
data_format (str, optional): Data format of img, should be 'HWC' or
'CHW'. Default: 'CHW'.
to_rgb (bool, optional): Whether to convert to rgb. Default: False.
Returns:
np.array: Normalized mage.
"""
if
data_format
==
'CHW'
:
mean
=
np
.
float32
(
np
.
array
(
mean
).
reshape
(
-
1
,
1
,
1
))
std
=
np
.
float32
(
np
.
array
(
std
).
reshape
(
-
1
,
1
,
1
))
else
:
mean
=
np
.
float32
(
np
.
array
(
mean
).
reshape
(
1
,
1
,
-
1
))
std
=
np
.
float32
(
np
.
array
(
std
).
reshape
(
1
,
1
,
-
1
))
if
to_rgb
:
cv2
=
try_import
(
'cv2'
)
# inplace
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_BGR2RGB
,
img
)
img
=
(
img
-
mean
)
/
std
return
img
python/paddle/vision/transforms/functional_pil.py
0 → 100644
浏览文件 @
172e76a8
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
division
import
sys
import
math
import
numbers
import
warnings
import
collections
from
PIL
import
Image
,
ImageOps
,
ImageEnhance
import
numpy
as
np
from
numpy
import
sin
,
cos
,
tan
import
paddle
if
sys
.
version_info
<
(
3
,
3
):
Sequence
=
collections
.
Sequence
Iterable
=
collections
.
Iterable
else
:
Sequence
=
collections
.
abc
.
Sequence
Iterable
=
collections
.
abc
.
Iterable
_pil_interp_from_str
=
{
'nearest'
:
Image
.
NEAREST
,
'bilinear'
:
Image
.
BILINEAR
,
'bicubic'
:
Image
.
BICUBIC
,
'box'
:
Image
.
BOX
,
'lanczos'
:
Image
.
LANCZOS
,
'hamming'
:
Image
.
HAMMING
}
def
to_tensor
(
pic
,
data_format
=
'CHW'
):
"""Converts a ``PIL.Image`` to paddle.Tensor.
See ``ToTensor`` for more details.
Args:
pic (PIL.Image): Image to be converted to tensor.
data_format (str, optional): Data format of img, should be 'HWC' or
'CHW'. Default: 'CHW'.
Returns:
Tensor: Converted image.
"""
if
not
data_format
in
[
'CHW'
,
'HWC'
]:
raise
ValueError
(
'data_format should be CHW or HWC. Got {}'
.
format
(
data_format
))
# PIL Image
if
pic
.
mode
==
'I'
:
img
=
paddle
.
to_tensor
(
np
.
array
(
pic
,
np
.
int32
,
copy
=
False
))
elif
pic
.
mode
==
'I;16'
:
# cast and reshape not support int16
img
=
paddle
.
to_tensor
(
np
.
array
(
pic
,
np
.
int32
,
copy
=
False
))
elif
pic
.
mode
==
'F'
:
img
=
paddle
.
to_tensor
(
np
.
array
(
pic
,
np
.
float32
,
copy
=
False
))
elif
pic
.
mode
==
'1'
:
img
=
255
*
paddle
.
to_tensor
(
np
.
array
(
pic
,
np
.
uint8
,
copy
=
False
))
else
:
img
=
paddle
.
to_tensor
(
np
.
array
(
pic
,
copy
=
False
))
if
pic
.
mode
==
'YCbCr'
:
nchannel
=
3
elif
pic
.
mode
==
'I;16'
:
nchannel
=
1
else
:
nchannel
=
len
(
pic
.
mode
)
dtype
=
paddle
.
fluid
.
data_feeder
.
convert_dtype
(
img
.
dtype
)
if
dtype
==
'uint8'
:
img
=
paddle
.
cast
(
img
,
np
.
float32
)
/
255.
img
=
img
.
reshape
([
pic
.
size
[
1
],
pic
.
size
[
0
],
nchannel
])
if
data_format
==
'CHW'
:
img
=
img
.
transpose
([
2
,
0
,
1
])
return
img
def
resize
(
img
,
size
,
interpolation
=
'bilinear'
):
"""
Resizes the image to given size
Args:
input (PIL.Image): Image to be resized.
size (int|list|tuple): Target size of input data, with (height, width) shape.
interpolation (int|str, optional): Interpolation method. when use pil backend,
support method are as following:
- "nearest": Image.NEAREST,
- "bilinear": Image.BILINEAR,
- "bicubic": Image.BICUBIC,
- "box": Image.BOX,
- "lanczos": Image.LANCZOS,
- "hamming": Image.HAMMING
Returns:
PIL.Image: Resized image.
"""
if
not
(
isinstance
(
size
,
int
)
or
(
isinstance
(
size
,
Iterable
)
and
len
(
size
)
==
2
)):
raise
TypeError
(
'Got inappropriate size arg: {}'
.
format
(
size
))
if
isinstance
(
size
,
int
):
w
,
h
=
img
.
size
if
(
w
<=
h
and
w
==
size
)
or
(
h
<=
w
and
h
==
size
):
return
img
if
w
<
h
:
ow
=
size
oh
=
int
(
size
*
h
/
w
)
return
img
.
resize
((
ow
,
oh
),
_pil_interp_from_str
[
interpolation
])
else
:
oh
=
size
ow
=
int
(
size
*
w
/
h
)
return
img
.
resize
((
ow
,
oh
),
_pil_interp_from_str
[
interpolation
])
else
:
return
img
.
resize
(
size
[::
-
1
],
_pil_interp_from_str
[
interpolation
])
def
pad
(
img
,
padding
,
fill
=
0
,
padding_mode
=
'constant'
):
"""
Pads the given PIL.Image on all sides with specified padding mode and fill value.
Args:
img (PIL.Image): Image to be padded.
padding (int|list|tuple): Padding on each border. If a single int is provided this
is used to pad all borders. If tuple of length 2 is provided this is the padding
on left/right and top/bottom respectively. If a tuple of length 4 is provided
this is the padding for the left, top, right and bottom borders
respectively.
fill (float, optional): Pixel fill value for constant fill. If a tuple of
length 3, it is used to fill R, G, B channels respectively.
This value is only used when the padding_mode is constant. Default: 0.
padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default: 'constant'.
- constant: pads with a constant value, this value is specified with fill
- edge: pads with the last value on the edge of the image
- reflect: pads with reflection of image (without repeating the last value on the edge)
padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
will result in [3, 2, 1, 2, 3, 4, 3, 2]
- symmetric: pads with reflection of image (repeating the last value on the edge)
padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
will result in [2, 1, 1, 2, 3, 4, 4, 3]
Returns:
PIL.Image: Padded image.
"""
if
not
isinstance
(
padding
,
(
numbers
.
Number
,
list
,
tuple
)):
raise
TypeError
(
'Got inappropriate padding arg'
)
if
not
isinstance
(
fill
,
(
numbers
.
Number
,
str
,
list
,
tuple
)):
raise
TypeError
(
'Got inappropriate fill arg'
)
if
not
isinstance
(
padding_mode
,
str
):
raise
TypeError
(
'Got inappropriate padding_mode arg'
)
if
isinstance
(
padding
,
Sequence
)
and
len
(
padding
)
not
in
[
2
,
4
]:
raise
ValueError
(
"Padding must be an int or a 2, or 4 element tuple, not a "
+
"{} element tuple"
.
format
(
len
(
padding
)))
assert
padding_mode
in
[
'constant'
,
'edge'
,
'reflect'
,
'symmetric'
],
\
'Padding mode should be either constant, edge, reflect or symmetric'
if
isinstance
(
padding
,
list
):
padding
=
tuple
(
padding
)
if
isinstance
(
padding
,
int
):
pad_left
=
pad_right
=
pad_top
=
pad_bottom
=
padding
if
isinstance
(
padding
,
Sequence
)
and
len
(
padding
)
==
2
:
pad_left
=
pad_right
=
padding
[
0
]
pad_top
=
pad_bottom
=
padding
[
1
]
if
isinstance
(
padding
,
Sequence
)
and
len
(
padding
)
==
4
:
pad_left
=
padding
[
0
]
pad_top
=
padding
[
1
]
pad_right
=
padding
[
2
]
pad_bottom
=
padding
[
3
]
if
padding_mode
==
'constant'
:
if
img
.
mode
==
'P'
:
palette
=
img
.
getpalette
()
image
=
ImageOps
.
expand
(
img
,
border
=
padding
,
fill
=
fill
)
image
.
putpalette
(
palette
)
return
image
return
ImageOps
.
expand
(
img
,
border
=
padding
,
fill
=
fill
)
else
:
if
img
.
mode
==
'P'
:
palette
=
img
.
getpalette
()
img
=
np
.
asarray
(
img
)
img
=
np
.
pad
(
img
,
((
pad_top
,
pad_bottom
),
(
pad_left
,
pad_right
)),
padding_mode
)
img
=
Image
.
fromarray
(
img
)
img
.
putpalette
(
palette
)
return
img
img
=
np
.
asarray
(
img
)
# RGB image
if
len
(
img
.
shape
)
==
3
:
img
=
np
.
pad
(
img
,
((
pad_top
,
pad_bottom
),
(
pad_left
,
pad_right
),
(
0
,
0
)),
padding_mode
)
# Grayscale image
if
len
(
img
.
shape
)
==
2
:
img
=
np
.
pad
(
img
,
((
pad_top
,
pad_bottom
),
(
pad_left
,
pad_right
)),
padding_mode
)
return
Image
.
fromarray
(
img
)
def
crop
(
img
,
top
,
left
,
height
,
width
):
"""Crops the given PIL Image.
