未验证 提交 172e76a8 编写于 作者: L LielinJiang 提交者: GitHub

transform add pil backend (#28132)

上级 f63f8d73
......@@ -105,7 +105,7 @@ class TestCallbacks(unittest.TestCase):
self.run_callback()
def test_visualdl_callback(self):
# visualdl not support python3
# visualdl not support python2
if sys.version_info < (3, ):
return
......
......@@ -18,14 +18,19 @@ import tempfile
import cv2
import shutil
import numpy as np
from PIL import Image
import paddle
from paddle.vision import get_image_backend, set_image_backend, image_load
from paddle.vision.datasets import DatasetFolder
from paddle.vision.transforms import transforms
import paddle.vision.transforms.functional as F
class TestTransforms(unittest.TestCase):
class TestTransformsCV2(unittest.TestCase):
def setUp(self):
self.backend = self.get_backend()
set_image_backend(self.backend)
self.data_dir = tempfile.mkdtemp()
for i in range(2):
sub_dir = os.path.join(self.data_dir, 'class_' + str(i))
......@@ -40,6 +45,22 @@ class TestTransforms(unittest.TestCase):
(400, 300, 3)) * 255).astype('uint8')
cv2.imwrite(os.path.join(sub_dir, str(j) + '.jpg'), fake_img)
def get_backend(self):
return 'cv2'
def create_image(self, shape):
if self.backend == 'cv2':
return (np.random.rand(*shape) * 255).astype('uint8')
elif self.backend == 'pil':
return Image.fromarray((np.random.rand(*shape) * 255).astype(
'uint8'))
def get_shape(self, img):
if self.backend == 'pil':
return np.array(img).shape
return img.shape
def tearDown(self):
shutil.rmtree(self.data_dir)
......@@ -51,27 +72,29 @@ class TestTransforms(unittest.TestCase):
def test_trans_all(self):
normalize = transforms.Normalize(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.120, 57.375])
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.120, 57.375], )
trans = transforms.Compose([
transforms.RandomResizedCrop(224), transforms.GaussianNoise(),
transforms.RandomResizedCrop(224),
transforms.ColorJitter(
brightness=0.4, contrast=0.4, saturation=0.4,
hue=0.4), transforms.RandomHorizontalFlip(),
transforms.Permute(mode='CHW'), normalize
brightness=0.4, contrast=0.4, saturation=0.4, hue=0.4),
transforms.RandomHorizontalFlip(),
transforms.Transpose(),
normalize,
])
self.do_transform(trans)
def test_normalize(self):
normalize = transforms.Normalize(mean=0.5, std=0.5)
trans = transforms.Compose([transforms.Permute(mode='CHW'), normalize])
trans = transforms.Compose([transforms.Transpose(), normalize])
self.do_transform(trans)
def test_trans_resize(self):
trans = transforms.Compose([
transforms.Resize(300, [0, 1]),
transforms.Resize(300),
transforms.RandomResizedCrop((280, 280)),
transforms.Resize(280, [0, 1]),
transforms.Resize(280),
transforms.Resize((256, 200)),
transforms.Resize((180, 160)),
transforms.CenterCrop(128),
......@@ -79,13 +102,6 @@ class TestTransforms(unittest.TestCase):
])
self.do_transform(trans)
def test_trans_centerCrop(self):
trans = transforms.Compose([
transforms.CenterCropResize(224),
transforms.CenterCropResize(128, 160),
])
self.do_transform(trans)
def test_flip(self):
trans = transforms.Compose([
transforms.RandomHorizontalFlip(1.0),
......@@ -96,7 +112,7 @@ class TestTransforms(unittest.TestCase):
self.do_transform(trans)
def test_color_jitter(self):
trans = transforms.BatchCompose([
trans = transforms.Compose([
transforms.BrightnessTransform(0.0),
transforms.HueTransform(0.0),
transforms.SaturationTransform(0.0),
......@@ -106,11 +122,11 @@ class TestTransforms(unittest.TestCase):
def test_rotate(self):
trans = transforms.Compose([
transforms.RandomRotate(90),
transforms.RandomRotate([-10, 10]),
transforms.RandomRotate(
transforms.RandomRotation(90),
transforms.RandomRotation([-10, 10]),
transforms.RandomRotation(
45, expand=True),
transforms.RandomRotate(
transforms.RandomRotation(
10, expand=True, center=(60, 80)),
])
self.do_transform(trans)
......@@ -119,20 +135,15 @@ class TestTransforms(unittest.TestCase):
trans = transforms.Compose([transforms.Pad(2)])
self.do_transform(trans)
fake_img = np.random.rand(200, 150, 3).astype('float32')
fake_img = self.create_image((200, 150, 3))
trans_pad = transforms.Pad(10)
fake_img_padded = trans_pad(fake_img)
np.testing.assert_equal(fake_img_padded.shape, (220, 170, 3))
np.testing.assert_equal(self.get_shape(fake_img_padded), (220, 170, 3))
trans_pad1 = transforms.Pad([1, 2])
trans_pad2 = transforms.Pad([1, 2, 3, 4])
img = trans_pad1(fake_img)
img = trans_pad2(img)
def test_erase(self):
trans = transforms.Compose(
[transforms.RandomErasing(), transforms.RandomErasing(value=0.0)])
self.do_transform(trans)
def test_random_crop(self):
trans = transforms.Compose([
transforms.RandomCrop(200),
......@@ -143,18 +154,19 @@ class TestTransforms(unittest.TestCase):
trans_random_crop1 = transforms.RandomCrop(224)
trans_random_crop2 = transforms.RandomCrop((140, 160))
fake_img = np.random.rand(500, 400, 3).astype('float32')
fake_img = self.create_image((500, 400, 3))
fake_img_crop1 = trans_random_crop1(fake_img)
fake_img_crop2 = trans_random_crop2(fake_img_crop1)
np.testing.assert_equal(fake_img_crop1.shape, (224, 224, 3))
np.testing.assert_equal(self.get_shape(fake_img_crop1), (224, 224, 3))
np.testing.assert_equal(fake_img_crop2.shape, (140, 160, 3))
np.testing.assert_equal(self.get_shape(fake_img_crop2), (140, 160, 3))
trans_random_crop_same = transforms.RandomCrop((140, 160))
img = trans_random_crop_same(fake_img_crop2)
trans_random_crop_bigger = transforms.RandomCrop((180, 200))
trans_random_crop_bigger = transforms.RandomCrop(
(180, 200), pad_if_needed=True)
img = trans_random_crop_bigger(img)
trans_random_crop_pad = transforms.RandomCrop((224, 256), 2, True)
......@@ -165,21 +177,38 @@ class TestTransforms(unittest.TestCase):
self.do_transform(trans)
trans_gray = transforms.Grayscale()
fake_img = np.random.rand(500, 400, 3).astype('float32')
fake_img = self.create_image((500, 400, 3))
fake_img_gray = trans_gray(fake_img)
np.testing.assert_equal(len(fake_img_gray.shape), 3)
np.testing.assert_equal(fake_img_gray.shape[0], 500)
np.testing.assert_equal(fake_img_gray.shape[1], 400)
np.testing.assert_equal(self.get_shape(fake_img_gray)[0], 500)
np.testing.assert_equal(self.get_shape(fake_img_gray)[1], 400)
trans_gray3 = transforms.Grayscale(3)
fake_img = np.random.rand(500, 400, 3).astype('float32')
fake_img = self.create_image((500, 400, 3))
fake_img_gray = trans_gray3(fake_img)
def test_tranpose(self):
trans = transforms.Compose([transforms.Transpose()])
self.do_transform(trans)
fake_img = self.create_image((50, 100, 3))
converted_img = trans(fake_img)
np.testing.assert_equal(self.get_shape(converted_img), (3, 50, 100))
def test_to_tensor(self):
trans = transforms.Compose([transforms.ToTensor()])
fake_img = self.create_image((50, 100, 3))
tensor = trans(fake_img)
assert isinstance(tensor, paddle.Tensor)
np.testing.assert_equal(tensor.shape, (3, 50, 100))
def test_exception(self):
trans = transforms.Compose([transforms.Resize(-1)])
trans_batch = transforms.BatchCompose([transforms.Resize(-1)])
trans_batch = transforms.Compose([transforms.Resize(-1)])
with self.assertRaises(Exception):
self.do_transform(trans)
......@@ -203,35 +232,211 @@ class TestTransforms(unittest.TestCase):
transforms.Pad([1.0, 2.0, 3.0])
with self.assertRaises(TypeError):
fake_img = np.random.rand(100, 120, 3).astype('float32')
fake_img = self.create_image((100, 120, 3))
F.pad(fake_img, '1')
with self.assertRaises(TypeError):
fake_img = np.random.rand(100, 120, 3).astype('float32')
fake_img = self.create_image((100, 120, 3))
F.pad(fake_img, 1, {})
with self.assertRaises(TypeError):
fake_img = np.random.rand(100, 120, 3).astype('float32')
fake_img = self.create_image((100, 120, 3))
F.pad(fake_img, 1, padding_mode=-1)
with self.assertRaises(ValueError):
fake_img = np.random.rand(100, 120, 3).astype('float32')
fake_img = self.create_image((100, 120, 3))
F.pad(fake_img, [1.0, 2.0, 3.0])
with self.assertRaises(ValueError):
transforms.RandomRotate(-2)
transforms.RandomRotation(-2)
with self.assertRaises(ValueError):
transforms.RandomRotate([1, 2, 3])
transforms.RandomRotation([1, 2, 3])
with self.assertRaises(ValueError):
trans_gray = transforms.Grayscale(5)
fake_img = np.random.rand(100, 120, 3).astype('float32')
fake_img = self.create_image((100, 120, 3))
trans_gray(fake_img)
with self.assertRaises(TypeError):
transform = transforms.RandomResizedCrop(64)
transform(1)
with self.assertRaises(ValueError):
transform = transforms.BrightnessTransform([-0.1, -0.2])
with self.assertRaises(TypeError):
transform = transforms.BrightnessTransform('0.1')
with self.assertRaises(ValueError):
transform = transforms.BrightnessTransform('0.1', keys=1)
with self.assertRaises(NotImplementedError):
transform = transforms.BrightnessTransform('0.1', keys='a')
def test_info(self):
str(transforms.Compose([transforms.Resize((224, 224))]))
str(transforms.BatchCompose([transforms.Resize((224, 224))]))
str(transforms.Compose([transforms.Resize((224, 224))]))
class TestTransformsPIL(TestTransformsCV2):
def get_backend(self):
return 'pil'
class TestFunctional(unittest.TestCase):
def test_errors(self):
with self.assertRaises(TypeError):
F.to_tensor(1)
with self.assertRaises(ValueError):
fake_img = Image.fromarray((np.random.rand(28, 28, 3) * 255).astype(
'uint8'))
F.to_tensor(fake_img, data_format=1)
with self.assertRaises(TypeError):
fake_img = Image.fromarray((np.random.rand(28, 28, 3) * 255).astype(
'uint8'))
F.resize(fake_img, '1')
with self.assertRaises(TypeError):
F.resize(1, 1)
with self.assertRaises(TypeError):
F.pad(1, 1)
with self.assertRaises(TypeError):
F.crop(1, 1, 1, 1, 1)
with self.assertRaises(TypeError):
F.hflip(1)
with self.assertRaises(TypeError):
F.vflip(1)
with self.assertRaises(TypeError):
F.adjust_brightness(1, 0.1)
with self.assertRaises(TypeError):
F.adjust_contrast(1, 0.1)
with self.assertRaises(TypeError):
F.adjust_hue(1, 0.1)
with self.assertRaises(TypeError):
F.adjust_saturation(1, 0.1)
with self.assertRaises(TypeError):
F.rotate(1, 0.1)
with self.assertRaises(TypeError):
F.to_grayscale(1)
with self.assertRaises(ValueError):
set_image_backend(1)
with self.assertRaises(ValueError):
image_load('tmp.jpg', backend=1)
def test_normalize(self):
np_img = (np.random.rand(28, 24, 3)).astype('uint8')
pil_img = Image.fromarray(np_img)
tensor_img = F.to_tensor(pil_img)
tensor_img_hwc = F.to_tensor(pil_img, data_format='HWC')
mean = [0.5, 0.5, 0.5]
std = [0.5, 0.5, 0.5]
normalized_img = F.normalize(tensor_img, mean, std)
normalized_img = F.normalize(
tensor_img_hwc, mean, std, data_format='HWC')
normalized_img = F.normalize(pil_img, mean, std, data_format='HWC')
normalized_img = F.normalize(
np_img, mean, std, data_format='HWC', to_rgb=True)
def test_center_crop(self):
np_img = (np.random.rand(28, 24, 3)).astype('uint8')
pil_img = Image.fromarray(np_img)
np_cropped_img = F.center_crop(np_img, 4)
pil_cropped_img = F.center_crop(pil_img, 4)
np.testing.assert_almost_equal(np_cropped_img,
np.array(pil_cropped_img))
def test_pad(self):
np_img = (np.random.rand(28, 24, 3)).astype('uint8')
pil_img = Image.fromarray(np_img)
np_padded_img = F.pad(np_img, [1, 2], padding_mode='reflect')
pil_padded_img = F.pad(pil_img, [1, 2], padding_mode='reflect')
np.testing.assert_almost_equal(np_padded_img, np.array(pil_padded_img))
pil_p_img = pil_img.convert('P')
pil_padded_img = F.pad(pil_p_img, [1, 2])
pil_padded_img = F.pad(pil_p_img, [1, 2], padding_mode='reflect')
def test_resize(self):
np_img = (np.zeros([28, 24, 3])).astype('uint8')
pil_img = Image.fromarray(np_img)
np_reseized_img = F.resize(np_img, 40)
pil_reseized_img = F.resize(pil_img, 40)
np.testing.assert_almost_equal(np_reseized_img,
np.array(pil_reseized_img))
gray_img = (np.zeros([28, 32])).astype('uint8')
gray_resize_img = F.resize(gray_img, 40)
def test_to_tensor(self):
np_img = (np.random.rand(28, 28) * 255).astype('uint8')
pil_img = Image.fromarray(np_img)
np_tensor = F.to_tensor(np_img, data_format='HWC')
pil_tensor = F.to_tensor(pil_img, data_format='HWC')
np.testing.assert_allclose(np_tensor.numpy(), pil_tensor.numpy())
# test float dtype
float_img = np.random.rand(28, 28)
float_tensor = F.to_tensor(float_img)
pil_img = Image.fromarray(np_img).convert('I')
pil_tensor = F.to_tensor(pil_img)
pil_img = Image.fromarray(np_img).convert('I;16')
pil_tensor = F.to_tensor(pil_img)
pil_img = Image.fromarray(np_img).convert('F')
pil_tensor = F.to_tensor(pil_img)
pil_img = Image.fromarray(np_img).convert('1')
pil_tensor = F.to_tensor(pil_img)
pil_img = Image.fromarray(np_img).convert('YCbCr')
pil_tensor = F.to_tensor(pil_img)
def test_image_load(self):
fake_img = Image.fromarray((np.random.random((32, 32, 3)) * 255).astype(
'uint8'))
path = 'temp.jpg'
fake_img.save(path)
set_image_backend('pil')
pil_img = image_load(path).convert('RGB')
print(type(pil_img))
set_image_backend('cv2')
np_img = image_load(path)
os.remove(path)
if __name__ == '__main__':
......
......@@ -21,6 +21,10 @@ from .transforms import *
from . import datasets
from .datasets import *
from . import image
from .image import *
__all__ = models.__all__ \
+ transforms.__all__ \
+ datasets.__all__
+ datasets.__all__ \
+ image.__all__
......@@ -14,6 +14,7 @@
import os
import sys
from PIL import Image
import paddle
from paddle.io import Dataset
......@@ -136,7 +137,7 @@ class DatasetFolder(Dataset):
"Found 0 files in subfolders of: " + self.root + "\n"
"Supported extensions are: " + ",".join(extensions)))
self.loader = cv2_loader if loader is None else loader
self.loader = default_loader if loader is None else loader
self.extensions = extensions
self.classes = classes
......@@ -193,9 +194,23 @@ IMG_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif',
'.tiff', '.webp')
def pil_loader(path):
with open(path, 'rb') as f:
img = Image.open(f)
return img.convert('RGB')
def cv2_loader(path):
cv2 = try_import('cv2')
return cv2.imread(path)
return cv2.cvtColor(cv2.imread(path), cv2.COLOR_BGR2RGB)
def default_loader(path):
from paddle.vision import get_image_backend
if get_image_backend() == 'cv2':
return cv2_loader(path)
else:
return pil_loader(path)
class ImageFolder(Dataset):
......@@ -280,7 +295,7 @@ class ImageFolder(Dataset):
"Found 0 files in subfolders of: " + self.root + "\n"
"Supported extensions are: " + ",".join(extensions)))
self.loader = cv2_loader if loader is None else loader
self.loader = default_loader if loader is None else loader
self.extensions = extensions
self.samples = samples
self.transform = transform
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from PIL import Image
from paddle.utils import try_import
__all__ = ['set_image_backend', 'get_image_backend', 'image_load']
_image_backend = 'pil'
def set_image_backend(backend):
"""
Specifies the backend used to load images in class ``paddle.vision.datasets.ImageFolder``
and ``paddle.vision.datasets.DatasetFolder`` . Now support backends are pillow and opencv.
If backend not set, will use 'pil' as default.
Args:
backend (str): Name of the image load backend, should be one of {'pil', 'cv2'}.
Examples:
.. code-block:: python
import os
import shutil
import tempfile
import numpy as np
from PIL import Image
from paddle.vision import DatasetFolder
from paddle.vision import set_image_backend
set_image_backend('pil')
def make_fake_dir():
data_dir = tempfile.mkdtemp()
for i in range(2):
sub_dir = os.path.join(data_dir, 'class_' + str(i))
if not os.path.exists(sub_dir):
os.makedirs(sub_dir)
for j in range(2):
fake_img = Image.fromarray((np.random.random((32, 32, 3)) * 255).astype('uint8'))
fake_img.save(os.path.join(sub_dir, str(j) + '.png'))
return data_dir
temp_dir = make_fake_dir()
pil_data_folder = DatasetFolder(temp_dir)
for items in pil_data_folder:
break
# should get PIL.Image.Image
print(type(items[0]))
# use opencv as backend
# set_image_backend('cv2')
# cv2_data_folder = DatasetFolder(temp_dir)
# for items in cv2_data_folder:
# break
# should get numpy.ndarray
# print(type(items[0]))
shutil.rmtree(temp_dir)
"""
global _image_backend
if backend not in ['pil', 'cv2']:
raise ValueError(
"Expected backend are one of ['pil', 'cv2'], but got {}"
.format(backend))
_image_backend = backend
def get_image_backend():
"""
Gets the name of the package used to load images
Returns:
str: backend of image load.
Examples:
.. code-block:: python
from paddle.vision import get_image_backend
backend = get_image_backend()
print(backend)
"""
return _image_backend
def image_load(path, backend=None):
"""Load an image.
Args:
path (str): Path of the image.
backend (str, optional): The image decoding backend type. Options are
`cv2`, `pil`, `None`. If backend is None, the global _imread_backend
specified by ``paddle.vision.set_image_backend`` will be used. Default: None.
Returns:
PIL.Image or np.array: Loaded image.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision import image_load, set_image_backend
fake_img = Image.fromarray((np.random.random((32, 32, 3)) * 255).astype('uint8'))
path = 'temp.png'
fake_img.save(path)
set_image_backend('pil')
pil_img = image_load(path).convert('RGB')
# should be PIL.Image.Image
print(type(pil_img))
# use opencv as backend
# set_image_backend('cv2')
# np_img = image_load(path)
# # should get numpy.ndarray
# print(type(np_img))
"""
if backend is None:
backend = _image_backend
if backend not in ['pil', 'cv2']:
raise ValueError(
"Expected backend are one of ['pil', 'cv2'], but got {}"
.format(backend))
if backend == 'pil':
return Image.open(path)
else:
cv2 = try_import('cv2')
return cv2.imread(path)
......@@ -12,16 +12,18 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import division
import sys
import collections
import random
import math
import functools
import numbers
import numpy as np
import warnings
import collections
from paddle.utils import try_import
import numpy as np
from PIL import Image
from numpy import sin, cos, tan
import paddle
if sys.version_info < (3, 3):
Sequence = collections.Sequence
......@@ -30,314 +32,623 @@ else:
Sequence = collections.abc.Sequence
Iterable = collections.abc.Iterable
__all__ = ['flip', 'resize', 'pad', 'rotate', 'to_grayscale']
from . import functional_pil as F_pil
from . import functional_cv2 as F_cv2
from . import functional_tensor as F_t
__all__ = [
'to_tensor', 'hflip', 'vflip', 'resize', 'pad', 'rotate', 'to_grayscale',
'crop', 'center_crop', 'adjust_brightness', 'adjust_contrast', 'adjust_hue',
'to_grayscale', 'normalize'
]
def keepdims(func):
"""Keep the dimension of input images unchanged"""
@functools.wraps(func)
def wrapper(image, *args, **kwargs):
if len(image.shape) != 3:
raise ValueError("Expect image have 3 dims, but got {} dims".format(
len(image.shape)))
ret = func(image, *args, **kwargs)
if len(ret.shape) == 2:
ret = ret[:, :, np.newaxis]
return ret
def _is_pil_image(img):
return isinstance(img, Image.Image)
return wrapper
def _is_tensor_image(img):
return isinstance(img, paddle.Tensor)
@keepdims
def flip(image, code):
"""
Accordding to the code (the type of flip), flip the input image
def _is_numpy_image(img):
return isinstance(img, np.ndarray) and (img.ndim in {2, 3})
def to_tensor(pic, data_format='CHW'):
"""Converts a ``PIL.Image`` or ``numpy.ndarray`` to paddle.Tensor.
See ``ToTensor`` for more details.
Args:
image (np.ndarray): Input image, with (H, W, C) shape
code (int): Code that indicates the type of flip.
-1 : Flip horizontally and vertically
0 : Flip vertically
1 : Flip horizontally
pic (PIL.Image|np.ndarray): Image to be converted to tensor.
data_format (str, optional): Data format of input img, should be 'HWC' or
'CHW'. Default: 'CHW'.
Returns:
Tensor: Converted image. Data format is same as input img.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import functional as F
fake_img = np.random.rand(224, 224, 3)
fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')
# flip horizontally and vertically
F.flip(fake_img, -1)
fake_img = Image.fromarray(fake_img)
# flip vertically
F.flip(fake_img, 0)
tensor = F.to_tensor(fake_img)
print(tensor.shape)
# flip horizontally
F.flip(fake_img, 1)
"""
cv2 = try_import('cv2')
return cv2.flip(image, flipCode=code)
if not (_is_pil_image(pic) or _is_numpy_image(pic)):
raise TypeError('pic should be PIL Image or ndarray. Got {}'.format(
type(pic)))
if _is_pil_image(pic):
return F_pil.to_tensor(pic, data_format)
else:
return F_cv2.to_tensor(pic, data_format)
@keepdims
def resize(img, size, interpolation=1):
def resize(img, size, interpolation='bilinear'):
"""
resize the input data to given size
Resizes the image to given size
Args:
input (np.ndarray): Input data, could be image or masks, with (H, W, C) shape
input (PIL.Image|np.ndarray): Image to be resized.
size (int|list|tuple): Target size of input data, with (height, width) shape.
interpolation (int, optional): Interpolation method.
0 : cv2.INTER_NEAREST
1 : cv2.INTER_LINEAR
2 : cv2.INTER_CUBIC
3 : cv2.INTER_AREA
4 : cv2.INTER_LANCZOS4
5 : cv2.INTER_LINEAR_EXACT
7 : cv2.INTER_MAX
8 : cv2.WARP_FILL_OUTLIERS
16: cv2.WARP_INVERSE_MAP
interpolation (int|str, optional): Interpolation method. when use pil backend,
support method are as following:
- "nearest": Image.NEAREST,
- "bilinear": Image.BILINEAR,
- "bicubic": Image.BICUBIC,
- "box": Image.BOX,
- "lanczos": Image.LANCZOS,
- "hamming": Image.HAMMING
when use cv2 backend, support method are as following:
- "nearest": cv2.INTER_NEAREST,
- "bilinear": cv2.INTER_LINEAR,
- "area": cv2.INTER_AREA,
- "bicubic": cv2.INTER_CUBIC,
- "lanczos": cv2.INTER_LANCZOS4
Returns:
PIL.Image or np.array: Resized image.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import functional as F
fake_img = np.random.rand(256, 256, 3)
fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')
F.resize(fake_img, 224)
fake_img = Image.fromarray(fake_img)
F.resize(fake_img, (200, 150))
converted_img = F.resize(fake_img, 224)
print(converted_img.size)
converted_img = F.resize(fake_img, (200, 150))
print(converted_img.size)
"""
cv2 = try_import('cv2')
if isinstance(interpolation, Sequence):
interpolation = random.choice(interpolation)
if isinstance(size, int):
h, w = img.shape[:2]
if (w <= h and w == size) or (h <= w and h == size):
return img
if w < h:
ow = size
oh = int(size * h / w)
return cv2.resize(img, (ow, oh), interpolation=interpolation)
else:
oh = size
ow = int(size * w / h)
return cv2.resize(img, (ow, oh), interpolation=interpolation)
if not (_is_pil_image(img) or _is_numpy_image(img)):
raise TypeError(
'img should be PIL Image or ndarray with dim=[2 or 3]. Got {}'.
format(type(img)))
if _is_pil_image(img):
return F_pil.resize(img, size, interpolation)
else:
return cv2.resize(img, size[::-1], interpolation=interpolation)
return F_cv2.resize(img, size, interpolation)
@keepdims
def pad(img, padding, fill=(0, 0, 0), padding_mode='constant'):
"""Pads the given CV Image on all sides with speficified padding mode and fill value.
def pad(img, padding, fill=0, padding_mode='constant'):
"""
Pads the given PIL.Image or numpy.array on all sides with specified padding mode and fill value.
Args:
img (np.ndarray): Image to be padded.
padding (int|tuple): Padding on each border. If a single int is provided this
img (PIL.Image|np.array): Image to be padded.
padding (int|list|tuple): Padding on each border. If a single int is provided this
is used to pad all borders. If tuple of length 2 is provided this is the padding
on left/right and top/bottom respectively. If a tuple of length 4 is provided
this is the padding for the left, top, right and bottom borders
respectively.
fill (int|tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
fill (float, optional): Pixel fill value for constant fill. If a tuple of
length 3, it is used to fill R, G, B channels respectively.
This value is only used when the padding_mode is constant
padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
``constant`` means padding with a constant value, this value is specified with fill.
``edge`` means padding with the last value at the edge of the image.
``reflect`` means padding with reflection of image (without repeating the last value on the edge)
padding ``[1, 2, 3, 4]`` with 2 elements on both sides in reflect mode
will result in ``[3, 2, 1, 2, 3, 4, 3, 2]``.
``symmetric`` menas pads with reflection of image (repeating the last value on the edge)
padding ``[1, 2, 3, 4]`` with 2 elements on both sides in symmetric mode
will result in ``[2, 1, 1, 2, 3, 4, 4, 3]``.
This value is only used when the padding_mode is constant. Default: 0.
padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default: 'constant'.
- constant: pads with a constant value, this value is specified with fill
- edge: pads with the last value on the edge of the image
- reflect: pads with reflection of image (without repeating the last value on the edge)
padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
will result in [3, 2, 1, 2, 3, 4, 3, 2]
- symmetric: pads with reflection of image (repeating the last value on the edge)
padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
will result in [2, 1, 1, 2, 3, 4, 4, 3]
Returns:
numpy ndarray: Padded image.
PIL.Image or np.array: Padded image.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import functional as F
fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')
fake_img = Image.fromarray(fake_img)
padded_img = F.pad(fake_img, padding=1)
print(padded_img.size)
padded_img = F.pad(fake_img, padding=(2, 1))
print(padded_img.size)
"""
if not (_is_pil_image(img) or _is_numpy_image(img)):
raise TypeError(
'img should be PIL Image or ndarray with dim=[2 or 3]. Got {}'.
format(type(img)))
if _is_pil_image(img):
return F_pil.pad(img, padding, fill, padding_mode)
else:
return F_cv2.pad(img, padding, fill, padding_mode)
def crop(img, top, left, height, width):
"""Crops the given Image.
Args:
img (PIL.Image|np.array): Image to be cropped. (0,0) denotes the top left
corner of the image.
top (int): Vertical component of the top left corner of the crop box.
left (int): Horizontal component of the top left corner of the crop box.
height (int): Height of the crop box.
width (int): Width of the crop box.