Args:
img (PIL.Image): Image to be cropped. (0,0) denotes the top left
corner of the image.
top (int): Vertical component of the top left corner of the crop box.
left (int): Horizontal component of the top left corner of the crop box.
height (int): Height of the crop box.
width (int): Width of the crop box.
Returns:
PIL.Image: Cropped image.
"""
return
img
.
crop
((
left
,
top
,
left
+
width
,
top
+
height
))
def
center_crop
(
img
,
output_size
):
"""Crops the given PIL Image and resize it to desired size.
Args:
img (PIL.Image): Image to be cropped. (0,0) denotes the top left corner of the image.
output_size (sequence or int): (height, width) of the crop box. If int,
it is used for both directions
backend (str, optional): The image proccess backend type. Options are `pil`, `cv2`. Default: 'pil'.
Returns:
PIL.Image: Cropped image.
"""
if
isinstance
(
output_size
,
numbers
.
Number
):
output_size
=
(
int
(
output_size
),
int
(
output_size
))
image_width
,
image_height
=
img
.
size
crop_height
,
crop_width
=
output_size
crop_top
=
int
(
round
((
image_height
-
crop_height
)
/
2.
))
crop_left
=
int
(
round
((
image_width
-
crop_width
)
/
2.
))
return
crop
(
img
,
crop_top
,
crop_left
,
crop_height
,
crop_width
)
def
hflip
(
img
):
"""Horizontally flips the given PIL Image.
Args:
img (PIL.Image): Image to be flipped.
Returns:
PIL.Image: Horizontall flipped image.
"""
return
img
.
transpose
(
Image
.
FLIP_LEFT_RIGHT
)
def
vflip
(
img
):
"""Vertically flips the given PIL Image.
Args:
img (PIL.Image): Image to be flipped.
Returns:
PIL.Image: Vertically flipped image.
"""
return
img
.
transpose
(
Image
.
FLIP_TOP_BOTTOM
)
def
adjust_brightness
(
img
,
brightness_factor
):
"""Adjusts brightness of an Image.
Args:
img (PIL.Image): PIL Image to be adjusted.
brightness_factor (float): How much to adjust the brightness. Can be
any non negative number. 0 gives a black image, 1 gives the
original image while 2 increases the brightness by a factor of 2.
Returns:
PIL.Image: Brightness adjusted image.
"""
enhancer
=
ImageEnhance
.
Brightness
(
img
)
img
=
enhancer
.
enhance
(
brightness_factor
)
return
img
def
adjust_contrast
(
img
,
contrast_factor
):
"""Adjusts contrast of an Image.
Args:
img (PIL.Image): PIL Image to be adjusted.
contrast_factor (float): How much to adjust the contrast. Can be any
non negative number. 0 gives a solid gray image, 1 gives the
original image while 2 increases the contrast by a factor of 2.
Returns:
PIL.Image: Contrast adjusted image.
"""
enhancer
=
ImageEnhance
.
Contrast
(
img
)
img
=
enhancer
.
enhance
(
contrast_factor
)
return
img
def
adjust_saturation
(
img
,
saturation_factor
):
"""Adjusts color saturation of an image.
Args:
img (PIL.Image): PIL Image to be adjusted.
saturation_factor (float): How much to adjust the saturation. 0 will
give a black and white image, 1 will give the original image while
2 will enhance the saturation by a factor of 2.
Returns:
PIL.Image: Saturation adjusted image.
"""
enhancer
=
ImageEnhance
.
Color
(
img
)
img
=
enhancer
.
enhance
(
saturation_factor
)
return
img
def
adjust_hue
(
img
,
hue_factor
):
"""Adjusts hue of an image.
The image hue is adjusted by converting the image to HSV and
cyclically shifting the intensities in the hue channel (H).
The image is then converted back to original image mode.
`hue_factor` is the amount of shift in H channel and must be in the
interval `[-0.5, 0.5]`.
Args:
img (PIL.Image): PIL Image to be adjusted.
hue_factor (float): How much to shift the hue channel. Should be in
[-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
HSV space in positive and negative direction respectively.
0 means no shift. Therefore, both -0.5 and 0.5 will give an image
with complementary colors while 0 gives the original image.
Returns:
PIL.Image: Hue adjusted image.
"""
if
not
(
-
0.5
<=
hue_factor
<=
0.5
):
raise
ValueError
(
'hue_factor is not in [-0.5, 0.5].'
.
format
(
hue_factor
))
input_mode
=
img
.
mode
if
input_mode
in
{
'L'
,
'1'
,
'I'
,
'F'
}:
return
img
h
,
s
,
v
=
img
.
convert
(
'HSV'
).
split
()
np_h
=
np
.
array
(
h
,
dtype
=
np
.
uint8
)
# uint8 addition take cares of rotation across boundaries
with
np
.
errstate
(
over
=
'ignore'
):
np_h
+=
np
.
uint8
(
hue_factor
*
255
)
h
=
Image
.
fromarray
(
np_h
,
'L'
)
img
=
Image
.
merge
(
'HSV'
,
(
h
,
s
,
v
)).
convert
(
input_mode
)
return
img
def
rotate
(
img
,
angle
,
resample
=
False
,
expand
=
False
,
center
=
None
,
fill
=
0
):
"""Rotates the image by angle.
Args:
img (PIL.Image): Image to be rotated.
angle (float or int): In degrees degrees counter clockwise order.
resample (int|str, optional): An optional resampling filter. If omitted, or if the
image has only one channel, it is set to PIL.Image.NEAREST . when use pil backend,
support method are as following:
- "nearest": Image.NEAREST,
- "bilinear": Image.BILINEAR,
- "bicubic": Image.BICUBIC
expand (bool, optional): Optional expansion flag.
If true, expands the output image to make it large enough to hold the entire rotated image.
If false or omitted, make the output image the same size as the input image.
Note that the expand flag assumes rotation around the center and no translation.
center (2-tuple, optional): Optional center of rotation.
Origin is the upper left corner.
Default is the center of the image.
fill (3-tuple or int): RGB pixel fill value for area outside the rotated image.
If int, it is used for all channels respectively.
Returns:
PIL.Image: Rotated image.
"""
if
isinstance
(
fill
,
int
):
fill
=
tuple
([
fill
]
*
3
)
return
img
.
rotate
(
angle
,
resample
,
expand
,
center
,
fillcolor
=
fill
)
def
to_grayscale
(
img
,
num_output_channels
=
1
):
"""Converts image to grayscale version of image.
Args:
img (PIL.Image): Image to be converted to grayscale.
backend (str, optional): The image proccess backend type. Options are `pil`,
`cv2`. Default: 'pil'.
Returns:
PIL.Image: Grayscale version of the image.
if num_output_channels = 1 : returned image is single channel
if num_output_channels = 3 : returned image is 3 channel with r = g = b
"""
if
num_output_channels
==
1
:
img
=
img
.
convert
(
'L'
)
elif
num_output_channels
==
3
:
img
=
img
.
convert
(
'L'
)
np_img
=
np
.
array
(
img
,
dtype
=
np
.
uint8
)
np_img
=
np
.
dstack
([
np_img
,
np_img
,
np_img
])
img
=
Image
.
fromarray
(
np_img
,
'RGB'
)
else
:
raise
ValueError
(
'num_output_channels should be either 1 or 3'
)
return
img
python/paddle/vision/transforms/functional_tensor.py
0 → 100644
浏览文件 @
172e76a8
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
division
import
paddle
def
normalize
(
img
,
mean
,
std
,
data_format
=
'CHW'
):
"""Normalizes a tensor image with mean and standard deviation.
Args:
img (paddle.Tensor): input data to be normalized.
mean (list|tuple): Sequence of means for each channel.
std (list|tuple): Sequence of standard deviations for each channel.
data_format (str, optional): Data format of img, should be 'HWC' or
'CHW'. Default: 'CHW'.
Returns:
Tensor: Normalized mage.
"""
if
data_format
==
'CHW'
:
mean
=
paddle
.
to_tensor
(
mean
).
reshape
([
-
1
,
1
,
1
])
std
=
paddle
.
to_tensor
(
std
).
reshape
([
-
1
,
1
,
1
])
else
:
mean
=
paddle
.
to_tensor
(
mean
)
std
=
paddle
.
to_tensor
(
std
)
return
(
img
-
mean
)
/
std
python/paddle/vision/transforms/transforms.py
浏览文件 @
172e76a8
...
...
@@ -36,30 +36,50 @@ else:
Iterable
=
collections
.
abc
.