Returns:
PIL.Image or np.array: Cropped image.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import functional as F
from paddle.vision.transforms.functional import pad
fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')
fake_img = np.random.rand(500, 500, 3).astype('float32')
fake_img = Image.fromarray(fake_img)
fake_img = pad(fake_img, 2)
print(fake_img.shape)
cropped_img = F.crop(fake_img, 56, 150, 200, 100)
print(cropped_img.size)
"""
if not (_is_pil_image(img) or _is_numpy_image(img)):
raise TypeError(
'img should be PIL Image or ndarray with dim=[2 or 3]. Got {}'.
format(type(img)))
if _is_pil_image(img):
return F_pil.crop(img, top, left, height, width)
else:
return F_cv2.crop(img, top, left, height, width)
def center_crop(img, output_size):
"""Crops the given Image and resize it to desired size.
Args:
img (PIL.Image|np.array): Image to be cropped. (0,0) denotes the top left corner of the image.
output_size (sequence or int): (height, width) of the crop box. If int,
it is used for both directions
Returns:
PIL.Image or np.array: Cropped image.
if not isinstance(padding, (numbers.Number, list, tuple)):
raise TypeError('Got inappropriate padding arg')
if not isinstance(fill, (numbers.Number, str, list, tuple)):
raise TypeError('Got inappropriate fill arg')
if not isinstance(padding_mode, str):
raise TypeError('Got inappropriate padding_mode arg')
if isinstance(padding, collections.Sequence) and len(padding) not in [2, 4]:
raise ValueError(
"Padding must be an int or a 2, or 4 element tuple, not a " +
"{} element tuple".format(len(padding)))
assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric'], \
'Expected padding mode be either constant, edge, reflect or symmetric, but got {}'.format(padding_mode)
cv2 = try_import('cv2')
PAD_MOD = {
'constant': cv2.BORDER_CONSTANT,
'edge': cv2.BORDER_REPLICATE,
'reflect': cv2.BORDER_DEFAULT,
'symmetric': cv2.BORDER_REFLECT
}
if isinstance(padding, int):
pad_left = pad_right = pad_top = pad_bottom = padding
if isinstance(padding, collections.Sequence) and len(padding) == 2:
pad_left = pad_right = padding[0]
pad_top = pad_bottom = padding[1]
if isinstance(padding, collections.Sequence) and len(padding) == 4:
pad_left, pad_top, pad_right, pad_bottom = padding
if isinstance(fill, numbers.Number):
fill = (fill, ) * (2 * len(img.shape) - 3)
if padding_mode == 'constant':
assert (len(fill) == 3 and len(img.shape) == 3) or (len(fill) == 1 and len(img.shape) == 2), \
'channel of image is {} but length of fill is {}'.format(img.shape[-1], len(fill))
img = cv2.copyMakeBorder(
src=img,
top=pad_top,
bottom=pad_bottom,
left=pad_left,
right=pad_right,
borderType=PAD_MOD[padding_mode],
value=fill)
return img
@keepdims
def rotate(img, angle, interpolation=1, expand=False, center=None):
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import functional as F
fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')
fake_img = Image.fromarray(fake_img)
cropped_img = F.center_crop(fake_img, (150, 100))
print(cropped_img.size)
"""
if not (_is_pil_image(img) or _is_numpy_image(img)):
raise TypeError(
'img should be PIL Image or ndarray with dim=[2 or 3]. Got {}'.
format(type(img)))
if _is_pil_image(img):
return F_pil.center_crop(img, output_size)
else:
return F_cv2.center_crop(img, output_size)
def hflip(img, backend='pil'):
"""Horizontally flips the given Image or np.array.
Args:
img (PIL.Image|np.array): Image to be flipped.
backend (str, optional): The image proccess backend type. Options are `pil`,
`cv2`. Default: 'pil'.
Returns:
PIL.Image or np.array: Horizontall flipped image.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import functional as F
fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')
fake_img = Image.fromarray(fake_img)
flpped_img = F.hflip(fake_img)
print(flpped_img.size)
"""
if not (_is_pil_image(img) or _is_numpy_image(img)):
raise TypeError(
'img should be PIL Image or ndarray with dim=[2 or 3]. Got {}'.
format(type(img)))
if _is_pil_image(img):
return F_pil.hflip(img)
else:
return F_cv2.hflip(img)
def vflip(img):
"""Vertically flips the given Image or np.array.
Args:
img (PIL.Image|np.array): Image to be flipped.
Returns:
PIL.Image or np.array: Vertically flipped image.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import functional as F
fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')
fake_img = Image.fromarray(fake_img)
flpped_img = F.vflip(fake_img)
print(flpped_img.size)
"""
if not (_is_pil_image(img) or _is_numpy_image(img)):
raise TypeError(
'img should be PIL Image or ndarray with dim=[2 or 3]. Got {}'.
format(type(img)))
if _is_pil_image(img):
return F_pil.vflip(img)
else:
return F_cv2.vflip(img)
def adjust_brightness(img, brightness_factor):
"""Adjusts brightness of an Image.
Args:
img (PIL.Image|np.array): Image to be adjusted.
brightness_factor (float): How much to adjust the brightness. Can be
any non negative number. 0 gives a black image, 1 gives the
original image while 2 increases the brightness by a factor of 2.
Returns:
PIL.Image or np.array: Brightness adjusted image.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import functional as F
fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')
fake_img = Image.fromarray(fake_img)
converted_img = F.adjust_brightness(fake_img, 0.4)
print(converted_img.size)
"""
if not (_is_pil_image(img) or _is_numpy_image(img)):
raise TypeError(
'img should be PIL Image or ndarray with dim=[2 or 3]. Got {}'.
format(type(img)))
if _is_pil_image(img):
return F_pil.adjust_brightness(img, brightness_factor)
else:
return F_cv2.adjust_brightness(img, brightness_factor)
def adjust_contrast(img, contrast_factor):
"""Adjusts contrast of an Image.
Args:
img (PIL.Image|np.array): Image to be adjusted.
contrast_factor (float): How much to adjust the contrast. Can be any
non negative number. 0 gives a solid gray image, 1 gives the
original image while 2 increases the contrast by a factor of 2.
Returns:
PIL.Image or np.array: Contrast adjusted image.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import functional as F
fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')
fake_img = Image.fromarray(fake_img)
converted_img = F.adjust_contrast(fake_img, 0.4)
print(converted_img.size)
"""
if not (_is_pil_image(img) or _is_numpy_image(img)):
raise TypeError(
'img should be PIL Image or ndarray with dim=[2 or 3]. Got {}'.
format(type(img)))
if _is_pil_image(img):
return F_pil.adjust_contrast(img, contrast_factor)
else:
return F_cv2.adjust_contrast(img, contrast_factor)
def adjust_saturation(img, saturation_factor):
"""Adjusts color saturation of an image.
Args:
img (PIL.Image|np.array): Image to be adjusted.
saturation_factor (float): How much to adjust the saturation. 0 will
give a black and white image, 1 will give the original image while
2 will enhance the saturation by a factor of 2.
Returns:
PIL.Image or np.array: Saturation adjusted image.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import functional as F
fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')
fake_img = Image.fromarray(fake_img)
converted_img = F.adjust_saturation(fake_img, 0.4)
print(converted_img.size)
"""
if not (_is_pil_image(img) or _is_numpy_image(img)):
raise TypeError(
'img should be PIL Image or ndarray with dim=[2 or 3]. Got {}'.
format(type(img)))
if _is_pil_image(img):
return F_pil.adjust_saturation(img, saturation_factor)
else:
return F_cv2.adjust_saturation(img, saturation_factor)
def adjust_hue(img, hue_factor):
"""Adjusts hue of an image.
The image hue is adjusted by converting the image to HSV and
cyclically shifting the intensities in the hue channel (H).
The image is then converted back to original image mode.
`hue_factor` is the amount of shift in H channel and must be in the
interval `[-0.5, 0.5]`.
Args:
img (PIL.Image|np.array): Image to be adjusted.
hue_factor (float): How much to shift the hue channel. Should be in
[-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
HSV space in positive and negative direction respectively.
0 means no shift. Therefore, both -0.5 and 0.5 will give an image
with complementary colors while 0 gives the original image.
Returns:
PIL.Image or np.array: Hue adjusted image.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import functional as F
fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')
fake_img = Image.fromarray(fake_img)
converted_img = F.adjust_hue(fake_img, 0.4)
print(converted_img.size)
"""
if not (_is_pil_image(img) or _is_numpy_image(img)):
raise TypeError(
'img should be PIL Image or ndarray with dim=[2 or 3]. Got {}'.
format(type(img)))
if _is_pil_image(img):
return F_pil.adjust_hue(img, hue_factor)
else:
return F_cv2.adjust_hue(img, hue_factor)
def rotate(img, angle, resample=False, expand=False, center=None, fill=0):
"""Rotates the image by angle.
Args:
img (numpy.ndarray): Image to be rotated.
angle (float|int): In degrees clockwise order.
interpolation (int, optional): Interpolation method. Default: 1.
0 : cv2.INTER_NEAREST
1 : cv2.INTER_LINEAR
2 : cv2.INTER_CUBIC
3 : cv2.INTER_AREA
4 : cv2.INTER_LANCZOS4
5 : cv2.INTER_LINEAR_EXACT
7 : cv2.INTER_MAX
8 : cv2.WARP_FILL_OUTLIERS
16: cv2.WARP_INVERSE_MAP
expand (bool|optional): Optional expansion flag.
img (PIL.Image|np.array): Image to be rotated.
angle (float or int): In degrees degrees counter clockwise order.
resample (int|str, optional): An optional resampling filter. If omitted, or if the
image has only one channel, it is set to PIL.Image.NEAREST or cv2.INTER_NEAREST
according the backend. when use pil backend, support method are as following:
- "nearest": Image.NEAREST,
- "bilinear": Image.BILINEAR,
- "bicubic": Image.BICUBIC
when use cv2 backend, support method are as following:
- "nearest": cv2.INTER_NEAREST,
- "bilinear": cv2.INTER_LINEAR,
- "bicubic": cv2.INTER_CUBIC
expand (bool, optional): Optional expansion flag.
If true, expands the output image to make it large enough to hold the entire rotated image.
If false or omitted, make the output image the same size as the input image.
Note that the expand flag assumes rotation around the center and no translation.
center (2-tuple|optional): Optional center of rotation.
center (2-tuple, optional): Optional center of rotation.
Origin is the upper left corner.
Default is the center of the image.
fill (3-tuple or int): RGB pixel fill value for area outside the rotated image.
If int, it is used for all channels respectively.
Returns:
numpy ndarray: Rotated image.
PIL.Image or np.array: Rotated image.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import functional as F
fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')
from paddle.vision.transforms.functional import rotate
fake_img = Image.fromarray(fake_img)
fake_img = np.random.rand(500, 500, 3).astype('float32')
rotated_img = F.rotate(fake_img, 90)
print(rotated_img.size)
fake_img = rotate(fake_img, 10)
print(fake_img.shape)
"""
cv2 = try_import('cv2')
dtype = img.dtype
h, w, _ = img.shape
point = center or (w / 2, h / 2)
M = cv2.getRotationMatrix2D(point, angle=-angle, scale=1)
if expand:
if center is None:
cos = np.abs(M[0, 0])
sin = np.abs(M[0, 1])
nW = int((h * sin) + (w * cos))
nH = int((h * cos) + (w * sin))
M[0, 2] += (nW / 2) - point[0]
M[1, 2] += (nH / 2) - point[1]
dst = cv2.warpAffine(img, M, (nW, nH))
else:
xx = []
yy = []
for point in (np.array([0, 0, 1]), np.array([w - 1, 0, 1]),
np.array([w - 1, h - 1, 1]), np.array([0, h - 1, 1])):
target = np.dot(M, point)
xx.append(target[0])
yy.append(target[1])
nh = int(math.ceil(max(yy)) - math.floor(min(yy)))
nw = int(math.ceil(max(xx)) - math.floor(min(xx)))
M[0, 2] += (nw - w) / 2
M[1, 2] += (nh - h) / 2
dst = cv2.warpAffine(img, M, (nw, nh), flags=interpolation)
if not (_is_pil_image(img) or _is_numpy_image(img)):
raise TypeError(
'img should be PIL Image or ndarray with dim=[2 or 3]. Got {}'.
format(type(img)))
if _is_pil_image(img):
return F_pil.rotate(img, angle, resample, expand, center, fill)
else:
dst = cv2.warpAffine(img, M, (w, h), flags=interpolation)
return dst.astype(dtype)
return F_cv2.rotate(img, angle, resample, expand, center, fill)
@keepdims
def to_grayscale(img, num_output_channels=1):
"""Converts image to grayscale version of image.
Args:
img (numpy.ndarray): Image to be converted to grayscale.
img (PIL.Image|np.array): Image to be converted to grayscale.
backend (str, optional): The image proccess backend type. Options are `pil`,
`cv2`. Default: 'pil'.
Returns:
numpy.ndarray: Grayscale version of the image.
if num_output_channels == 1, returned image is single channel
if num_output_channels == 3, returned image is 3 channel with r == g == b
PIL.Image or np.array: Grayscale version of the image.
if num_output_channels = 1 : returned image is single channel
if num_output_channels = 3 : returned image is 3 channel with r = g = b
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import functional as F
fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')
fake_img = Image.fromarray(fake_img)
gray_img = F.to_grayscale(fake_img)
print(gray_img.size)
"""
if not (_is_pil_image(img) or _is_numpy_image(img)):
raise TypeError(
'img should be PIL Image or ndarray with dim=[2 or 3]. Got {}'.
format(type(img)))
if _is_pil_image(img):
return F_pil.to_grayscale(img, num_output_channels)
else:
return F_cv2.to_grayscale(img, num_output_channels)
def normalize(img, mean, std, data_format='CHW', to_rgb=False):
"""Normalizes a tensor or image with mean and standard deviation.
Args:
img (PIL.Image|np.array|paddle.Tensor): input data to be normalized.
mean (list|tuple): Sequence of means for each channel.
std (list|tuple): Sequence of standard deviations for each channel.
data_format (str, optional): Data format of input img, should be 'HWC' or
'CHW'. Default: 'CHW'.
to_rgb (bool, optional): Whether to convert to rgb. If input is tensor,
this option will be igored. Default: False.