Iterable
__all__
=
[
"Compose"
,
"BatchCompose"
,
"Resize"
,
"RandomResizedCrop"
,
"CenterCropResize"
,
"CenterCrop"
,
"RandomHorizontalFlip"
,
"RandomVerticalFlip"
,
"Permute"
,
"Normalize"
,
"GaussianNoise"
,
"BrightnessTransform"
,
"SaturationTransform"
,
"ContrastTransform"
,
"HueTransform"
,
"ColorJitter"
,
"RandomCrop"
,
"RandomErasing"
,
"Pad"
,
"RandomRotate"
,
"Grayscale"
,
"BaseTransform"
,
"Compose"
,
"Resize"
,
"RandomResizedCrop"
,
"CenterCrop"
,
"RandomHorizontalFlip"
,
"RandomVerticalFlip"
,
"Transpose"
,
"Normalize"
,
"BrightnessTransform"
,
"SaturationTransform"
,
"ContrastTransform"
,
"HueTransform"
,
"ColorJitter"
,
"RandomCrop"
,
"Pad"
,
"RandomRotation"
,
"Grayscale"
,
"ToTensor"
]
def
_get_image_size
(
img
):
if
F
.
_is_pil_image
(
img
):
return
img
.
size
elif
F
.
_is_numpy_image
(
img
):
return
img
.
shape
[:
2
][::
-
1
]
else
:
raise
TypeError
(
"Unexpected type {}"
.
format
(
type
(
img
)))
def
_check_input
(
value
,
name
,
center
=
1
,
bound
=
(
0
,
float
(
'inf'
)),
clip_first_on_zero
=
True
):
if
isinstance
(
value
,
numbers
.
Number
):
if
value
<
0
:
raise
ValueError
(
"If {} is a single number, it must be non negative."
.
format
(
name
))
value
=
[
center
-
value
,
center
+
value
]
if
clip_first_on_zero
:
value
[
0
]
=
max
(
value
[
0
],
0
)
elif
isinstance
(
value
,
(
tuple
,
list
))
and
len
(
value
)
==
2
:
if
not
bound
[
0
]
<=
value
[
0
]
<=
value
[
1
]
<=
bound
[
1
]:
raise
ValueError
(
"{} values should be between {}"
.
format
(
name
,
bound
))
else
:
raise
TypeError
(
"{} should be a single number or a list/tuple with lenght 2."
.
format
(
name
))
if
value
[
0
]
==
value
[
1
]
==
center
:
value
=
None
return
value
class
Compose
(
object
):
"""
Composes several transforms together use for composing list of transforms
...
...
@@ -91,15 +111,10 @@ class Compose(object):
def
__init__
(
self
,
transforms
):
self
.
transforms
=
transforms
def
__call__
(
self
,
*
data
):
def
__call__
(
self
,
data
):
for
f
in
self
.
transforms
:
try
:
# multi-fileds in a sample
if
isinstance
(
data
,
Sequence
):
data
=
f
(
*
data
)
# single field in a sample, call transform directly
else
:
data
=
f
(
data
)
data
=
f
(
data
)
except
Exception
as
e
:
stack_info
=
traceback
.
format_exc
()
print
(
"fail to perform transform [{}] with error: "
...
...
@@ -116,96 +131,217 @@ class Compose(object):
return
format_string
class
BatchCompose
(
object
):
"""Composes several batch transforms together
class
BaseTransform
(
object
):
"""
Base class of all transforms used in computer vision.
Args:
transforms (list): List of transforms to compose.
these transforms perform on batch data.
calling logic:
if keys is None:
_get_params -> _apply_image()
else:
_get_params -> _apply_*() for * in keys
If you want to implement a self-defined transform method for image,
rewrite _apply_* method in subclass.
Args:
keys (list[str]|tuple[str], optional): Input type. Input is a tuple contains different structures,
key is used to specify the type of input. For example, if your input
is image type, then the key can be None or ("image"). if your input
is (image, image) type, then the keys should be ("image", "image").
if your input is (image, boxes), then the keys should be ("image", "boxes").
Current available strings & data type are describe below:
- "image": input image, with shape of (H, W, C)
- "coords": coordinates, with shape of (N, 2)
- "boxes": bounding boxes, with shape of (N, 4), "xyxy" format,
the 1st "xy" represents top left point of a box,
the 2nd "xy" represents right bottom point.
- "mask": map used for segmentation, with shape of (H, W, 1)
You can also customize your data types only if you implement the corresponding
_apply_*() methods, otherwise ``NotImplementedError`` will be raised.
Examples:
.. code-block:: python
import numpy as np
from paddle.io import DataLoader
from PIL import Image
import paddle.vision.transforms.functional as F
from paddle.vision.transforms import BaseTransform
def _get_image_size(img):
if F._is_pil_image(img):
return img.size
elif F._is_numpy_image(img):
return img.shape[:2][::-1]
else:
raise TypeError("Unexpected type {}".format(type(img)))
class CustomRandomFlip(BaseTransform):
def __init__(self, prob=0.5, keys=None):
super(CustomRandomFlip, self).__init__(keys)
self.prob = prob
def _get_params(self, inputs):
image = inputs[self.keys.index('image')]
params = {}
params['flip'] = np.random.random() < self.prob
params['size'] = _get_image_size(image)
return params
def _apply_image(self, image):
if self.params['flip']:
return F.hflip(image)
return image
# if you only want to transform image, do not need to rewrite this function
def _apply_coords(self, coords):
if self.params['flip']:
w = self.params['size'][0]
coords[:, 0] = w - coords[:, 0]
return coords
# if you only want to transform image, do not need to rewrite this function
def _apply_boxes(self, boxes):
idxs = np.array([(0, 1), (2, 1), (0, 3), (2, 3)]).flatten()
coords = np.asarray(boxes).reshape(-1, 4)[:, idxs].reshape(-1, 2)
coords = self._apply_coords(coords).reshape((-1, 4, 2))
minxy = coords.min(axis=1)
maxxy = coords.max(axis=1)
trans_boxes = np.concatenate((minxy, maxxy), axis=1)
return trans_boxes
# if you only want to transform image, do not need to rewrite this function
def _apply_mask(self, mask):
if self.params['flip']:
return F.hflip(mask)
return mask
# create fake inputs
fake_img = Image.fromarray((np.random.rand(400, 500, 3) * 255.).astype('uint8'))
fake_boxes = np.array([[2, 3, 200, 300], [50, 60, 80, 100]])
fake_mask = fake_img.convert('L')
# only transform for image:
flip_transform = CustomRandomFlip(1.0)
converted_img = flip_transform(fake_img)
# transform for image, boxes and mask
flip_transform = CustomRandomFlip(1.0, keys=('image', 'boxes', 'mask'))
(converted_img, converted_boxes, converted_mask) = flip_transform((fake_img, fake_boxes, fake_mask))
print('converted boxes', converted_boxes)
from paddle import set_device
from paddle.vision.datasets import Flowers
from paddle.vision.transforms import Compose, BatchCompose, Resize
class NormalizeBatch(object):
def __init__(self,
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225],
scale=True,
channel_first=True):
self.mean = mean
self.std = std
self.scale = scale
self.channel_first = channel_first
if not (isinstance(self.mean, list) and isinstance(self.std, list) and
isinstance(self.scale, bool)):
raise TypeError("{}: input type is invalid.".format(self))
from functools import reduce
if reduce(lambda x, y: x * y, self.std) == 0:
raise ValueError('{}: std is invalid!'.format(self))
def __call__(self, samples):
for i in range(len(samples)):
samples[i] = list(samples[i])
im = samples[i][0]
im = im.astype(np.float32, copy=False)
mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
std = np.array(self.std)[np.newaxis, np.newaxis, :]
if self.scale:
im = im / 255.0
im -= mean
im /= std
if self.channel_first:
im = im.transpose((2, 0, 1))
samples[i][0] = im
return samples
transform = Compose([Resize((500, 500))])
flowers_dataset = Flowers(mode='test', transform=transform)
device = set_device('cpu')
collate_fn = BatchCompose([NormalizeBatch()])
loader = DataLoader(
flowers_dataset,
batch_size=4,
places=device,
return_list=True,
collate_fn=collate_fn)
for data in loader:
# do something
break
"""
def
__init__
(
self
,
transforms
=
[]):
self
.
transforms
=
transforms
def
__init__
(
self
,
keys
=
None
):
if
keys
is
None
:
keys
=
(
"image"
,
)
elif
not
isinstance
(
keys
,
Sequence
):
raise
ValueError
(
"keys should be a sequence, but got keys={}"
.
format
(
keys
))
for
k
in
keys
:
if
self
.
_get_apply
(
k
)
is
None
:
raise
NotImplementedError
(
"{} is unsupported data structure"
.
format
(
k
))
self
.
keys
=
keys
# storage some params get from function get_params()
self
.
params
=
None
def
_get_params
(
self
,
inputs
):
pass
def
__call__
(
self
,
inputs
):
"""Apply transform on single input data"""
if
not
isinstance
(
inputs
,
tuple
):
inputs
=
(
inputs
,
)
self
.
params
=
self
.
_get_params
(
inputs
)
outputs
=
[]
for
i
in
range
(
min
(
len
(
inputs
),
len
(
self
.
keys
))):
apply_func
=
self
.
_get_apply
(
self
.
keys
[
i
])
if
apply_func
is
None
:
outputs
.
append
(
inputs
[
i
])
else
:
outputs
.
append
(
apply_func
(
inputs
[
i
]))
if
len
(
inputs
)
>
len
(
self
.
keys
):
outputs
.
extend
(
input
[
len
(
self
.
keys
):])
if
len
(
outputs
)
==
1
:
outputs
=
outputs
[
0
]
else
:
outputs
=
tuple
(
outputs
)
return
outputs
def
__call__
(
self
,
data
):
for
f
in
self
.
transforms
:
try
:
data
=
f
(
data
)
except
Exception
as
e
:
stack_info
=
traceback
.
format_exc
()
print
(
"fail to perform batch transform [{}] with error: "
"{} and stack:
\n
{}"
.
format
(
f
,
e
,
str
(
stack_info
)))
raise
e
def
_get_apply
(
self
,
key
):
return
getattr
(
self
,
"_apply_{}"
.
format
(
key
),
None
)
# sample list to batch data
batch
=
list
(
zip
(
*
data
))
def
_apply_image
(
self
,
image
):
raise
NotImplementedError
return
batch
def
_apply_boxes
(
self
,
boxes
):
raise
NotImplementedError
def
_apply_mask
(
self
,
mask
):
raise
NotImplementedError
class
Resize
(
object
):
class
ToTensor
(
BaseTransform
):
"""Convert a ``PIL.Image`` or ``numpy.ndarray`` to ``paddle.Tensor``.
Converts a PIL.Image or numpy.ndarray (H x W x C) in the range
[0, 255] to a paddle.Tensor of shape (C x H x W) in the range [0.0, 1.0]
if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1)
or if the numpy.ndarray has dtype = np.uint8
In the other cases, tensors are returned without scaling.
Args:
data_format (str, optional): Data format of input img, should be 'HWC' or
'CHW'. Default: 'CHW'.
keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
import paddle.vision.transforms as T
import paddle.vision.transforms.functional as F
fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
transform = T.ToTensor()
tensor = transform(fake_img)
"""
def
__init__
(
self
,
data_format
=
'CHW'
,
keys
=
None
):
super
(
ToTensor
,
self
).
__init__
(
keys
)
self
.
data_format
=
data_format
def
_apply_image
(
self
,
img
):
"""
Args:
img (PIL.Image|np.ndarray): Image to be converted to tensor.
Returns:
Tensor: Converted image.
"""
return
F
.
to_tensor
(
img
,
self
.
data_format
)
class
Resize
(
BaseTransform
):
"""Resize the input Image to the given size.
Args:
...
...
@@ -214,97 +350,111 @@ class Resize(object):
smaller edge of the image will be matched to this number.
i.e, if height > width, then image will be rescaled to
(size * height / width, size)
interpolation (int, optional): Interpolation mode of resize. Default: 1.
0 : cv2.INTER_NEAREST
1 : cv2.INTER_LINEAR
2 : cv2.INTER_CUBIC
3 : cv2.INTER_AREA
4 : cv2.INTER_LANCZOS4
5 : cv2.INTER_LINEAR_EXACT
7 : cv2.INTER_MAX
8 : cv2.WARP_FILL_OUTLIERS
16: cv2.WARP_INVERSE_MAP
interpolation (int|str, optional): Interpolation method. Default: 'bilinear'.
when use pil backend, support method are as following:
- "nearest": Image.NEAREST,
- "bilinear": Image.BILINEAR,
- "bicubic": Image.BICUBIC,
- "box": Image.BOX,
- "lanczos": Image.LANCZOS,
- "hamming": Image.HAMMING
when use cv2 backend, support method are as following:
- "nearest": cv2.INTER_NEAREST,
- "bilinear": cv2.INTER_LINEAR,
- "area": cv2.INTER_AREA,
- "bicubic": cv2.INTER_CUBIC,
- "lanczos": cv2.INTER_LANCZOS4
keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import Resize
transform = Resize(size=224)
fake_img =
np.random.rand(500, 500, 3).astype('float32'
)
fake_img =
Image.fromarray((np.random.rand(100, 120, 3) * 255.).astype(np.uint8)
)
fake_img = transform(fake_img)
print(fake_img.s
hap
e)
print(fake_img.s
iz
e)
"""
def
__init__
(
self
,
size
,
interpolation
=
1
):
def
__init__
(
self
,
size
,
interpolation
=
'bilinear'
,
keys
=
None
):
super
(
Resize
,
self
).
__init__
(
keys
)
assert
isinstance
(
size
,
int
)
or
(
isinstance
(
size
,
Iterable
)
and
len
(
size
)
==
2
)
self
.
size
=
size
self
.
interpolation
=
interpolation
def
_
_call__
(
self
,
img
):
def
_
apply_image
(
self
,
img
):
return
F
.
resize
(
img
,
self
.
size
,
self
.
interpolation
)
class
RandomResizedCrop
(
object
):
class
RandomResizedCrop
(
BaseTransform
):
"""Crop the input data to random size and aspect ratio.
A crop of random size (default: of 0.08 to 1.0) of the original size and a random
aspect ratio (default: of 3/4 to 1.33) of the original aspect ratio is made.
After applying crop transfrom, the input data will be resized to given size.
Args:
output_
size (int|list|tuple): Target size of output image, with (height, width) shape.
size (int|list|tuple): Target size of output image, with (height, width) shape.
scale (list|tuple): Range of size of the origin size cropped. Default: (0.08, 1.0)
ratio (list|tuple): Range of aspect ratio of the origin aspect ratio cropped. Default: (0.75, 1.33)
interpolation (int, optional): Interpolation mode of resize. Default: 1.
0 : cv2.INTER_NEAREST
1 : cv2.INTER_LINEAR
2 : cv2.INTER_CUBIC
3 : cv2.INTER_AREA
4 : cv2.INTER_LANCZOS4
5 : cv2.INTER_LINEAR_EXACT
7 : cv2.INTER_MAX
8 : cv2.WARP_FILL_OUTLIERS
16: cv2.WARP_INVERSE_MAP
interpolation (int|str, optional): Interpolation method. Default: 'bilinear'. when use pil backend,
support method are as following:
- "nearest": Image.NEAREST,
- "bilinear": Image.BILINEAR,
- "bicubic": Image.BICUBIC,
- "box": Image.BOX,
- "lanczos": Image.LANCZOS,
- "hamming": Image.HAMMING
when use cv2 backend, support method are as following:
- "nearest": cv2.INTER_NEAREST,
- "bilinear": cv2.INTER_LINEAR,
- "area": cv2.INTER_AREA,
- "bicubic": cv2.INTER_CUBIC,
- "lanczos": cv2.INTER_LANCZOS4
keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import RandomResizedCrop
transform = RandomResizedCrop(224)
fake_img =
np.random.rand(500, 500, 3).astype('float32'
)
fake_img =
Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8)
)
fake_img = transform(fake_img)
print(fake_img.shape)
print(fake_img.size)
"""
def
__init__
(
self
,
output_
size
,
size
,
scale
=
(
0.08
,
1.0
),
ratio
=
(
3.
/
4
,
4.
/
3
),
interpolation
=
1
):
if
isinstance
(
output_size
,
int
):
self
.
output_size
=
(
output_size
,
output_size
)
interpolation
=
'bilinear'
,
keys
=
None
):
super
(
RandomResizedCrop
,
self
).
__init__
(
keys
)
if
isinstance
(
size
,
int
):
self
.
size
=
(
size
,
size
)
else
:
self
.
output_size
=
output_
size
self
.
size
=
size
assert
(
scale
[
0
]
<=
scale
[
1
]),
"scale should be of kind (min, max)"
assert
(
ratio
[
0
]
<=
ratio
[
1
]),
"ratio should be of kind (min, max)"
self
.
scale
=
scale
self
.
ratio
=
ratio
self
.
interpolation
=
interpolation
def
_get_param
s
(
self
,
image
,
attempts
=
10
):
height
,
width
,
_
=
image
.
shape
def
_get_param
(
self
,
image
,
attempts
=
10
):
width
,
height
=
_get_image_size
(
image
)
area
=
height
*
width
for
_
in
range
(
attempts
):
...
...
@@ -316,9 +466,9 @@ class RandomResizedCrop(object):
h
=
int
(
round
(
math
.
sqrt
(
target_area
/
aspect_ratio
)))
if
0
<
w
<=
width
and
0
<
h
<=
height
:
x
=
np
.
random
.
randint
(
0
,
width
-
w
+
1
)
y
=
np
.
random
.
randint
(
0
,
height
-
h
+
1
)
return
x
,
y
,
w
,
h
i
=
random
.
randint
(
0
,
height
-
h
)
j
=
random
.
randint
(
0
,
width
-
w
)
return
i
,
j
,
h
,
w
# Fallback to central crop
in_ratio
=
float
(
width
)
/
float
(
height
)
...
...
@@ -328,179 +478,123 @@ class RandomResizedCrop(object):
elif
in_ratio
>
max
(
self
.
ratio
):
h
=
height
w
=
int
(
round
(
h
*
max
(
self
.
ratio
)))
else
:
# whole image
else
:
# return whole image
w
=
width
h
=
height
x
=
(
width
-
w
)
//
2
y
=
(
height
-
h
)
//
2
return
x
,
y
,
w
,
h
def
__call__
(
self
,
img
):
x
,
y
,
w
,
h
=
self
.