Returns:
Tensor: Normalized mage. Data format is same as input img.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import functional as F
fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')
fake_img = Image.fromarray(fake_img)
from paddle.vision.transforms.functional import to_grayscale
mean = [127.5, 127.5, 127.5]
std = [127.5, 127.5, 127.5]
fake_img = np.random.rand(500, 500, 3).astype('float32')
normalized_img = F.normalize(fake_img, mean, std, data_format='HWC')
print(normalized_img.max(), normalized_img.min())
fake_img = to_grayscale(fake_img)
print(fake_img.shape)
"""
cv2 = try_import('cv2')
if num_output_channels == 1:
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
elif num_output_channels == 3:
img = cv2.cvtColor(
cv2.cvtColor(img, cv2.COLOR_RGB2GRAY), cv2.COLOR_GRAY2RGB)
if _is_tensor_image(img):
return F_t.normalize(img, mean, std, data_format)
else:
raise ValueError('num_output_channels should be either 1 or 3')
if _is_pil_image(img):
img = np.array(img).astype(np.float32)
return img
return F_cv2.normalize(img, mean, std, data_format, to_rgb)
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import division
import sys
import numbers
import warnings
import collections
import numpy as np
from numpy import sin, cos, tan
import paddle
from paddle.utils import try_import
if sys.version_info < (3, 3):
Sequence = collections.Sequence
Iterable = collections.Iterable
else:
Sequence = collections.abc.Sequence
Iterable = collections.abc.Iterable
def to_tensor(pic, data_format='CHW'):
"""Converts a ``numpy.ndarray`` to paddle.Tensor.
See ``ToTensor`` for more details.
Args:
pic (np.ndarray): Image to be converted to tensor.
data_format (str, optional): Data format of img, should be 'HWC' or
'CHW'. Default: 'CHW'.
Returns:
Tensor: Converted image.
"""
if not data_format in ['CHW', 'HWC']:
raise ValueError('data_format should be CHW or HWC. Got {}'.format(
data_format))
if pic.ndim == 2:
pic = pic[:, :, None]
if data_format == 'CHW':
img = paddle.to_tensor(pic.transpose((2, 0, 1)))
else:
img = paddle.to_tensor(pic)
if paddle.fluid.data_feeder.convert_dtype(img.dtype) == 'uint8':
return paddle.cast(img, np.float32) / 255.
else:
return img
def resize(img, size, interpolation='bilinear'):
"""
Resizes the image to given size
Args:
input (np.ndarray): Image to be resized.
size (int|list|tuple): Target size of input data, with (height, width) shape.
interpolation (int|str, optional): Interpolation method. when use cv2 backend,
support method are as following:
- "nearest": cv2.INTER_NEAREST,
- "bilinear": cv2.INTER_LINEAR,
- "area": cv2.INTER_AREA,
- "bicubic": cv2.INTER_CUBIC,
- "lanczos": cv2.INTER_LANCZOS4
Returns:
np.array: Resized image.
"""
cv2 = try_import('cv2')
_cv2_interp_from_str = {
'nearest': cv2.INTER_NEAREST,
'bilinear': cv2.INTER_LINEAR,
'area': cv2.INTER_AREA,
'bicubic': cv2.INTER_CUBIC,
'lanczos': cv2.INTER_LANCZOS4
}
if not (isinstance(size, int) or
(isinstance(size, Iterable) and len(size) == 2)):
raise TypeError('Got inappropriate size arg: {}'.format(size))
h, w = img.shape[:2]
if isinstance(size, int):
if (w <= h and w == size) or (h <= w and h == size):
return img
if w < h:
ow = size
oh = int(size * h / w)
output = cv2.resize(
img,
dsize=(ow, oh),
interpolation=_cv2_interp_from_str[interpolation])
else:
oh = size
ow = int(size * w / h)
output = cv2.resize(
img,
dsize=(ow, oh),
interpolation=_cv2_interp_from_str[interpolation])
else:
output = cv2.resize(
img,
dsize=(size[1], size[0]),
interpolation=_cv2_interp_from_str[interpolation])
if len(img.shape) == 3 and img.shape[2] == 1:
return output[:, :, np.newaxis]
else:
return output
def pad(img, padding, fill=0, padding_mode='constant'):
"""
Pads the given numpy.array on all sides with specified padding mode and fill value.
Args:
img (np.array): Image to be padded.
padding (int|list|tuple): Padding on each border. If a single int is provided this
is used to pad all borders. If tuple of length 2 is provided this is the padding
on left/right and top/bottom respectively. If a tuple of length 4 is provided
this is the padding for the left, top, right and bottom borders
respectively.
fill (float, optional): Pixel fill value for constant fill. If a tuple of
length 3, it is used to fill R, G, B channels respectively.
This value is only used when the padding_mode is constant. Default: 0.
padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default: 'constant'.
- constant: pads with a constant value, this value is specified with fill
- edge: pads with the last value on the edge of the image
- reflect: pads with reflection of image (without repeating the last value on the edge)
padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
will result in [3, 2, 1, 2, 3, 4, 3, 2]
- symmetric: pads with reflection of image (repeating the last value on the edge)
padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
will result in [2, 1, 1, 2, 3, 4, 4, 3]
Returns:
np.array: Padded image.
"""
cv2 = try_import('cv2')
_cv2_pad_from_str = {
'constant': cv2.BORDER_CONSTANT,
'edge': cv2.BORDER_REPLICATE,
'reflect': cv2.BORDER_REFLECT_101,
'symmetric': cv2.BORDER_REFLECT
}
if not isinstance(padding, (numbers.Number, list, tuple)):
raise TypeError('Got inappropriate padding arg')
if not isinstance(fill, (numbers.Number, str, list, tuple)):
raise TypeError('Got inappropriate fill arg')
if not isinstance(padding_mode, str):
raise TypeError('Got inappropriate padding_mode arg')
if isinstance(padding, Sequence) and len(padding) not in [2, 4]:
raise ValueError(
"Padding must be an int or a 2, or 4 element tuple, not a " +
"{} element tuple".format(len(padding)))
assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric'], \
'Padding mode should be either constant, edge, reflect or symmetric'
if isinstance(padding, list):
padding = tuple(padding)
if isinstance(padding, int):
pad_left = pad_right = pad_top = pad_bottom = padding
if isinstance(padding, Sequence) and len(padding) == 2:
pad_left = pad_right = padding[0]
pad_top = pad_bottom = padding[1]
if isinstance(padding, Sequence) and len(padding) == 4:
pad_left = padding[0]
pad_top = padding[1]
pad_right = padding[2]
pad_bottom = padding[3]
if len(img.shape) == 3 and img.shape[2] == 1:
return cv2.copyMakeBorder(
img,
top=pad_top,
bottom=pad_bottom,
left=pad_left,
right=pad_right,
borderType=_cv2_pad_from_str[padding_mode],
value=fill)[:, :, np.newaxis]
else:
return cv2.copyMakeBorder(
img,
top=pad_top,
bottom=pad_bottom,
left=pad_left,
right=pad_right,
borderType=_cv2_pad_from_str[padding_mode],
value=fill)
def crop(img, top, left, height, width):
"""Crops the given image.
Args:
img (np.array): Image to be cropped. (0,0) denotes the top left
corner of the image.
top (int): Vertical component of the top left corner of the crop box.
left (int): Horizontal component of the top left corner of the crop box.
height (int): Height of the crop box.
width (int): Width of the crop box.
Returns:
np.array: Cropped image.
"""
return img[top:top + height, left:left + width, :]
def center_crop(img, output_size):
"""Crops the given image and resize it to desired size.
Args:
img (np.array): Image to be cropped. (0,0) denotes the top left corner of the image.
output_size (sequence or int): (height, width) of the crop box. If int,
it is used for both directions
backend (str, optional): The image proccess backend type. Options are `pil`, `cv2`. Default: 'pil'.
Returns:
np.array: Cropped image.
"""
if isinstance(output_size, numbers.Number):
output_size = (int(output_size), int(output_size))
h, w = img.shape[0:2]
th, tw = output_size
i = int(round((h - th) / 2.))
j = int(round((w - tw) / 2.))
return crop(img, i, j, th, tw)
def hflip(img):
"""Horizontally flips the given image.
Args:
img (np.array): Image to be flipped.
Returns:
np.array: Horizontall flipped image.
"""
cv2 = try_import('cv2')
return cv2.flip(img, 1)
def vflip(img):
"""Vertically flips the given np.array.
Args:
img (np.array): Image to be flipped.
Returns:
np.array: Vertically flipped image.
"""
cv2 = try_import('cv2')
if len(img.shape) == 3 and img.shape[2] == 1:
return cv2.flip(img, 0)[:, :, np.newaxis]
else:
return cv2.flip(img, 0)
def adjust_brightness(img, brightness_factor):
"""Adjusts brightness of an image.
Args:
img (np.array): Image to be adjusted.
brightness_factor (float): How much to adjust the brightness. Can be
any non negative number. 0 gives a black image, 1 gives the
original image while 2 increases the brightness by a factor of 2.
Returns:
np.array: Brightness adjusted image.
"""
cv2 = try_import('cv2')
table = np.array([i * brightness_factor
for i in range(0, 256)]).clip(0, 255).astype('uint8')
if len(img.shape) == 3 and img.shape[2] == 1:
return cv2.LUT(img, table)[:, :, np.newaxis]
else:
return cv2.LUT(img, table)
def adjust_contrast(img, contrast_factor):
"""Adjusts contrast of an image.
Args:
img (np.array): Image to be adjusted.
contrast_factor (float): How much to adjust the contrast. Can be any
non negative number. 0 gives a solid gray image, 1 gives the
original image while 2 increases the contrast by a factor of 2.
Returns:
np.array: Contrast adjusted image.
"""
cv2 = try_import('cv2')
table = np.array([(i - 74) * contrast_factor + 74
for i in range(0, 256)]).clip(0, 255).astype('uint8')
if len(img.shape) == 3 and img.shape[2] == 1:
return cv2.LUT(img, table)[:, :, np.newaxis]
else:
return cv2.LUT(img, table)
def adjust_saturation(img, saturation_factor):
"""Adjusts color saturation of an image.
Args:
img (np.array): Image to be adjusted.
saturation_factor (float): How much to adjust the saturation. 0 will
give a black and white image, 1 will give the original image while
2 will enhance the saturation by a factor of 2.
Returns:
np.array: Saturation adjusted image.
"""
cv2 = try_import('cv2')
dtype = img.dtype
img = img.astype(np.float32)
alpha = np.random.uniform(
max(0, 1 - saturation_factor), 1 + saturation_factor)
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray_img = gray_img[..., np.newaxis]
img = img * alpha + gray_img * (1 - alpha)
return img.clip(0, 255).astype(dtype)
def adjust_hue(img, hue_factor):
"""Adjusts hue of an image.
The image hue is adjusted by converting the image to HSV and
cyclically shifting the intensities in the hue channel (H).
The image is then converted back to original image mode.
`hue_factor` is the amount of shift in H channel and must be in the
interval `[-0.5, 0.5]`.
Args:
img (np.array): Image to be adjusted.
hue_factor (float): How much to shift the hue channel. Should be in
[-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
HSV space in positive and negative direction respectively.
0 means no shift. Therefore, both -0.5 and 0.5 will give an image
with complementary colors while 0 gives the original image.
Returns:
np.array: Hue adjusted image.
"""
cv2 = try_import('cv2')
if not (-0.5 <= hue_factor <= 0.5):
raise ValueError('hue_factor is not in [-0.5, 0.5].'.format(hue_factor))
dtype = img.dtype
img = img.astype(np.uint8)
hsv_img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV_FULL)
h, s, v = cv2.split(hsv_img)
alpha = np.random.uniform(hue_factor, hue_factor)
h = h.astype(np.uint8)
# uint8 addition take cares of rotation across boundaries
with np.errstate(over="ignore"):
h += np.uint8(alpha * 255)
hsv_img = cv2.merge([h, s, v])
return cv2.cvtColor(hsv_img, cv2.COLOR_HSV2BGR_FULL).astype(dtype)
def rotate(img, angle, resample=False, expand=False, center=None, fill=0):
"""Rotates the image by angle.
Args:
img (np.array): Image to be rotated.
angle (float or int): In degrees degrees counter clockwise order.
resample (int|str, optional): An optional resampling filter. If omitted, or if the
image has only one channel, it is set to cv2.INTER_NEAREST.
when use cv2 backend, support method are as following:
- "nearest": cv2.INTER_NEAREST,
- "bilinear": cv2.INTER_LINEAR,
- "bicubic": cv2.INTER_CUBIC
expand (bool, optional): Optional expansion flag.
If true, expands the output image to make it large enough to hold the entire rotated image.
If false or omitted, make the output image the same size as the input image.
Note that the expand flag assumes rotation around the center and no translation.
center (2-tuple, optional): Optional center of rotation.
Origin is the upper left corner.
Default is the center of the image.
fill (3-tuple or int): RGB pixel fill value for area outside the rotated image.
If int, it is used for all channels respectively.
Returns:
np.array: Rotated image.
"""
cv2 = try_import('cv2')
rows, cols = img.shape[0:2]
if center is None:
center = (cols / 2, rows / 2)
M = cv2.getRotationMatrix2D(center, angle, 1)
if len(img.shape) == 3 and img.shape[2] == 1:
return cv2.warpAffine(img, M, (cols, rows))[:, :, np.newaxis]
else:
return cv2.warpAffine(img, M, (cols, rows))
def to_grayscale(img, num_output_channels=1):
"""Converts image to grayscale version of image.
Args:
img (np.array): Image to be converted to grayscale.
Returns:
np.array: Grayscale version of the image.
if num_output_channels = 1 : returned image is single channel
if num_output_channels = 3 : returned image is 3 channel with r = g = b
"""
cv2 = try_import('cv2')
if num_output_channels == 1:
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)[:, :, np.newaxis]
elif num_output_channels == 3:
# much faster than doing cvtColor to go back to gray
img = np.broadcast_to(
cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)[:, :, np.newaxis], img.shape)
else:
raise ValueError('num_output_channels should be either 1 or 3')
return img
def normalize(img, mean, std, data_format='CHW', to_rgb=False):
"""Normalizes a ndarray imge or image with mean and standard deviation.
Args:
img (np.array): input data to be normalized.
mean (list|tuple): Sequence of means for each channel.
std (list|tuple): Sequence of standard deviations for each channel.
data_format (str, optional): Data format of img, should be 'HWC' or
'CHW'. Default: 'CHW'.
to_rgb (bool, optional): Whether to convert to rgb. Default: False.
Returns:
np.array: Normalized mage.
"""
if data_format == 'CHW':
mean = np.float32(np.array(mean).reshape(-1, 1, 1))
std = np.float32(np.array(std).reshape(-1, 1, 1))
else:
mean = np.float32(np.array(mean).reshape(1, 1, -1))
std = np.float32(np.array(std).reshape(1, 1, -1))
if to_rgb:
cv2 = try_import('cv2')
# inplace
cv2.cvtColor(img, cv2.COLOR_BGR2RGB, img)
img = (img - mean) / std
return img
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import division
import sys
import math
import numbers
import warnings
import collections
from PIL import Image, ImageOps, ImageEnhance
import numpy as np
from numpy import sin, cos, tan
import paddle
if sys.version_info < (3, 3):
Sequence = collections.Sequence
Iterable = collections.Iterable
else:
Sequence = collections.abc.Sequence
Iterable = collections.abc.Iterable
_pil_interp_from_str = {
'nearest': Image.NEAREST,
'bilinear': Image.BILINEAR,
'bicubic': Image.BICUBIC,
'box': Image.BOX,
'lanczos': Image.LANCZOS,
'hamming': Image.HAMMING
}
def to_tensor(pic, data_format='CHW'):
"""Converts a ``PIL.Image`` to paddle.Tensor.
See ``ToTensor`` for more details.
Args:
pic (PIL.Image): Image to be converted to tensor.
data_format (str, optional): Data format of img, should be 'HWC' or
'CHW'. Default: 'CHW'.
Returns:
Tensor: Converted image.
"""
if not data_format in ['CHW', 'HWC']:
raise ValueError('data_format should be CHW or HWC. Got {}'.format(
data_format))
# PIL Image
if pic.mode == 'I':
img = paddle.to_tensor(np.array(pic, np.int32, copy=False))
elif pic.mode == 'I;16':
# cast and reshape not support int16
img = paddle.to_tensor(np.array(pic, np.int32, copy=False))
elif pic.mode == 'F':
img = paddle.to_tensor(np.array(pic, np.float32, copy=False))
elif pic.mode == '1':
img = 255 * paddle.to_tensor(np.array(pic, np.uint8, copy=False))
else:
img = paddle.to_tensor(np.array(pic, copy=False))
if pic.mode == 'YCbCr':
nchannel = 3
elif pic.mode == 'I;16':
nchannel = 1
else:
nchannel = len(pic.mode)
dtype = paddle.fluid.data_feeder.convert_dtype(img.dtype)
if dtype == 'uint8':
img = paddle.cast(img, np.float32) / 255.
img = img.reshape([pic.size[1], pic.size[0], nchannel])
if data_format == 'CHW':
img = img.transpose([2, 0, 1])
return img
def resize(img, size, interpolation='bilinear'):
"""
Resizes the image to given size
Args:
input (PIL.Image): Image to be resized.
size (int|list|tuple): Target size of input data, with (height, width) shape.
interpolation (int|str, optional): Interpolation method. when use pil backend,
support method are as following:
- "nearest": Image.NEAREST,
- "bilinear": Image.BILINEAR,
- "bicubic": Image.BICUBIC,
- "box": Image.BOX,
- "lanczos": Image.LANCZOS,
- "hamming": Image.HAMMING
Returns:
PIL.Image: Resized image.
"""
if not (isinstance(size, int) or
(isinstance(size, Iterable) and len(size) == 2)):
raise TypeError('Got inappropriate size arg: {}'.format(size))
if isinstance(size, int):
w, h = img.size
if (w <= h and w == size) or (h <= w and h == size):
return img
if w < h:
ow = size
oh = int(size * h / w)
return img.resize((ow, oh), _pil_interp_from_str[interpolation])
else:
oh = size
ow = int(size * w / h)
return img.resize((ow, oh), _pil_interp_from_str[interpolation])
else:
return img.resize(size[::-1], _pil_interp_from_str[interpolation])
def pad(img, padding, fill=0, padding_mode='constant'):
"""
Pads the given PIL.Image on all sides with specified padding mode and fill value.
Args:
img (PIL.Image): Image to be padded.
padding (int|list|tuple): Padding on each border. If a single int is provided this
is used to pad all borders. If tuple of length 2 is provided this is the padding
on left/right and top/bottom respectively. If a tuple of length 4 is provided
this is the padding for the left, top, right and bottom borders
respectively.
fill (float, optional): Pixel fill value for constant fill. If a tuple of
length 3, it is used to fill R, G, B channels respectively.
This value is only used when the padding_mode is constant. Default: 0.
padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default: 'constant'.
- constant: pads with a constant value, this value is specified with fill
- edge: pads with the last value on the edge of the image
- reflect: pads with reflection of image (without repeating the last value on the edge)
padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
will result in [3, 2, 1, 2, 3, 4, 3, 2]
- symmetric: pads with reflection of image (repeating the last value on the edge)
padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
will result in [2, 1, 1, 2, 3, 4, 4, 3]
Returns:
PIL.Image: Padded image.
"""
if not isinstance(padding, (numbers.Number, list, tuple)):
raise TypeError('Got inappropriate padding arg')
if not isinstance(fill, (numbers.Number, str, list, tuple)):
raise TypeError('Got inappropriate fill arg')
if not isinstance(padding_mode, str):
raise TypeError('Got inappropriate padding_mode arg')
if isinstance(padding, Sequence) and len(padding) not in [2, 4]:
raise ValueError(
"Padding must be an int or a 2, or 4 element tuple, not a " +
"{} element tuple".format(len(padding)))
assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric'], \
'Padding mode should be either constant, edge, reflect or symmetric'
if isinstance(padding, list):
padding = tuple(padding)
if isinstance(padding, int):
pad_left = pad_right = pad_top = pad_bottom = padding
if isinstance(padding, Sequence) and len(padding) == 2:
pad_left = pad_right = padding[0]
pad_top = pad_bottom = padding[1]
if isinstance(padding, Sequence) and len(padding) == 4:
pad_left = padding[0]
pad_top = padding[1]
pad_right = padding[2]
pad_bottom = padding[3]
if padding_mode == 'constant':
if img.mode == 'P':
palette = img.getpalette()
image = ImageOps.expand(img, border=padding, fill=fill)
image.putpalette(palette)
return image
return ImageOps.expand(img, border=padding, fill=fill)
else:
if img.mode == 'P':
palette = img.getpalette()
img = np.asarray(img)
img = np.pad(img, ((pad_top, pad_bottom), (pad_left, pad_right)),
padding_mode)
img = Image.fromarray(img)
img.putpalette(palette)
return img
img = np.asarray(img)
# RGB image
if len(img.shape) == 3:
img = np.pad(img, ((pad_top, pad_bottom), (pad_left, pad_right),
(0, 0)), padding_mode)
# Grayscale image
if len(img.shape) == 2:
img = np.pad(img, ((pad_top, pad_bottom), (pad_left, pad_right)),
padding_mode)
return Image.fromarray(img)
def crop(img, top, left, height, width):
"""Crops the given PIL Image.
Args:
img (PIL.Image): Image to be cropped. (0,0) denotes the top left
corner of the image.
top (int): Vertical component of the top left corner of the crop box.
left (int): Horizontal component of the top left corner of the crop box.
height (int): Height of the crop box.
width (int): Width of the crop box.
Returns:
PIL.Image: Cropped image.
"""
return img.crop((left, top, left + width, top + height))
def center_crop(img, output_size):
"""Crops the given PIL Image and resize it to desired size.
Args:
img (PIL.Image): Image to be cropped. (0,0) denotes the top left corner of the image.
output_size (sequence or int): (height, width) of the crop box. If int,
it is used for both directions
backend (str, optional): The image proccess backend type. Options are `pil`, `cv2`. Default: 'pil'.
Returns:
PIL.Image: Cropped image.
"""
if isinstance(output_size, numbers.Number):
output_size = (int(output_size), int(output_size))
image_width, image_height = img.size
crop_height, crop_width = output_size
crop_top = int(round((image_height - crop_height) / 2.))
crop_left = int(round((image_width - crop_width) / 2.))
return crop(img, crop_top, crop_left, crop_height, crop_width)
def hflip(img):
"""Horizontally flips the given PIL Image.
Args:
img (PIL.Image): Image to be flipped.
Returns:
PIL.Image: Horizontall flipped image.
"""
return img.transpose(Image.FLIP_LEFT_RIGHT)
def vflip(img):
"""Vertically flips the given PIL Image.
Args:
img (PIL.Image): Image to be flipped.
Returns:
PIL.Image: Vertically flipped image.
"""
return img.transpose(Image.FLIP_TOP_BOTTOM)
def adjust_brightness(img, brightness_factor):
"""Adjusts brightness of an Image.
Args:
img (PIL.Image): PIL Image to be adjusted.
brightness_factor (float): How much to adjust the brightness. Can be
any non negative number. 0 gives a black image, 1 gives the
original image while 2 increases the brightness by a factor of 2.
Returns:
PIL.Image: Brightness adjusted image.
"""
enhancer = ImageEnhance.Brightness(img)
img = enhancer.enhance(brightness_factor)
return img
def adjust_contrast(img, contrast_factor):
"""Adjusts contrast of an Image.
Args:
img (PIL.Image): PIL Image to be adjusted.
contrast_factor (float): How much to adjust the contrast. Can be any
non negative number. 0 gives a solid gray image, 1 gives the
original image while 2 increases the contrast by a factor of 2.
Returns:
PIL.Image: Contrast adjusted image.
"""
enhancer = ImageEnhance.Contrast(img)
img = enhancer.enhance(contrast_factor)
return img
def adjust_saturation(img, saturation_factor):
"""Adjusts color saturation of an image.
Args:
img (PIL.Image): PIL Image to be adjusted.
saturation_factor (float): How much to adjust the saturation. 0 will
give a black and white image, 1 will give the original image while
2 will enhance the saturation by a factor of 2.
Returns:
PIL.Image: Saturation adjusted image.
"""
enhancer = ImageEnhance.Color(img)
img = enhancer.enhance(saturation_factor)
return img
def adjust_hue(img, hue_factor):
"""Adjusts hue of an image.
The image hue is adjusted by converting the image to HSV and
cyclically shifting the intensities in the hue channel (H).
The image is then converted back to original image mode.
`hue_factor` is the amount of shift in H channel and must be in the
interval `[-0.5, 0.5]`.
Args:
img (PIL.Image): PIL Image to be adjusted.
hue_factor (float): How much to shift the hue channel. Should be in
[-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
HSV space in positive and negative direction respectively.
0 means no shift. Therefore, both -0.5 and 0.5 will give an image
with complementary colors while 0 gives the original image.
Returns:
PIL.Image: Hue adjusted image.
"""
if not (-0.5 <= hue_factor <= 0.5):
raise ValueError('hue_factor is not in [-0.5, 0.5].'.format(hue_factor))
input_mode = img.mode
if input_mode in {'L', '1', 'I', 'F'}:
return img
h, s, v = img.convert('HSV').split()
np_h = np.array(h, dtype=np.uint8)
# uint8 addition take cares of rotation across boundaries
with np.errstate(over='ignore'):
np_h += np.uint8(hue_factor * 255)
h = Image.fromarray(np_h, 'L')
img = Image.merge('HSV', (h, s, v)).convert(input_mode)
return img
def rotate(img, angle, resample=False, expand=False, center=None, fill=0):
"""Rotates the image by angle.
Args:
img (PIL.Image): Image to be rotated.
angle (float or int): In degrees degrees counter clockwise order.
resample (int|str, optional): An optional resampling filter. If omitted, or if the
image has only one channel, it is set to PIL.Image.NEAREST . when use pil backend,
support method are as following:
- "nearest": Image.NEAREST,
- "bilinear": Image.BILINEAR,
- "bicubic": Image.BICUBIC
expand (bool, optional): Optional expansion flag.
If true, expands the output image to make it large enough to hold the entire rotated image.
If false or omitted, make the output image the same size as the input image.
Note that the expand flag assumes rotation around the center and no translation.
center (2-tuple, optional): Optional center of rotation.
Origin is the upper left corner.
Default is the center of the image.
fill (3-tuple or int): RGB pixel fill value for area outside the rotated image.
If int, it is used for all channels respectively.
Returns:
PIL.Image: Rotated image.
"""
if isinstance(fill, int):
fill = tuple([fill] * 3)
return img.rotate(angle, resample, expand, center, fillcolor=fill)
def to_grayscale(img, num_output_channels=1):
"""Converts image to grayscale version of image.
Args:
img (PIL.Image): Image to be converted to grayscale.
backend (str, optional): The image proccess backend type. Options are `pil`,
`cv2`. Default: 'pil'.
Returns:
PIL.Image: Grayscale version of the image.
if num_output_channels = 1 : returned image is single channel
if num_output_channels = 3 : returned image is 3 channel with r = g = b
"""
if num_output_channels == 1:
img = img.convert('L')
elif num_output_channels == 3:
img = img.convert('L')
np_img = np.array(img, dtype=np.uint8)
np_img = np.dstack([np_img, np_img, np_img])
img = Image.fromarray(np_img, 'RGB')
else:
raise ValueError('num_output_channels should be either 1 or 3')
return img
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import division
import paddle
def normalize(img, mean, std, data_format='CHW'):
"""Normalizes a tensor image with mean and standard deviation.
Args:
img (paddle.Tensor): input data to be normalized.
mean (list|tuple): Sequence of means for each channel.
std (list|tuple): Sequence of standard deviations for each channel.
data_format (str, optional): Data format of img, should be 'HWC' or
'CHW'. Default: 'CHW'.
Returns:
Tensor: Normalized mage.