_get_params
(
img
)
cropped_img
=
img
[
y
:
y
+
h
,
x
:
x
+
w
]
return
F
.
resize
(
cropped_img
,
self
.
output_size
,
self
.
interpolation
)
class
CenterCropResize
(
object
):
"""Crops to center of image with padding then scales size.
Args:
size (int|list|tuple): Target size of output image, with (height, width) shape.
crop_padding (int): Center crop with the padding. Default: 32.
interpolation (int, optional): Interpolation mode of resize. Default: 1.
0 : cv2.INTER_NEAREST
1 : cv2.INTER_LINEAR
2 : cv2.INTER_CUBIC
3 : cv2.INTER_AREA
4 : cv2.INTER_LANCZOS4
5 : cv2.INTER_LINEAR_EXACT
7 : cv2.INTER_MAX
8 : cv2.WARP_FILL_OUTLIERS
16: cv2.WARP_INVERSE_MAP
Examples:
.. code-block:: python
import numpy as np
i
=
(
height
-
h
)
//
2
j
=
(
width
-
w
)
//
2
return
i
,
j
,
h
,
w
from paddle.vision.transforms import CenterCropResize
def
_apply_image
(
self
,
img
):
i
,
j
,
h
,
w
=
self
.
_get_param
(
img
)
transform = CenterCropResize(224)
fake_img = np.random.rand(500, 500, 3).astype('float32')
fake_img = transform(fake_img)
print(fake_img.shape)
"""
def
__init__
(
self
,
size
,
crop_padding
=
32
,
interpolation
=
1
):
if
isinstance
(
size
,
int
):
self
.
size
=
(
size
,
size
)
else
:
self
.
size
=
size
self
.
crop_padding
=
crop_padding
self
.
interpolation
=
interpolation
def
_get_params
(
self
,
img
):
h
,
w
=
img
.
shape
[:
2
]
size
=
min
(
self
.
size
)
c
=
int
(
size
/
(
size
+
self
.
crop_padding
)
*
min
((
h
,
w
)))
x
=
(
h
+
1
-
c
)
//
2
y
=
(
w
+
1
-
c
)
//
2
return
c
,
x
,
y
def
__call__
(
self
,
img
):
c
,
x
,
y
=
self
.
_get_params
(
img
)
cropped_img
=
img
[
x
:
x
+
c
,
y
:
y
+
c
,
:]
cropped_img
=
F
.
crop
(
img
,
i
,
j
,
h
,
w
)
return
F
.
resize
(
cropped_img
,
self
.
size
,
self
.
interpolation
)
class
CenterCrop
(
object
):
class
CenterCrop
(
BaseTransform
):
"""Crops the given the input data at the center.
Args:
output_size: Target size of output image, with (height, width) shape.
size (int|list|tuple): Target size of output image, with (height, width) shape.
keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import CenterCrop
transform = CenterCrop(224)
fake_img =
np.random.rand(500, 500, 3).astype('float32'
)
fake_img =
Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8)
)
fake_img = transform(fake_img)
print(fake_img.s
hap
e)
print(fake_img.s
iz
e)
"""
def
__init__
(
self
,
output_size
):
if
isinstance
(
output_size
,
int
):
self
.
output_size
=
(
output_size
,
output_size
)
def
__init__
(
self
,
size
,
keys
=
None
):
super
(
CenterCrop
,
self
).
__init__
(
keys
)
if
isinstance
(
size
,
numbers
.
Number
):
self
.
size
=
(
int
(
size
),
int
(
size
))
else
:
self
.
output_size
=
output_size
def
_get_params
(
self
,
img
):
th
,
tw
=
self
.
output_size
h
,
w
,
_
=
img
.
shape
assert
th
<=
h
and
tw
<=
w
,
"output size is bigger than image size"
x
=
int
(
round
((
w
-
tw
)
/
2.0
))
y
=
int
(
round
((
h
-
th
)
/
2.0
))
return
x
,
y
self
.
size
=
size
def
__call__
(
self
,
img
):
x
,
y
=
self
.
_get_params
(
img
)
th
,
tw
=
self
.
output_size
return
img
[
y
:
y
+
th
,
x
:
x
+
tw
]
def
_apply_image
(
self
,
img
):
return
F
.
center_crop
(
img
,
self
.
size
)
class
RandomHorizontalFlip
(
object
):
class
RandomHorizontalFlip
(
BaseTransform
):
"""Horizontally flip the input data randomly with a given probability.
Args:
prob (float): Probability of the input data being flipped. Default: 0.5
prob (float, optional): Probability of the input data being flipped. Default: 0.5
keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import RandomHorizontalFlip
transform = RandomHorizontalFlip(224)
fake_img =
np.random.rand(500, 500, 3).astype('float32'
)
fake_img =
Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8)
)
fake_img = transform(fake_img)
print(fake_img.s
hap
e)
print(fake_img.s
iz
e)
"""
def
__init__
(
self
,
prob
=
0.5
):
def
__init__
(
self
,
prob
=
0.5
,
keys
=
None
):
super
(
RandomHorizontalFlip
,
self
).
__init__
(
keys
)
self
.
prob
=
prob
def
_
_call__
(
self
,
img
):
if
np
.
random
.
random
()
<
self
.
prob
:
return
F
.
flip
(
img
,
code
=
1
)
def
_
apply_image
(
self
,
img
):
if
random
.
random
()
<
self
.
prob
:
return
F
.
hflip
(
img
)
return
img
class
RandomVerticalFlip
(
object
):
class
RandomVerticalFlip
(
BaseTransform
):
"""Vertically flip the input data randomly with a given probability.
Args:
prob (float): Probability of the input data being flipped. Default: 0.5
prob (float, optional): Probability of the input data being flipped. Default: 0.5
keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import RandomVerticalFlip
transform = RandomVerticalFlip(224)
fake_img =
np.random.rand(500, 500, 3).astype('float32'
)
fake_img =
Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8)
)
fake_img = transform(fake_img)
print(fake_img.shape)
print(fake_img.size)
"""
def
__init__
(
self
,
prob
=
0.5
):
def
__init__
(
self
,
prob
=
0.5
,
keys
=
None
):
super
(
RandomVerticalFlip
,
self
).
__init__
(
keys
)
self
.
prob
=
prob
def
_
_call__
(
self
,
img
):
if
np
.
random
.
random
()
<
self
.
prob
:
return
F
.
flip
(
img
,
code
=
0
)
def
_
apply_image
(
self
,
img
):
if
random
.
random
()
<
self
.
prob
:
return
F
.
vflip
(
img
)
return
img
class
Normalize
(
object
):
class
Normalize
(
BaseTransform
):
"""Normalize the input data with mean and standard deviation.
Given mean: ``(M1,...,Mn)`` and std: ``(S1,..,Sn)`` for ``n`` channels,
this transform will normalize each channel of the input data.
...
...
@@ -509,286 +603,240 @@ class Normalize(object):
Args:
mean (int|float|list): Sequence of means for each channel.
std (int|float|list): Sequence of standard deviations for each channel.
data_format (str, optional): Data format of img, should be 'HWC' or
'CHW'. Default: 'CHW'.
to_rgb (bool, optional): Whether to convert to rgb. Default: False.
keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import Normalize
normalize = Normalize(mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5])
normalize = Normalize(mean=[127.5, 127.5, 127.5],
std=[127.5, 127.5, 127.5],
data_format='HWC')
fake_img =
np.random.rand(3, 500, 500).astype('float32'
)
fake_img =
Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8)
)
fake_img = normalize(fake_img)
print(fake_img.shape)
print(fake_img.max, fake_img.max)
"""
def
__init__
(
self
,
mean
=
0.0
,
std
=
1.0
):
def
__init__
(
self
,
mean
=
0.0
,
std
=
1.0
,
data_format
=
'CHW'
,
to_rgb
=
False
,
keys
=
None
):
super
(
Normalize
,
self
).
__init__
(
keys
)
if
isinstance
(
mean
,
numbers
.
Number
):
mean
=
[
mean
,
mean
,
mean
]
if
isinstance
(
std
,
numbers
.
Number
):
std
=
[
std
,
std
,
std
]
self
.
mean
=
np
.
array
(
mean
,
dtype
=
np
.
float32
).
reshape
(
len
(
mean
),
1
,
1
)
self
.
std
=
np
.
array
(
std
,
dtype
=
np
.
float32
).
reshape
(
len
(
std
),
1
,
1
)
self
.
mean
=
mean
self
.
std
=
std
self
.
data_format
=
data_format
self
.
to_rgb
=
to_rgb
def
__call__
(
self
,
img
):
return
(
img
-
self
.
mean
)
/
self
.
std
def
_apply_image
(
self
,
img
):
return
F
.
normalize
(
img
,
self
.
mean
,
self
.
std
,
self
.
data_format
,
self
.
to_rgb
)
class
Permute
(
object
):
"""
Change input data to a target mode
.
class
Transpose
(
BaseTransform
):
"""
Transpose input data to a target format
.
For example, most transforms use HWC mode image,
while the Neural Network might use CHW mode input tensor.
Input image should be HWC mode and
an instance of numpy.ndarray.
output image will be
an instance of numpy.ndarray.