"""
if data_format == 'CHW':
mean = paddle.to_tensor(mean).reshape([-1, 1, 1])
std = paddle.to_tensor(std).reshape([-1, 1, 1])
else:
mean = paddle.to_tensor(mean)
std = paddle.to_tensor(std)
return (img - mean) / std
......@@ -36,30 +36,50 @@ else:
Iterable = collections.abc.Iterable
__all__ = [
"Compose",
"BatchCompose",
"Resize",
"RandomResizedCrop",
"CenterCropResize",
"CenterCrop",
"RandomHorizontalFlip",
"RandomVerticalFlip",
"Permute",
"Normalize",
"GaussianNoise",
"BrightnessTransform",
"SaturationTransform",
"ContrastTransform",
"HueTransform",
"ColorJitter",
"RandomCrop",
"RandomErasing",
"Pad",
"RandomRotate",
"Grayscale",
"BaseTransform", "Compose", "Resize", "RandomResizedCrop", "CenterCrop",
"RandomHorizontalFlip", "RandomVerticalFlip", "Transpose", "Normalize",
"BrightnessTransform", "SaturationTransform", "ContrastTransform",
"HueTransform", "ColorJitter", "RandomCrop", "Pad", "RandomRotation",
"Grayscale", "ToTensor"
]
def _get_image_size(img):
if F._is_pil_image(img):
return img.size
elif F._is_numpy_image(img):
return img.shape[:2][::-1]
else:
raise TypeError("Unexpected type {}".format(type(img)))
def _check_input(value,
name,
center=1,
bound=(0, float('inf')),
clip_first_on_zero=True):
if isinstance(value, numbers.Number):
if value < 0:
raise ValueError(
"If {} is a single number, it must be non negative.".format(
name))
value = [center - value, center + value]
if clip_first_on_zero:
value[0] = max(value[0], 0)
elif isinstance(value, (tuple, list)) and len(value) == 2:
if not bound[0] <= value[0] <= value[1] <= bound[1]:
raise ValueError("{} values should be between {}".format(name,
bound))
else:
raise TypeError(
"{} should be a single number or a list/tuple with lenght 2.".
format(name))
if value[0] == value[1] == center:
value = None
return value
class Compose(object):
"""
Composes several transforms together use for composing list of transforms
......@@ -91,15 +111,10 @@ class Compose(object):
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, *data):
def __call__(self, data):
for f in self.transforms:
try:
# multi-fileds in a sample
if isinstance(data, Sequence):
data = f(*data)
# single field in a sample, call transform directly
else:
data = f(data)
data = f(data)
except Exception as e:
stack_info = traceback.format_exc()
print("fail to perform transform [{}] with error: "
......@@ -116,96 +131,217 @@ class Compose(object):
return format_string
class BatchCompose(object):
"""Composes several batch transforms together
class BaseTransform(object):
"""
Base class of all transforms used in computer vision.
Args:
transforms (list): List of transforms to compose.
these transforms perform on batch data.
calling logic:
if keys is None:
_get_params -> _apply_image()
else:
_get_params -> _apply_*() for * in keys
If you want to implement a self-defined transform method for image,
rewrite _apply_* method in subclass.
Args:
keys (list[str]|tuple[str], optional): Input type. Input is a tuple contains different structures,
key is used to specify the type of input. For example, if your input
is image type, then the key can be None or ("image"). if your input
is (image, image) type, then the keys should be ("image", "image").
if your input is (image, boxes), then the keys should be ("image", "boxes").
Current available strings & data type are describe below:
- "image": input image, with shape of (H, W, C)
- "coords": coordinates, with shape of (N, 2)
- "boxes": bounding boxes, with shape of (N, 4), "xyxy" format,
the 1st "xy" represents top left point of a box,
the 2nd "xy" represents right bottom point.
- "mask": map used for segmentation, with shape of (H, W, 1)
You can also customize your data types only if you implement the corresponding
_apply_*() methods, otherwise ``NotImplementedError`` will be raised.
Examples:
.. code-block:: python
import numpy as np
from paddle.io import DataLoader
from PIL import Image
import paddle.vision.transforms.functional as F
from paddle.vision.transforms import BaseTransform
def _get_image_size(img):
if F._is_pil_image(img):
return img.size
elif F._is_numpy_image(img):
return img.shape[:2][::-1]
else:
raise TypeError("Unexpected type {}".format(type(img)))
class CustomRandomFlip(BaseTransform):
def __init__(self, prob=0.5, keys=None):
super(CustomRandomFlip, self).__init__(keys)
self.prob = prob
def _get_params(self, inputs):
image = inputs[self.keys.index('image')]
params = {}
params['flip'] = np.random.random() < self.prob
params['size'] = _get_image_size(image)
return params
def _apply_image(self, image):
if self.params['flip']:
return F.hflip(image)
return image
# if you only want to transform image, do not need to rewrite this function
def _apply_coords(self, coords):
if self.params['flip']:
w = self.params['size'][0]
coords[:, 0] = w - coords[:, 0]
return coords
# if you only want to transform image, do not need to rewrite this function
def _apply_boxes(self, boxes):
idxs = np.array([(0, 1), (2, 1), (0, 3), (2, 3)]).flatten()
coords = np.asarray(boxes).reshape(-1, 4)[:, idxs].reshape(-1, 2)
coords = self._apply_coords(coords).reshape((-1, 4, 2))
minxy = coords.min(axis=1)
maxxy = coords.max(axis=1)
trans_boxes = np.concatenate((minxy, maxxy), axis=1)
return trans_boxes
# if you only want to transform image, do not need to rewrite this function
def _apply_mask(self, mask):
if self.params['flip']:
return F.hflip(mask)
return mask
# create fake inputs
fake_img = Image.fromarray((np.random.rand(400, 500, 3) * 255.).astype('uint8'))
fake_boxes = np.array([[2, 3, 200, 300], [50, 60, 80, 100]])
fake_mask = fake_img.convert('L')
# only transform for image:
flip_transform = CustomRandomFlip(1.0)
converted_img = flip_transform(fake_img)
# transform for image, boxes and mask
flip_transform = CustomRandomFlip(1.0, keys=('image', 'boxes', 'mask'))
(converted_img, converted_boxes, converted_mask) = flip_transform((fake_img, fake_boxes, fake_mask))
print('converted boxes', converted_boxes)
from paddle import set_device
from paddle.vision.datasets import Flowers
from paddle.vision.transforms import Compose, BatchCompose, Resize
class NormalizeBatch(object):
def __init__(self,
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225],
scale=True,
channel_first=True):
self.mean = mean
self.std = std
self.scale = scale
self.channel_first = channel_first
if not (isinstance(self.mean, list) and isinstance(self.std, list) and
isinstance(self.scale, bool)):
raise TypeError("{}: input type is invalid.".format(self))
from functools import reduce
if reduce(lambda x, y: x * y, self.std) == 0:
raise ValueError('{}: std is invalid!'.format(self))
def __call__(self, samples):
for i in range(len(samples)):
samples[i] = list(samples[i])
im = samples[i][0]
im = im.astype(np.float32, copy=False)
mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
std = np.array(self.std)[np.newaxis, np.newaxis, :]
if self.scale:
im = im / 255.0
im -= mean
im /= std
if self.channel_first:
im = im.transpose((2, 0, 1))
samples[i][0] = im
return samples
transform = Compose([Resize((500, 500))])
flowers_dataset = Flowers(mode='test', transform=transform)
device = set_device('cpu')
collate_fn = BatchCompose([NormalizeBatch()])
loader = DataLoader(
flowers_dataset,
batch_size=4,
places=device,
return_list=True,
collate_fn=collate_fn)
for data in loader:
# do something
break
"""
def __init__(self, transforms=[]):
self.transforms = transforms
def __init__(self, keys=None):
if keys is None:
keys = ("image", )
elif not isinstance(keys, Sequence):
raise ValueError(
"keys should be a sequence, but got keys={}".format(keys))
for k in keys:
if self._get_apply(k) is None:
raise NotImplementedError(
"{} is unsupported data structure".format(k))
self.keys = keys
# storage some params get from function get_params()
self.params = None
def _get_params(self, inputs):
pass
def __call__(self, inputs):
"""Apply transform on single input data"""
if not isinstance(inputs, tuple):
inputs = (inputs, )
self.params = self._get_params(inputs)
outputs = []
for i in range(min(len(inputs), len(self.keys))):
apply_func = self._get_apply(self.keys[i])
if apply_func is None:
outputs.append(inputs[i])
else:
outputs.append(apply_func(inputs[i]))
if len(inputs) > len(self.keys):
outputs.extend(input[len(self.keys):])
if len(outputs) == 1:
outputs = outputs[0]
else:
outputs = tuple(outputs)
return outputs
def __call__(self, data):
for f in self.transforms:
try:
data = f(data)
except Exception as e:
stack_info = traceback.format_exc()
print("fail to perform batch transform [{}] with error: "
"{} and stack:\n{}".format(f, e, str(stack_info)))
raise e
def _get_apply(self, key):
return getattr(self, "_apply_{}".format(key), None)
# sample list to batch data
batch = list(zip(*data))
def _apply_image(self, image):
raise NotImplementedError
return batch
def _apply_boxes(self, boxes):
raise NotImplementedError
def _apply_mask(self, mask):
raise NotImplementedError
class Resize(object):
class ToTensor(BaseTransform):
"""Convert a ``PIL.Image`` or ``numpy.ndarray`` to ``paddle.Tensor``.
Converts a PIL.Image or numpy.ndarray (H x W x C) in the range
[0, 255] to a paddle.Tensor of shape (C x H x W) in the range [0.0, 1.0]
if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1)
or if the numpy.ndarray has dtype = np.uint8
In the other cases, tensors are returned without scaling.
Args:
data_format (str, optional): Data format of input img, should be 'HWC' or
'CHW'. Default: 'CHW'.
keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
import paddle.vision.transforms as T
import paddle.vision.transforms.functional as F
fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
transform = T.ToTensor()
tensor = transform(fake_img)
"""
def __init__(self, data_format='CHW', keys=None):
super(ToTensor, self).__init__(keys)
self.data_format = data_format
def _apply_image(self, img):
"""
Args:
img (PIL.Image|np.ndarray): Image to be converted to tensor.
Returns:
Tensor: Converted image.
"""
return F.to_tensor(img, self.data_format)
class Resize(BaseTransform):
"""Resize the input Image to the given size.
Args:
......@@ -214,97 +350,111 @@ class Resize(object):
smaller edge of the image will be matched to this number.
i.e, if height > width, then image will be rescaled to
(size * height / width, size)
interpolation (int, optional): Interpolation mode of resize. Default: 1.
0 : cv2.INTER_NEAREST
1 : cv2.INTER_LINEAR
2 : cv2.INTER_CUBIC
3 : cv2.INTER_AREA
4 : cv2.INTER_LANCZOS4
5 : cv2.INTER_LINEAR_EXACT
7 : cv2.INTER_MAX
8 : cv2.WARP_FILL_OUTLIERS
16: cv2.WARP_INVERSE_MAP
interpolation (int|str, optional): Interpolation method. Default: 'bilinear'.
when use pil backend, support method are as following:
- "nearest": Image.NEAREST,
- "bilinear": Image.BILINEAR,
- "bicubic": Image.BICUBIC,
- "box": Image.BOX,
- "lanczos": Image.LANCZOS,
- "hamming": Image.HAMMING
when use cv2 backend, support method are as following:
- "nearest": cv2.INTER_NEAREST,
- "bilinear": cv2.INTER_LINEAR,
- "area": cv2.INTER_AREA,
- "bicubic": cv2.INTER_CUBIC,
- "lanczos": cv2.INTER_LANCZOS4
keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import Resize
transform = Resize(size=224)
fake_img = np.random.rand(500, 500, 3).astype('float32')
fake_img = Image.fromarray((np.random.rand(100, 120, 3) * 255.).astype(np.uint8))
fake_img = transform(fake_img)
print(fake_img.shape)
print(fake_img.size)
"""
def __init__(self, size, interpolation=1):
def __init__(self, size, interpolation='bilinear', keys=None):
super(Resize, self).__init__(keys)
assert isinstance(size, int) or (isinstance(size, Iterable) and
len(size) == 2)
self.size = size
self.interpolation = interpolation
def __call__(self, img):
def _apply_image(self, img):
return F.resize(img, self.size, self.interpolation)
class RandomResizedCrop(object):
class RandomResizedCrop(BaseTransform):
"""Crop the input data to random size and aspect ratio.
A crop of random size (default: of 0.08 to 1.0) of the original size and a random
aspect ratio (default: of 3/4 to 1.33) of the original aspect ratio is made.
After applying crop transfrom, the input data will be resized to given size.
Args:
output_size (int|list|tuple): Target size of output image, with (height, width) shape.
size (int|list|tuple): Target size of output image, with (height, width) shape.
scale (list|tuple): Range of size of the origin size cropped. Default: (0.08, 1.0)
ratio (list|tuple): Range of aspect ratio of the origin aspect ratio cropped. Default: (0.75, 1.33)
interpolation (int, optional): Interpolation mode of resize. Default: 1.
0 : cv2.INTER_NEAREST
1 : cv2.INTER_LINEAR
2 : cv2.INTER_CUBIC
3 : cv2.INTER_AREA
4 : cv2.INTER_LANCZOS4
5 : cv2.INTER_LINEAR_EXACT
7 : cv2.INTER_MAX
8 : cv2.WARP_FILL_OUTLIERS
16: cv2.WARP_INVERSE_MAP
interpolation (int|str, optional): Interpolation method. Default: 'bilinear'. when use pil backend,
support method are as following:
- "nearest": Image.NEAREST,
- "bilinear": Image.BILINEAR,
- "bicubic": Image.BICUBIC,
- "box": Image.BOX,
- "lanczos": Image.LANCZOS,
- "hamming": Image.HAMMING
when use cv2 backend, support method are as following:
- "nearest": cv2.INTER_NEAREST,
- "bilinear": cv2.INTER_LINEAR,
- "area": cv2.INTER_AREA,
- "bicubic": cv2.INTER_CUBIC,
- "lanczos": cv2.INTER_LANCZOS4
keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import RandomResizedCrop
transform = RandomResizedCrop(224)
fake_img = np.random.rand(500, 500, 3).astype('float32')
fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
fake_img = transform(fake_img)
print(fake_img.shape)
print(fake_img.size)
"""
def __init__(self,
output_size,
size,
scale=(0.08, 1.0),
ratio=(3. / 4, 4. / 3),
interpolation=1):
if isinstance(output_size, int):
self.output_size = (output_size, output_size)
interpolation='bilinear',
keys=None):
super(RandomResizedCrop, self).__init__(keys)
if isinstance(size, int):
self.size = (size, size)
else:
self.output_size = output_size
self.size = size
assert (scale[0] <= scale[1]), "scale should be of kind (min, max)"
assert (ratio[0] <= ratio[1]), "ratio should be of kind (min, max)"
self.scale = scale
self.ratio = ratio
self.interpolation = interpolation
def _get_params(self, image, attempts=10):
height, width, _ = image.shape
def _get_param(self, image, attempts=10):
width, height = _get_image_size(image)
area = height * width
for _ in range(attempts):
......@@ -316,9 +466,9 @@ class RandomResizedCrop(object):
h = int(round(math.sqrt(target_area / aspect_ratio)))
if 0 < w <= width and 0 < h <= height:
x = np.random.randint(0, width - w + 1)
y = np.random.randint(0, height - h + 1)
return x, y, w, h
i = random.randint(0, height - h)
j = random.randint(0, width - w)
return i, j, h, w
# Fallback to central crop
in_ratio = float(width) / float(height)
......@@ -328,179 +478,123 @@ class RandomResizedCrop(object):
elif in_ratio > max(self.ratio):
h = height
w = int(round(h * max(self.ratio)))
else: # whole image
else:
# return whole image
w = width
h = height
x = (width - w) // 2
y = (height - h) // 2
return x, y, w, h
def __call__(self, img):
x, y, w, h = self._get_params(img)
cropped_img = img[y:y + h, x:x + w]
return F.resize(cropped_img, self.output_size, self.interpolation)
class CenterCropResize(object):
"""Crops to center of image with padding then scales size.