Args:
mode (str): Output mode of input. Default: "CHW"
.
to_rgb (bool): Convert 'bgr' image to 'rgb'. Default: Tru
e.
order (list|tuple, optional): Target order of input data. Default: (2, 0, 1)
.
keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: Non
e.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import Transpose
from paddle.vision.transforms import Permute
transform = Transpose()
transform = Permute()
fake_img = np.random.rand(500, 500, 3).astype('float32')
fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
fake_img = transform(fake_img)
print(fake_img.shape)
"""
def
__init__
(
self
,
mode
=
"CHW"
,
to_rgb
=
True
):
assert
mode
in
[
"CHW"
],
"Only support 'CHW' mode, but received mode: {}"
.
format
(
mode
)
self
.
mode
=
mode
self
.
to_rgb
=
to_rgb
def
__call__
(
self
,
img
):
if
self
.
to_rgb
:
img
=
img
[...,
::
-
1
]
if
self
.
mode
==
"CHW"
:
return
img
.
transpose
((
2
,
0
,
1
))
return
img
class
GaussianNoise
(
object
):
"""Add random gaussian noise to the input data.
Gaussian noise is generated with given mean and std.
Args:
mean (float): Gaussian mean used to generate noise.
std (float): Gaussian standard deviation used to generate noise.
Examples:
.. code-block:: python
import numpy as np
from paddle.vision.transforms import GaussianNoise
transform = GaussianNoise()
fake_img = np.random.rand(500, 500, 3).astype('float32')
fake_img = transform(fake_img)
print(fake_img.shape)
"""
def
__init__
(
self
,
mean
=
0.0
,
std
=
1.0
):
self
.
mean
=
np
.
array
(
mean
,
dtype
=
np
.
float32
)
self
.
std
=
np
.
array
(
std
,
dtype
=
np
.
float32
)
def
__init__
(
self
,
order
=
(
2
,
0
,
1
),
keys
=
None
):
super
(
Transpose
,
self
).
__init__
(
keys
)
self
.
order
=
order
def
_apply_image
(
self
,
img
):
if
F
.
_is_pil_image
(
img
):
img
=
np
.
asarray
(
img
)
def
__call__
(
self
,
img
):
dtype
=
img
.
dtype
noise
=
np
.
random
.
normal
(
self
.
mean
,
self
.
std
,
img
.
shape
)
*
255
img
=
img
+
noise
.
astype
(
np
.
float32
)
return
np
.
clip
(
img
,
0
,
255
).
astype
(
dtype
)
return
img
.
transpose
(
self
.
order
)
class
BrightnessTransform
(
object
):
class
BrightnessTransform
(
BaseTransform
):
"""Adjust brightness of the image.
Args:
value (float): How much to adjust the brightness. Can be any
non negative number. 0 gives the original image
keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import BrightnessTransform
transform = BrightnessTransform(0.4)
fake_img =
np.random.rand(500, 500, 3).astype('float32'
)
fake_img =
Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8)
)
fake_img = transform(fake_img)
print(fake_img.shape)
"""
def
__init__
(
self
,
value
):
if
value
<
0
:
raise
ValueError
(
"brightness value should be non-negative"
)
self
.
value
=
value
def
__init__
(
self
,
value
,
keys
=
None
):
super
(
BrightnessTransform
,
self
).
__init__
(
keys
)
self
.
value
=
_check_input
(
value
,
'brightness'
)
def
_
_call__
(
self
,
img
):
if
self
.
value
==
0
:
def
_
apply_image
(
self
,
img
):
if
self
.
value
is
None
:
return
img
dtype
=
img
.
dtype
img
=
img
.
astype
(
np
.
float32
)
alpha
=
np
.
random
.
uniform
(
max
(
0
,
1
-
self
.
value
),
1
+
self
.
value
)
img
=
img
*
alpha
return
img
.
clip
(
0
,
255
).
astype
(
dtype
)
brightness_factor
=
random
.
uniform
(
self
.
value
[
0
],
self
.
value
[
1
])
return
F
.
adjust_brightness
(
img
,
brightness_factor
)
class
ContrastTransform
(
object
):
class
ContrastTransform
(
BaseTransform
):
"""Adjust contrast of the image.
Args:
value (float): How much to adjust the contrast. Can be any
non negative number. 0 gives the original image
keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import ContrastTransform
transform = ContrastTransform(0.4)
fake_img =
np.random.rand(500, 500, 3).astype('float32'
)
fake_img =
Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8)
)
fake_img = transform(fake_img)
print(fake_img.shape)
"""
def
__init__
(
self
,
value
):
def
__init__
(
self
,
value
,
keys
=
None
):
super
(
ContrastTransform
,
self
).
__init__
(
keys
)
if
value
<
0
:
raise
ValueError
(
"contrast value should be non-negative"
)
self
.
value
=
value
self
.
value
=
_check_input
(
value
,
'contrast'
)
def
_
_call__
(
self
,
img
):
if
self
.
value
==
0
:
def
_
apply_image
(
self
,
img
):
if
self
.
value
is
None
:
return
img
cv2
=
try_import
(
'cv2'
)
dtype
=
img
.
dtype
img
=
img
.
astype
(
np
.
float32
)
alpha
=
np
.
random
.
uniform
(
max
(
0
,
1
-
self
.
value
),
1
+
self
.
value
)
img
=
img
*
alpha
+
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_BGR2GRAY
).
mean
()
*
(
1
-
alpha
)
return
img
.
clip
(
0
,
255
).
astype
(
dtype
)
contrast_factor
=
random
.
uniform
(
self
.
value
[
0
],
self
.
value
[
1
])
return
F
.
adjust_contrast
(
img
,
contrast_factor
)
class
SaturationTransform
(
object
):
class
SaturationTransform
(
BaseTransform
):
"""Adjust saturation of the image.
Args:
value (float): How much to adjust the saturation. Can be any
non negative number. 0 gives the original image
keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import SaturationTransform
transform = SaturationTransform(0.4)
fake_img =
np.random.rand(500, 500, 3).astype('float32'
)
fake_img =
Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8)
)
fake_img = transform(fake_img)
print(fake_img.shape)
"""
def
__init__
(
self
,
value
):
if
value
<
0
:
raise
ValueError
(
"saturation value should be non-negative"
)
self
.
value
=
value
def
__init__
(
self
,
value
,
keys
=
None
):
super
(
SaturationTransform
,
self
).
__init__
(
keys
)
self
.
value
=
_check_input
(
value
,
'saturation'
)
def
_
_call__
(
self
,
img
):
if
self
.
value
==
0
:
def
_
apply_image
(
self
,
img
):
if
self
.
value
is
None
:
return
img
cv2
=
try_import
(
'cv2'
)
saturation_factor
=
random
.
uniform
(
self
.
value
[
0
],
self
.
value
[
1
])
return
F
.
adjust_saturation
(
img
,
saturation_factor
)
dtype
=
img
.
dtype
img
=
img
.
astype
(
np
.
float32
)
alpha
=
np
.
random
.
uniform
(
max
(
0
,
1
-
self
.
value
),
1
+
self
.
value
)
gray_img
=
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_BGR2GRAY
)
gray_img
=
gray_img
[...,
np
.
newaxis
]
img
=
img
*
alpha
+
gray_img
*
(
1
-
alpha
)
return
img
.
clip
(
0
,
255
).
astype
(
dtype
)
class
HueTransform
(
object
):
class
HueTransform
(
BaseTransform
):
"""Adjust hue of the image.
Args:
value (float): How much to adjust the hue. Can be any number
between 0 and 0.5, 0 gives the original image
keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import HueTransform
transform = HueTransform(0.4)
fake_img =
np.random.rand(500, 500, 3).astype('float32'
)
fake_img =
Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8)
)
fake_img = transform(fake_img)
print(fake_img.shape)
"""
def
__init__
(
self
,
value
):
if
value
<
0
or
value
>
0.5
:
raise
ValueError
(
"hue value should be in [0.0, 0.5]"
)
self
.
value
=
value
def
__init__
(
self
,
value
,
keys
=
None
):
super
(
HueTransform
,
self
).
__init__
(
keys
)
self
.
value
=
_check_input
(
value
,
'hue'
,
center
=
0
,
bound
=
(
-
0.5
,
0.5
),
clip_first_on_zero
=
False
)
def
_
_call__
(
self
,
img
):
if
self
.
value
==
0
:
def
_
apply_image
(
self
,
img
):
if
self
.
value
is
None
:
return
img
cv2
=
try_import
(
'cv2'
)
dtype
=
img
.
dtype
img
=
img
.
astype
(
np
.
uint8
)
hsv_img
=
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_BGR2HSV_FULL
)
h
,
s
,
v
=
cv2
.
split
(
hsv_img
)
alpha
=
np
.
random
.
uniform
(
-
self
.
value
,
self
.
value
)
h
=
h
.
astype
(
np
.
uint8
)
# uint8 addition take cares of rotation across boundaries
with
np
.
errstate
(
over
=
"ignore"
):
h
+=
np
.
uint8
(
alpha
*
255
)
hsv_img
=
cv2
.
merge
([
h
,
s
,
v
])
return
cv2
.
cvtColor
(
hsv_img
,
cv2
.