Args:
size (int|list|tuple): Target size of output image, with (height, width) shape.
crop_padding (int): Center crop with the padding. Default: 32.
interpolation (int, optional): Interpolation mode of resize. Default: 1.
0 : cv2.INTER_NEAREST
1 : cv2.INTER_LINEAR
2 : cv2.INTER_CUBIC
3 : cv2.INTER_AREA
4 : cv2.INTER_LANCZOS4
5 : cv2.INTER_LINEAR_EXACT
7 : cv2.INTER_MAX
8 : cv2.WARP_FILL_OUTLIERS
16: cv2.WARP_INVERSE_MAP
Examples:
.. code-block:: python
import numpy as np
i = (height - h) // 2
j = (width - w) // 2
return i, j, h, w
from paddle.vision.transforms import CenterCropResize
def _apply_image(self, img):
i, j, h, w = self._get_param(img)
transform = CenterCropResize(224)
fake_img = np.random.rand(500, 500, 3).astype('float32')
fake_img = transform(fake_img)
print(fake_img.shape)
"""
def __init__(self, size, crop_padding=32, interpolation=1):
if isinstance(size, int):
self.size = (size, size)
else:
self.size = size
self.crop_padding = crop_padding
self.interpolation = interpolation
def _get_params(self, img):
h, w = img.shape[:2]
size = min(self.size)
c = int(size / (size + self.crop_padding) * min((h, w)))
x = (h + 1 - c) // 2
y = (w + 1 - c) // 2
return c, x, y
def __call__(self, img):
c, x, y = self._get_params(img)
cropped_img = img[x:x + c, y:y + c, :]
cropped_img = F.crop(img, i, j, h, w)
return F.resize(cropped_img, self.size, self.interpolation)
class CenterCrop(object):
class CenterCrop(BaseTransform):
"""Crops the given the input data at the center.
Args:
output_size: Target size of output image, with (height, width) shape.
size (int|list|tuple): Target size of output image, with (height, width) shape.
keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import CenterCrop
transform = CenterCrop(224)
fake_img = np.random.rand(500, 500, 3).astype('float32')
fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
fake_img = transform(fake_img)
print(fake_img.shape)
print(fake_img.size)
"""
def __init__(self, output_size):
if isinstance(output_size, int):
self.output_size = (output_size, output_size)
def __init__(self, size, keys=None):
super(CenterCrop, self).__init__(keys)
if isinstance(size, numbers.Number):
self.size = (int(size), int(size))
else:
self.output_size = output_size
def _get_params(self, img):
th, tw = self.output_size
h, w, _ = img.shape
assert th <= h and tw <= w, "output size is bigger than image size"
x = int(round((w - tw) / 2.0))
y = int(round((h - th) / 2.0))
return x, y
self.size = size
def __call__(self, img):
x, y = self._get_params(img)
th, tw = self.output_size
return img[y:y + th, x:x + tw]
def _apply_image(self, img):
return F.center_crop(img, self.size)
class RandomHorizontalFlip(object):
class RandomHorizontalFlip(BaseTransform):
"""Horizontally flip the input data randomly with a given probability.
Args:
prob (float): Probability of the input data being flipped. Default: 0.5
prob (float, optional): Probability of the input data being flipped. Default: 0.5
keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import RandomHorizontalFlip
transform = RandomHorizontalFlip(224)
fake_img = np.random.rand(500, 500, 3).astype('float32')
fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
fake_img = transform(fake_img)
print(fake_img.shape)
print(fake_img.size)
"""
def __init__(self, prob=0.5):
def __init__(self, prob=0.5, keys=None):
super(RandomHorizontalFlip, self).__init__(keys)
self.prob = prob
def __call__(self, img):
if np.random.random() < self.prob:
return F.flip(img, code=1)
def _apply_image(self, img):
if random.random() < self.prob:
return F.hflip(img)
return img
class RandomVerticalFlip(object):
class RandomVerticalFlip(BaseTransform):
"""Vertically flip the input data randomly with a given probability.
Args:
prob (float): Probability of the input data being flipped. Default: 0.5
prob (float, optional): Probability of the input data being flipped. Default: 0.5
keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import RandomVerticalFlip
transform = RandomVerticalFlip(224)
fake_img = np.random.rand(500, 500, 3).astype('float32')
fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
fake_img = transform(fake_img)
print(fake_img.shape)
print(fake_img.size)
"""
def __init__(self, prob=0.5):
def __init__(self, prob=0.5, keys=None):
super(RandomVerticalFlip, self).__init__(keys)
self.prob = prob
def __call__(self, img):
if np.random.random() < self.prob:
return F.flip(img, code=0)
def _apply_image(self, img):
if random.random() < self.prob:
return F.vflip(img)
return img
class Normalize(object):
class Normalize(BaseTransform):
"""Normalize the input data with mean and standard deviation.
Given mean: ``(M1,...,Mn)`` and std: ``(S1,..,Sn)`` for ``n`` channels,
this transform will normalize each channel of the input data.
......@@ -509,286 +603,240 @@ class Normalize(object):
Args:
mean (int|float|list): Sequence of means for each channel.
std (int|float|list): Sequence of standard deviations for each channel.
data_format (str, optional): Data format of img, should be 'HWC' or
'CHW'. Default: 'CHW'.
to_rgb (bool, optional): Whether to convert to rgb. Default: False.
keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import Normalize
normalize = Normalize(mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5])
normalize = Normalize(mean=[127.5, 127.5, 127.5],
std=[127.5, 127.5, 127.5],
data_format='HWC')
fake_img = np.random.rand(3, 500, 500).astype('float32')
fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
fake_img = normalize(fake_img)
print(fake_img.shape)
print(fake_img.max, fake_img.max)
"""
def __init__(self, mean=0.0, std=1.0):
def __init__(self,
mean=0.0,
std=1.0,
data_format='CHW',
to_rgb=False,
keys=None):
super(Normalize, self).__init__(keys)
if isinstance(mean, numbers.Number):
mean = [mean, mean, mean]
if isinstance(std, numbers.Number):
std = [std, std, std]
self.mean = np.array(mean, dtype=np.float32).reshape(len(mean), 1, 1)
self.std = np.array(std, dtype=np.float32).reshape(len(std), 1, 1)
self.mean = mean
self.std = std
self.data_format = data_format
self.to_rgb = to_rgb
def __call__(self, img):
return (img - self.mean) / self.std
def _apply_image(self, img):
return F.normalize(img, self.mean, self.std, self.data_format,
self.to_rgb)
class Permute(object):
"""Change input data to a target mode.
class Transpose(BaseTransform):
"""Transpose input data to a target format.
For example, most transforms use HWC mode image,
while the Neural Network might use CHW mode input tensor.
Input image should be HWC mode and an instance of numpy.ndarray.
output image will be an instance of numpy.ndarray.
Args:
mode (str): Output mode of input. Default: "CHW".
to_rgb (bool): Convert 'bgr' image to 'rgb'. Default: True.
order (list|tuple, optional): Target order of input data. Default: (2, 0, 1).
keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import Transpose
from paddle.vision.transforms import Permute
transform = Transpose()
transform = Permute()
fake_img = np.random.rand(500, 500, 3).astype('float32')
fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
fake_img = transform(fake_img)
print(fake_img.shape)
"""
def __init__(self, mode="CHW", to_rgb=True):
assert mode in [
"CHW"
], "Only support 'CHW' mode, but received mode: {}".format(mode)
self.mode = mode
self.to_rgb = to_rgb
def __call__(self, img):
if self.to_rgb:
img = img[..., ::-1]
if self.mode == "CHW":
return img.transpose((2, 0, 1))
return img
class GaussianNoise(object):
"""Add random gaussian noise to the input data.
Gaussian noise is generated with given mean and std.
Args:
mean (float): Gaussian mean used to generate noise.
std (float): Gaussian standard deviation used to generate noise.
Examples:
.. code-block:: python
import numpy as np
from paddle.vision.transforms import GaussianNoise
transform = GaussianNoise()
fake_img = np.random.rand(500, 500, 3).astype('float32')
fake_img = transform(fake_img)
print(fake_img.shape)
"""
def __init__(self, mean=0.0, std=1.0):
self.mean = np.array(mean, dtype=np.float32)
self.std = np.array(std, dtype=np.float32)
def __init__(self, order=(2, 0, 1), keys=None):
super(Transpose, self).__init__(keys)
self.order = order
def _apply_image(self, img):
if F._is_pil_image(img):
img = np.asarray(img)
def __call__(self, img):
dtype = img.dtype
noise = np.random.normal(self.mean, self.std, img.shape) * 255
img = img + noise.astype(np.float32)
return np.clip(img, 0, 255).astype(dtype)
return img.transpose(self.order)
class BrightnessTransform(object):
class BrightnessTransform(BaseTransform):
"""Adjust brightness of the image.
Args:
value (float): How much to adjust the brightness. Can be any
non negative number. 0 gives the original image
keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import BrightnessTransform
transform = BrightnessTransform(0.4)
fake_img = np.random.rand(500, 500, 3).astype('float32')
fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
fake_img = transform(fake_img)
print(fake_img.shape)
"""
def __init__(self, value):
if value < 0:
raise ValueError("brightness value should be non-negative")
self.value = value
def __init__(self, value, keys=None):
super(BrightnessTransform, self).__init__(keys)
self.value = _check_input(value, 'brightness')
def __call__(self, img):
if self.value == 0:
def _apply_image(self, img):
if self.value is None:
return img
dtype = img.dtype
img = img.astype(np.float32)
alpha = np.random.uniform(max(0, 1 - self.value), 1 + self.value)
img = img * alpha
return img.clip(0, 255).astype(dtype)
brightness_factor = random.uniform(self.value[0], self.value[1])
return F.adjust_brightness(img, brightness_factor)
class ContrastTransform(object):
class ContrastTransform(BaseTransform):
"""Adjust contrast of the image.
Args:
value (float): How much to adjust the contrast. Can be any
non negative number. 0 gives the original image
keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import ContrastTransform
transform = ContrastTransform(0.4)
fake_img = np.random.rand(500, 500, 3).astype('float32')
fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
fake_img = transform(fake_img)
print(fake_img.shape)
"""
def __init__(self, value):
def __init__(self, value, keys=None):
super(ContrastTransform, self).__init__(keys)
if value < 0:
raise ValueError("contrast value should be non-negative")
self.value = value
self.value = _check_input(value, 'contrast')
def __call__(self, img):
if self.value == 0:
def _apply_image(self, img):
if self.value is None:
return img
cv2 = try_import('cv2')
dtype = img.dtype
img = img.astype(np.float32)
alpha = np.random.uniform(max(0, 1 - self.value), 1 + self.value)
img = img * alpha + cv2.cvtColor(img, cv2.COLOR_BGR2GRAY).mean() * (
1 - alpha)
return img.clip(0, 255).astype(dtype)
contrast_factor = random.uniform(self.value[0], self.value[1])
return F.adjust_contrast(img, contrast_factor)
class SaturationTransform(object):
class SaturationTransform(BaseTransform):
"""Adjust saturation of the image.
Args:
value (float): How much to adjust the saturation. Can be any
non negative number. 0 gives the original image
keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import SaturationTransform
transform = SaturationTransform(0.4)
fake_img = np.random.rand(500, 500, 3).astype('float32')
fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
fake_img = transform(fake_img)
print(fake_img.shape)
"""
def __init__(self, value):
if value < 0:
raise ValueError("saturation value should be non-negative")
self.value = value
def __init__(self, value, keys=None):
super(SaturationTransform, self).__init__(keys)
self.value = _check_input(value, 'saturation')
def __call__(self, img):
if self.value == 0:
def _apply_image(self, img):
if self.value is None:
return img
cv2 = try_import('cv2')
saturation_factor = random.uniform(self.value[0], self.value[1])
return F.adjust_saturation(img, saturation_factor)
dtype = img.dtype
img = img.astype(np.float32)
alpha = np.random.uniform(max(0, 1 - self.value), 1 + self.value)
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray_img = gray_img[..., np.newaxis]
img = img * alpha + gray_img * (1 - alpha)
return img.clip(0, 255).astype(dtype)
class HueTransform(object):
class HueTransform(BaseTransform):
"""Adjust hue of the image.
Args:
value (float): How much to adjust the hue. Can be any number
between 0 and 0.5, 0 gives the original image
keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import HueTransform
transform = HueTransform(0.4)
fake_img = np.random.rand(500, 500, 3).astype('float32')
fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
fake_img = transform(fake_img)
print(fake_img.shape)
"""
def __init__(self, value):
if value < 0 or value > 0.5:
raise ValueError("hue value should be in [0.0, 0.5]")
self.value = value
def __init__(self, value, keys=None):
super(HueTransform, self).__init__(keys)
self.value = _check_input(
value, 'hue', center=0, bound=(-0.5, 0.5), clip_first_on_zero=False)
def __call__(self, img):
if self.value == 0:
def _apply_image(self, img):
if self.value is None:
return img
cv2 = try_import('cv2')
dtype = img.dtype
img = img.astype(np.uint8)
hsv_img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV_FULL)
h, s, v = cv2.split(hsv_img)
alpha = np.random.uniform(-self.value, self.value)
h = h.astype(np.uint8)
# uint8 addition take cares of rotation across boundaries
with np.errstate(over="ignore"):
h += np.uint8(alpha * 255)
hsv_img = cv2.merge([h, s, v])
return cv2.cvtColor(hsv_img, cv2.COLOR_HSV2BGR_FULL).astype(dtype)
hue_factor = random.uniform(self.value[0], self.value[1])
return F.adjust_hue(img, hue_factor)
class ColorJitter(object):
class ColorJitter(BaseTransform):
"""Randomly change the brightness, contrast, saturation and hue of an image.