COLOR_HSV2BGR_FULL
).
astype
(
dtype
)
hue_factor
=
random
.
uniform
(
self
.
value
[
0
],
self
.
value
[
1
])
return
F
.
adjust_hue
(
img
,
hue_factor
)
class
ColorJitter
(
object
):
class
ColorJitter
(
BaseTransform
):
"""Randomly change the brightness, contrast, saturation and hue of an image.
Args:
...
...
@@ -800,42 +848,74 @@ class ColorJitter(object):
Chosen uniformly from [max(0, 1 - saturation), 1 + saturation]. Should be non negative numbers.
hue: How much to jitter hue.
Chosen uniformly from [-hue, hue]. Should have 0<= hue <= 0.5.
keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import ColorJitter
transform = ColorJitter(0.4)
transform = ColorJitter(0.4
, 0.4, 0.4, 0.4
)
fake_img =
np.random.rand(500, 500, 3).astype('float32'
)
fake_img =
Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8)
)
fake_img = transform(fake_img)
print(fake_img.shape)
"""
def
__init__
(
self
,
brightness
=
0
,
contrast
=
0
,
saturation
=
0
,
hue
=
0
):
def
__init__
(
self
,
brightness
=
0
,
contrast
=
0
,
saturation
=
0
,
hue
=
0
,
keys
=
None
):
super
(
ColorJitter
,
self
).
__init__
(
keys
)
self
.
brightness
=
brightness
self
.
contrast
=
contrast
self
.
saturation
=
saturation
self
.
hue
=
hue
def
_get_param
(
self
,
brightness
,
contrast
,
saturation
,
hue
):
"""Get a randomized transform to be applied on image.
Arguments are same as that of __init__.
Returns:
Transform which randomly adjusts brightness, contrast and
saturation in a random order.
"""
transforms
=
[]
if
brightness
!=
0
:
transforms
.
append
(
BrightnessTransform
(
brightness
))
if
contrast
!=
0
:
transforms
.
append
(
ContrastTransform
(
contrast
))
if
saturation
!=
0
:
transforms
.
append
(
SaturationTransform
(
saturation
))
if
hue
!=
0
:
transforms
.
append
(
HueTransform
(
hue
))
if
brightness
is
not
None
:
transforms
.
append
(
BrightnessTransform
(
brightness
,
self
.
keys
))
if
contrast
is
not
None
:
transforms
.
append
(
ContrastTransform
(
contrast
,
self
.
keys
))
if
saturation
is
not
None
:
transforms
.
append
(
SaturationTransform
(
saturation
,
self
.
keys
))
if
hue
is
not
None
:
transforms
.
append
(
HueTransform
(
hue
,
self
.
keys
))
random
.
shuffle
(
transforms
)
self
.
transforms
=
Compose
(
transforms
)
transform
=
Compose
(
transforms
)
def
__call__
(
self
,
img
):
return
self
.
transforms
(
img
)
return
transform
def
_apply_image
(
self
,
img
):
"""
Args:
img (PIL Image): Input image.
class
RandomCrop
(
object
):
Returns:
PIL Image: Color jittered image.
"""
transform
=
self
.
_get_param
(
self
.
brightness
,
self
.
contrast
,
self
.
saturation
,
self
.
hue
)
return
transform
(
img
)
class
RandomCrop
(
BaseTransform
):
"""Crops the given CV Image at a random location.
Args:
...
...
@@ -847,159 +927,88 @@ class RandomCrop(object):
top, right, bottom borders respectively. Default: 0.
pad_if_needed (boolean|optional): It will pad the image if smaller than the
desired size to avoid raising an exception. Default: False.
keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import RandomCrop
transform = RandomCrop(224)
fake_img =
np.random.rand(500, 500, 3).astype('float32'
)
fake_img =
Image.fromarray((np.random.rand(324, 300, 3) * 255.).astype(np.uint8)
)
fake_img = transform(fake_img)
print(fake_img.s
hap
e)
print(fake_img.s
iz
e)
"""
def
__init__
(
self
,
size
,
padding
=
0
,
pad_if_needed
=
False
):
def
__init__
(
self
,
size
,
padding
=
None
,
pad_if_needed
=
False
,
fill
=
0
,
padding_mode
=
'constant'
,
keys
=
None
):
super
(
RandomCrop
,
self
).
__init__
(
keys
)
if
isinstance
(
size
,
numbers
.
Number
):
self
.
size
=
(
int
(
size
),
int
(
size
))
else
:
self
.
size
=
size
self
.
padding
=
padding
self
.
pad_if_needed
=
pad_if_needed
self
.
fill
=
fill
self
.
padding_mode
=
padding_mode
def
_get_param
s
(
self
,
img
,
output_size
):
def
_get_param
(
self
,
img
,
output_size
):
"""Get parameters for ``crop`` for a random crop.
Args:
img (
numpy.ndarray
): Image to be cropped.
img (
PIL Image
): Image to be cropped.
output_size (tuple): Expected output size of the crop.
Returns:
tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
"""
h
,
w
,
_
=
img
.
shape
w
,
h
=
_get_image_size
(
img
)
th
,
tw
=
output_size
if
w
==
tw
and
h
==
th
:
return
0
,
0
,
h
,
w
try
:
i
=
random
.
randint
(
0
,
h
-
th
)
except
ValueError
:
i
=
random
.
randint
(
h
-
th
,
0
)
try
:
j
=
random
.
randint
(
0
,
w
-
tw
)
except
ValueError
:
j
=
random
.
randint
(
w
-
tw
,
0
)
i
=
random
.
randint
(
0
,
h
-
th
)
j
=
random
.
randint
(
0
,
w
-
tw
)
return
i
,
j
,
th
,
tw
def
_
_call__
(
self
,
img
):
def
_
apply_image
(
self
,
img
):
"""
Args:
img (numpy.ndarray): Image to be cropped.
Returns:
numpy.ndarray: Cropped image.
img (PIL Image): Image to be cropped.
Returns:
PIL Image: Cropped image.
"""
if
self
.
padding
>
0
:
img
=
F
.
pad
(
img
,
self
.
padding
)
if
self
.
padding
is
not
None
:
img
=
F
.
pad
(
img
,
self
.
padding
,
self
.
fill
,
self
.
padding_mode
)
w
,
h
=
_get_image_size
(
img
)
# pad the width if needed
if
self
.
pad_if_needed
and
img
.
shape
[
1
]
<
self
.
size
[
1
]:
img
=
F
.
pad
(
img
,
(
int
((
1
+
self
.
size
[
1
]
-
img
.
shape
[
1
])
/
2
),
0
))
if
self
.
pad_if_needed
and
w
<
self
.
size
[
1
]:
img
=
F
.
pad
(
img
,
(
self
.
size
[
1
]
-
w
,
0
),
self
.
fill
,
self
.
padding_mode
)
# pad the height if needed
if
self
.
pad_if_needed
and
img
.
shape
[
0
]
<
self
.
size
[
0
]:
img
=
F
.
pad
(
img
,
(
0
,
int
((
1
+
self
.
size
[
0
]
-
img
.
shape
[
0
])
/
2
)))
i
,
j
,
h
,
w
=
self
.
_get_params
(
img
,
self
.
size
)
return
img
[
i
:
i
+
h
,
j
:
j
+
w
]
class
RandomErasing
(
object
):
"""Randomly selects a rectangle region in an image and erases its pixels.
``Random Erasing Data Augmentation`` by Zhong et al.
See https://arxiv.org/pdf/1708.04896.pdf
Args:
prob (float): probability that the random erasing operation will be performed.
scale (tuple): range of proportion of erased area against input image. Should be (min, max).
ratio (float): range of aspect ratio of erased area.
value (float|list|tuple): erasing value. If a single int, it is used to
erase all pixels. If a tuple of length 3, it is used to erase
R, G, B channels respectively. Default: 0.
Examples:
.. code-block:: python
import numpy as np
from paddle.vision.transforms import RandomCrop
transform = RandomCrop(224)
fake_img = np.random.rand(500, 500, 3).astype('float32')
fake_img = transform(fake_img)
print(fake_img.shape)
"""
def
__init__
(
self
,
prob
=
0.5
,
scale
=
(
0.02
,
0.4
),
ratio
=
0.3
,
value
=
[
0.
,
0.
,
0.
]):
assert
isinstance
(
value
,
(
float
,
Sequence
)),
"Expected type of value in [float, list, tupue], but got {}"
.
format
(
type
(
value
))
assert
scale
[
0
]
<=
scale
[
1
],
"scale range should be of kind (min, max)!"
if
isinstance
(
value
,
float
):
self
.
value
=
[
value
,
value
,
value
]
else
:
self
.
value
=
value
self
.
p
=
prob
self
.
scale
=
scale
self
.
ratio
=
ratio
def
__call__
(
self
,
img
):
if
random
.
uniform
(
0
,
1
)
>
self
.
p
:
return
img
for
_
in
range
(
100
):
area
=
img
.
shape
[
0
]
*
img
.
shape
[
1
]
target_area
=
random
.
uniform
(
self
.
scale
[
0
],
self
.
scale
[
1
])
*
area
aspect_ratio
=
random
.
uniform
(
self
.
ratio
,
1
/
self
.
ratio
)
h
=
int
(
round
(
math
.
sqrt
(
target_area
*
aspect_ratio
)))
w
=
int
(
round
(
math
.
sqrt
(
target_area
/
aspect_ratio
)))
if
self
.
pad_if_needed
and
h
<
self
.
size
[
0
]:
img
=
F
.
pad
(
img
,
(
0
,
self
.
size
[
0
]
-
h
),
self
.
fill
,
self
.
padding_mode
)
if
w
<
img
.
shape
[
1
]
and
h
<
img
.
shape
[
0
]:
x1
=
random
.
randint
(
0
,
img
.
shape
[
0
]
-
h
)
y1
=
random
.
randint
(
0
,
img
.
shape
[
1
]
-
w
)
i
,
j
,
h
,
w
=
self
.
_get_param
(
img
,
self
.
size
)
if
len
(
img
.
shape
)
==
3
and
img
.
shape
[
2
]
==
3
:
img
[
x1
:
x1
+
h
,
y1
:
y1
+
w
,
0
]
=
self
.
value
[
0
]
img
[
x1
:
x1
+
h
,
y1
:
y1
+
w
,
1
]
=
self
.
value
[
1
]
img
[
x1
:
x1
+
h
,
y1
:
y1
+
w
,
2
]
=
self
.
value
[
2
]
else
:
img
[
x1
:
x1
+
h
,
y1
:
y1
+
w
]
=
self
.
value
[
1
]
return
img
return
img
return
F
.
crop
(
img
,
i
,
j
,
h
,
w
)
class
Pad
(
object
):
class
Pad
(
BaseTransform
):
"""Pads the given CV Image on all sides with the given "pad" value.
Args:
...
...
@@ -1020,64 +1029,73 @@ class Pad(object):
``symmetric`` menas pads with reflection of image (repeating the last value on the edge)
padding ``[1, 2, 3, 4]`` with 2 elements on both sides in symmetric mode
will result in ``[2, 1, 1, 2, 3, 4, 4, 3]``.
keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import Pad
transform = Pad(2)
fake_img =
np.random.rand(500, 500, 3).astype('float32'
)
fake_img =
Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8)
)
fake_img = transform(fake_img)
print(fake_img.s
hap
e)
print(fake_img.s
iz
e)
"""
def
__init__
(
self
,
padding
,
fill
=
0
,
padding_mode
=
'constant'
):
def
__init__
(
self
,
padding
,
fill
=
0
,
padding_mode
=
'constant'
,
keys
=
None
):
assert
isinstance
(
padding
,
(
numbers
.
Number
,
list
,
tuple
))
assert
isinstance
(
fill
,
(
numbers
.
Number
,
str
,
list
,
tuple
))
assert
padding_mode
in
[
'constant'
,
'edge'
,
'reflect'
,
'symmetric'
]
if
isinstance
(
padding
,
collections
.
Sequence
)
and
len
(
padding
)
not
in
[
2
,
4
]:
if
isinstance
(
padding
,
list
):
padding
=
tuple
(
padding
)
if
isinstance
(
fill
,
list
):
fill
=
tuple
(
fill
)
if
isinstance
(
padding
,
Sequence
)
and
len
(
padding
)
not
in
[
2
,
4
]:
raise
ValueError
(
"Padding must be an int or a 2, or 4 element tuple, not a "
+
"{} element tuple"
.
format
(
len
(
padding
)))
super
(
Pad
,
self
).
__init__
(
keys
)
self
.
padding
=
padding
self
.
fill
=
fill
self
.
padding_mode
=
padding_mode
def
_
_call__
(
self
,
img
):
def
_
apply_image
(
self
,
img
):
"""
Args:
img (numpy.ndarray): Image to be padded.
img (PIL Image): Image to be padded.
Returns:
numpy.ndarray
: Padded image.
PIL Image
: Padded image.
"""
return
F
.
pad
(
img
,
self
.
padding
,
self
.
fill
,
self
.
padding_mode
)
class
RandomRotat
e
(
object
):
class
RandomRotat
ion
(
BaseTransform
):
"""Rotates the image by angle.
Args:
degrees (sequence or float or int): Range of degrees to select from.
If degrees is a number instead of sequence like (min, max), the range of degrees
will be (-degrees, +degrees) clockwise order.
interpolation (int, optional): Interpolation mode of resize. Default: 1.
0 : cv2.INTER_NEAREST
1 : cv2.INTER_LINEAR
2 : cv2.INTER_CUBIC
3 : cv2.INTER_AREA
4 : cv2.INTER_LANCZOS4
5 : cv2.INTER_LINEAR_EXACT
7 : cv2.INTER_MAX
8 : cv2.WARP_FILL_OUTLIERS
16: cv2.WARP_INVERSE_MAP
interpolation (int|str, optional): Interpolation method. Default: 'bilinear'.
resample (int|str, optional): An optional resampling filter. If omitted, or if the
image has only one channel, it is set to PIL.Image.NEAREST or cv2.INTER_NEAREST
according the backend. when use pil backend, support method are as following:
- "nearest": Image.NEAREST,
- "bilinear": Image.BILINEAR,
- "bicubic": Image.BICUBIC
when use cv2 backend, support method are as following:
- "nearest": cv2.INTER_NEAREST,
- "bilinear": cv2.INTER_LINEAR,
- "bicubic": cv2.INTER_CUBIC
expand (bool|optional): Optional expansion flag. Default: False.
If true, expands the output to make it large enough to hold the entire rotated image.
If false or omitted, make the output image the same size as the input image.
...
...
@@ -1085,24 +1103,31 @@ class RandomRotate(object):
center (2-tuple|optional): Optional center of rotation.
Origin is the upper left corner.
Default is the center of the image.
keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import RandomRotation
from paddle.vision.transforms import RandomRotate
transform = RandomRotate(90)
transform = RandomRotation(90)
fake_img =
np.random.rand(500, 400, 3).astype('float32'
)
fake_img =
Image.fromarray((np.random.rand(200, 150, 3) * 255.).astype(np.uint8)
)
fake_img = transform(fake_img)
print(fake_img.s
hap
e)
print(fake_img.s
iz
e)
"""
def
__init__
(
self
,
degrees
,
interpolation
=
1
,
expand
=
False
,
center
=
None
):
def
__init__
(
self
,
degrees
,
resample
=
False
,
expand
=
False
,
center
=
None
,
fill
=
0
,
keys
=
None
):
if
isinstance
(
degrees
,
numbers
.
Number
):
if
degrees
<
0
:
raise
ValueError
(
...
...
@@ -1114,37 +1139,39 @@ class RandomRotate(object):
"If degrees is a sequence, it must be of len 2."
)
self
.
degrees
=
degrees
self
.
interpolation
=
interpolation
super
(
RandomRotation
,
self
).
__init__
(
keys
)
self
.
resample
=
resample
self
.
expand
=
expand
self
.
center
=
center
self
.
fill
=
fill
def
_get_params
(
self
,
degrees
):
"""Get parameters for ``rotate`` for a random rotation.
Returns:
sequence: params to be passed to ``rotate`` for random rotation.
"""
def
_get_param
(
self
,
degrees
):
angle
=
random
.
uniform
(
degrees
[
0
],
degrees
[
1
])
return
angle
def
_
_call__
(
self
,
img
):
def
_
apply_image
(
self
,
img
):
"""
img (np.ndarray): Image to be rotated.
Args:
img (PIL.Image|np.array): Image to be rotated.
Returns:
np.nd
array: Rotated image.
PIL.Image or np.
array: Rotated image.
"""
angle
=
self
.
_get_param
s
(
self
.
degrees
)
angle
=
self
.
_get_param
(
self
.
degrees
)
return
F
.
rotate
(
img
,
angle
,
self
.
interpolation
,
self
.
expand
,
self
.
center
)
return
F
.
rotate
(
img
,
angle
,
self
.
resample
,
self
.
expand
,
self
.
center
,
self
.
fill
)
class
Grayscale
(
object
):
class
Grayscale
(
BaseTransform
):
"""Converts image to grayscale.
Args:
output_channels (int): (1 or 3) number of channels desired for output image
num_output_channels (int): (1 or 3) number of channels desired for output image
keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
Returns:
CV Image: Grayscale version of the input.
- If output_channels == 1 : returned image is single channel
...
...
@@ -1155,25 +1182,27 @@ class Grayscale(object):
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import Grayscale
transform = Grayscale()
fake_img =
np.random.rand(500, 400, 3).astype('float32'
)
fake_img =
Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8)
)
fake_img = transform(fake_img)
print(
fake_img
.shape)
print(
np.array(fake_img)
.shape)
"""
def
__init__
(
self
,
output_channels
=
1
):
self
.
output_channels
=
output_channels
def
__init__
(
self
,
num_output_channels
=
1
,
keys
=
None
):
super
(
Grayscale
,
self
).
__init__
(
keys
)
self
.
num_output_channels
=
num_output_channels
def
_
_call__
(
self
,
img
):
def
_
apply_image
(
self
,
img
):
"""
Args:
img (numpy.ndarray): Image to be converted to grayscale.
img (PIL Image): Image to be converted to grayscale.
Returns:
numpy.ndarray
: Randomly grayscaled image.
PIL Image
: Randomly grayscaled image.
"""
return
F
.
to_grayscale
(
img
,
num_output_channels
=
self
.
output_channels
)
return
F
.
to_grayscale
(
img
,
self
.
num_
output_channels
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录