Args:
......@@ -800,42 +848,74 @@ class ColorJitter(object):
Chosen uniformly from [max(0, 1 - saturation), 1 + saturation]. Should be non negative numbers.
hue: How much to jitter hue.
Chosen uniformly from [-hue, hue]. Should have 0<= hue <= 0.5.
keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import ColorJitter
transform = ColorJitter(0.4)
transform = ColorJitter(0.4, 0.4, 0.4, 0.4)
fake_img = np.random.rand(500, 500, 3).astype('float32')
fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
fake_img = transform(fake_img)
print(fake_img.shape)
"""
def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
def __init__(self, brightness=0, contrast=0, saturation=0, hue=0,
keys=None):
super(ColorJitter, self).__init__(keys)
self.brightness = brightness
self.contrast = contrast
self.saturation = saturation
self.hue = hue
def _get_param(self, brightness, contrast, saturation, hue):
"""Get a randomized transform to be applied on image.
Arguments are same as that of __init__.
Returns:
Transform which randomly adjusts brightness, contrast and
saturation in a random order.
"""
transforms = []
if brightness != 0:
transforms.append(BrightnessTransform(brightness))
if contrast != 0:
transforms.append(ContrastTransform(contrast))
if saturation != 0:
transforms.append(SaturationTransform(saturation))
if hue != 0:
transforms.append(HueTransform(hue))
if brightness is not None:
transforms.append(BrightnessTransform(brightness, self.keys))
if contrast is not None:
transforms.append(ContrastTransform(contrast, self.keys))
if saturation is not None:
transforms.append(SaturationTransform(saturation, self.keys))
if hue is not None:
transforms.append(HueTransform(hue, self.keys))
random.shuffle(transforms)
self.transforms = Compose(transforms)
transform = Compose(transforms)
def __call__(self, img):
return self.transforms(img)
return transform
def _apply_image(self, img):
"""
Args:
img (PIL Image): Input image.
class RandomCrop(object):
Returns:
PIL Image: Color jittered image.
"""
transform = self._get_param(self.brightness, self.contrast,
self.saturation, self.hue)
return transform(img)
class RandomCrop(BaseTransform):
"""Crops the given CV Image at a random location.
Args:
......@@ -847,159 +927,88 @@ class RandomCrop(object):
top, right, bottom borders respectively. Default: 0.
pad_if_needed (boolean|optional): It will pad the image if smaller than the
desired size to avoid raising an exception. Default: False.
keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import RandomCrop
transform = RandomCrop(224)
fake_img = np.random.rand(500, 500, 3).astype('float32')
fake_img = Image.fromarray((np.random.rand(324, 300, 3) * 255.).astype(np.uint8))
fake_img = transform(fake_img)
print(fake_img.shape)
print(fake_img.size)
"""
def __init__(self, size, padding=0, pad_if_needed=False):
def __init__(self,
size,
padding=None,
pad_if_needed=False,
fill=0,
padding_mode='constant',
keys=None):
super(RandomCrop, self).__init__(keys)
if isinstance(size, numbers.Number):
self.size = (int(size), int(size))
else:
self.size = size
self.padding = padding
self.pad_if_needed = pad_if_needed
self.fill = fill
self.padding_mode = padding_mode
def _get_params(self, img, output_size):
def _get_param(self, img, output_size):
"""Get parameters for ``crop`` for a random crop.
Args:
img (numpy.ndarray): Image to be cropped.
img (PIL Image): Image to be cropped.
output_size (tuple): Expected output size of the crop.
Returns:
tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
"""
h, w, _ = img.shape
w, h = _get_image_size(img)
th, tw = output_size
if w == tw and h == th:
return 0, 0, h, w
try:
i = random.randint(0, h - th)
except ValueError:
i = random.randint(h - th, 0)
try:
j = random.randint(0, w - tw)
except ValueError:
j = random.randint(w - tw, 0)
i = random.randint(0, h - th)
j = random.randint(0, w - tw)
return i, j, th, tw
def __call__(self, img):
def _apply_image(self, img):
"""
Args:
img (numpy.ndarray): Image to be cropped.
Returns:
numpy.ndarray: Cropped image.
img (PIL Image): Image to be cropped.
Returns:
PIL Image: Cropped image.
"""
if self.padding > 0:
img = F.pad(img, self.padding)
if self.padding is not None:
img = F.pad(img, self.padding, self.fill, self.padding_mode)
w, h = _get_image_size(img)
# pad the width if needed
if self.pad_if_needed and img.shape[1] < self.size[1]:
img = F.pad(img, (int((1 + self.size[1] - img.shape[1]) / 2), 0))
if self.pad_if_needed and w < self.size[1]:
img = F.pad(img, (self.size[1] - w, 0), self.fill,
self.padding_mode)
# pad the height if needed
if self.pad_if_needed and img.shape[0] < self.size[0]:
img = F.pad(img, (0, int((1 + self.size[0] - img.shape[0]) / 2)))
i, j, h, w = self._get_params(img, self.size)
return img[i:i + h, j:j + w]
class RandomErasing(object):
"""Randomly selects a rectangle region in an image and erases its pixels.
``Random Erasing Data Augmentation`` by Zhong et al.
See https://arxiv.org/pdf/1708.04896.pdf
Args:
prob (float): probability that the random erasing operation will be performed.
scale (tuple): range of proportion of erased area against input image. Should be (min, max).
ratio (float): range of aspect ratio of erased area.
value (float|list|tuple): erasing value. If a single int, it is used to
erase all pixels. If a tuple of length 3, it is used to erase
R, G, B channels respectively. Default: 0.
Examples:
.. code-block:: python
import numpy as np
from paddle.vision.transforms import RandomCrop
transform = RandomCrop(224)
fake_img = np.random.rand(500, 500, 3).astype('float32')
fake_img = transform(fake_img)
print(fake_img.shape)
"""
def __init__(self,
prob=0.5,
scale=(0.02, 0.4),
ratio=0.3,
value=[0., 0., 0.]):
assert isinstance(value, (
float, Sequence
)), "Expected type of value in [float, list, tupue], but got {}".format(
type(value))
assert scale[0] <= scale[1], "scale range should be of kind (min, max)!"
if isinstance(value, float):
self.value = [value, value, value]
else:
self.value = value
self.p = prob
self.scale = scale
self.ratio = ratio
def __call__(self, img):
if random.uniform(0, 1) > self.p:
return img
for _ in range(100):
area = img.shape[0] * img.shape[1]
target_area = random.uniform(self.scale[0], self.scale[1]) * area
aspect_ratio = random.uniform(self.ratio, 1 / self.ratio)
h = int(round(math.sqrt(target_area * aspect_ratio)))
w = int(round(math.sqrt(target_area / aspect_ratio)))
if self.pad_if_needed and h < self.size[0]:
img = F.pad(img, (0, self.size[0] - h), self.fill,
self.padding_mode)
if w < img.shape[1] and h < img.shape[0]:
x1 = random.randint(0, img.shape[0] - h)
y1 = random.randint(0, img.shape[1] - w)
i, j, h, w = self._get_param(img, self.size)
if len(img.shape) == 3 and img.shape[2] == 3:
img[x1:x1 + h, y1:y1 + w, 0] = self.value[0]
img[x1:x1 + h, y1:y1 + w, 1] = self.value[1]
img[x1:x1 + h, y1:y1 + w, 2] = self.value[2]
else:
img[x1:x1 + h, y1:y1 + w] = self.value[1]
return img
return img
return F.crop(img, i, j, h, w)
class Pad(object):
class Pad(BaseTransform):
"""Pads the given CV Image on all sides with the given "pad" value.
Args:
......@@ -1020,64 +1029,73 @@ class Pad(object):
``symmetric`` menas pads with reflection of image (repeating the last value on the edge)
padding ``[1, 2, 3, 4]`` with 2 elements on both sides in symmetric mode
will result in ``[2, 1, 1, 2, 3, 4, 4, 3]``.
keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import Pad
transform = Pad(2)
fake_img = np.random.rand(500, 500, 3).astype('float32')
fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
fake_img = transform(fake_img)
print(fake_img.shape)
print(fake_img.size)
"""
def __init__(self, padding, fill=0, padding_mode='constant'):
def __init__(self, padding, fill=0, padding_mode='constant', keys=None):
assert isinstance(padding, (numbers.Number, list, tuple))
assert isinstance(fill, (numbers.Number, str, list, tuple))
assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric']
if isinstance(padding,
collections.Sequence) and len(padding) not in [2, 4]:
if isinstance(padding, list):
padding = tuple(padding)
if isinstance(fill, list):
fill = tuple(fill)
if isinstance(padding, Sequence) and len(padding) not in [2, 4]:
raise ValueError(
"Padding must be an int or a 2, or 4 element tuple, not a " +
"{} element tuple".format(len(padding)))
super(Pad, self).__init__(keys)
self.padding = padding
self.fill = fill
self.padding_mode = padding_mode
def __call__(self, img):
def _apply_image(self, img):
"""
Args:
img (numpy.ndarray): Image to be padded.
img (PIL Image): Image to be padded.
Returns:
numpy.ndarray: Padded image.
PIL Image: Padded image.
"""
return F.pad(img, self.padding, self.fill, self.padding_mode)
class RandomRotate(object):
class RandomRotation(BaseTransform):
"""Rotates the image by angle.
Args:
degrees (sequence or float or int): Range of degrees to select from.
If degrees is a number instead of sequence like (min, max), the range of degrees
will be (-degrees, +degrees) clockwise order.
interpolation (int, optional): Interpolation mode of resize. Default: 1.
0 : cv2.INTER_NEAREST
1 : cv2.INTER_LINEAR
2 : cv2.INTER_CUBIC
3 : cv2.INTER_AREA
4 : cv2.INTER_LANCZOS4
5 : cv2.INTER_LINEAR_EXACT
7 : cv2.INTER_MAX
8 : cv2.WARP_FILL_OUTLIERS
16: cv2.WARP_INVERSE_MAP
interpolation (int|str, optional): Interpolation method. Default: 'bilinear'.
resample (int|str, optional): An optional resampling filter. If omitted, or if the
image has only one channel, it is set to PIL.Image.NEAREST or cv2.INTER_NEAREST
according the backend. when use pil backend, support method are as following:
- "nearest": Image.NEAREST,
- "bilinear": Image.BILINEAR,
- "bicubic": Image.BICUBIC
when use cv2 backend, support method are as following:
- "nearest": cv2.INTER_NEAREST,
- "bilinear": cv2.INTER_LINEAR,
- "bicubic": cv2.INTER_CUBIC
expand (bool|optional): Optional expansion flag. Default: False.
If true, expands the output to make it large enough to hold the entire rotated image.
If false or omitted, make the output image the same size as the input image.
......@@ -1085,24 +1103,31 @@ class RandomRotate(object):
center (2-tuple|optional): Optional center of rotation.
Origin is the upper left corner.
Default is the center of the image.
keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import RandomRotation
from paddle.vision.transforms import RandomRotate
transform = RandomRotate(90)
transform = RandomRotation(90)
fake_img = np.random.rand(500, 400, 3).astype('float32')
fake_img = Image.fromarray((np.random.rand(200, 150, 3) * 255.).astype(np.uint8))
fake_img = transform(fake_img)
print(fake_img.shape)
print(fake_img.size)
"""
def __init__(self, degrees, interpolation=1, expand=False, center=None):
def __init__(self,
degrees,
resample=False,
expand=False,
center=None,
fill=0,
keys=None):
if isinstance(degrees, numbers.Number):
if degrees < 0:
raise ValueError(
......@@ -1114,37 +1139,39 @@ class RandomRotate(object):
"If degrees is a sequence, it must be of len 2.")
self.degrees = degrees
self.interpolation = interpolation
super(RandomRotation, self).__init__(keys)
self.resample = resample
self.expand = expand
self.center = center
self.fill = fill
def _get_params(self, degrees):
"""Get parameters for ``rotate`` for a random rotation.
Returns:
sequence: params to be passed to ``rotate`` for random rotation.
"""
def _get_param(self, degrees):
angle = random.uniform(degrees[0], degrees[1])
return angle
def __call__(self, img):
def _apply_image(self, img):
"""
img (np.ndarray): Image to be rotated.
Args:
img (PIL.Image|np.array): Image to be rotated.
Returns:
np.ndarray: Rotated image.
PIL.Image or np.array: Rotated image.
"""
angle = self._get_params(self.degrees)
angle = self._get_param(self.degrees)
return F.rotate(img, angle, self.interpolation, self.expand,
self.center)
return F.rotate(img, angle, self.resample, self.expand, self.center,
self.fill)
class Grayscale(object):
class Grayscale(BaseTransform):
"""Converts image to grayscale.
Args:
output_channels (int): (1 or 3) number of channels desired for output image
num_output_channels (int): (1 or 3) number of channels desired for output image
keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
Returns:
CV Image: Grayscale version of the input.
- If output_channels == 1 : returned image is single channel
......@@ -1155,25 +1182,27 @@ class Grayscale(object):
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision.transforms import Grayscale
transform = Grayscale()
fake_img = np.random.rand(500, 400, 3).astype('float32')
fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
fake_img = transform(fake_img)
print(fake_img.shape)
print(np.array(fake_img).shape)
"""
def __init__(self, output_channels=1):
self.output_channels = output_channels
def __init__(self, num_output_channels=1, keys=None):
super(Grayscale, self).__init__(keys)
self.num_output_channels = num_output_channels
def __call__(self, img):
def _apply_image(self, img):
"""
Args:
img (numpy.ndarray): Image to be converted to grayscale.
img (PIL Image): Image to be converted to grayscale.
Returns:
numpy.ndarray: Randomly grayscaled image.
PIL Image: Randomly grayscaled image.
"""
return F.to_grayscale(img, num_output_channels=self.output_channels)
return F.to_grayscale(img, self.num_output_channels)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册