未验证 提交 15158927 编写于 作者: X xiemoyuan 提交者: GitHub

[Docs] Modified the docs of some api for supporting list/tuple args. (#32360)

* fixed docs.

* Fixed docs. test=document_fix

code bak.

fixed docs. test=document_fix

* Revert to previous version of python/paddle/fluid/backward.py

* fixed bugs.

* test=document_fix. Fixed examples.
上级 23d3e36a
......@@ -28,10 +28,10 @@ def auto_cast(enable=True, custom_white_list=None, custom_black_list=None):
Args:
enable(bool, optional): Enable auto-mixed-precision or not. Default is True.
custom_white_list(set|list, optional): The custom white_list. It's the set of ops that support
custom_white_list(set|list|tuple, optional): The custom white_list. It's the set of ops that support
fp16 calculation and are considered numerically-safe and performance-critical. These ops
will be converted to fp16.
custom_black_list(set|list, optional): The custom black_list. The set of ops that support fp16
custom_black_list(set|list|tuple, optional): The custom black_list. The set of ops that support fp16
calculation and are considered numerically-dangerous and whose effects may also be
observed in downstream ops. These ops will not be converted to fp16.
......
......@@ -662,7 +662,7 @@ def scatter(tensor, tensor_list=None, src=0, group=None, use_calc_stream=True):
Args:
tensor (Tensor): The output Tensor. Its data type
should be float16, float32, float64, int32 or int64.
tensor_list (list): A list of Tensors to scatter. Every element in the list must be a Tensor whose data type
tensor_list (list|tuple): A list/tuple of Tensors to scatter. Every element in the list must be a Tensor whose data type
should be float16, float32, float64, int32 or int64. Default value is None.
src (int): The source rank id. Default value is 0.
group (Group): The group instance return by new_group or None for global default group.
......@@ -679,6 +679,8 @@ def scatter(tensor, tensor_list=None, src=0, group=None, use_calc_stream=True):
import paddle
from paddle.distributed import init_parallel_env
# required: gpu
paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
init_parallel_env()
if paddle.distributed.ParallelEnv().local_rank == 0:
......
......@@ -24,7 +24,7 @@ def wait_server_ready(endpoints):
port readiness.
Args:
endpoints (list): endpoints string list, like:
endpoints (list|tuple): endpoints string list, like:
["127.0.0.1:8080", "127.0.0.1:8081"]
Examples:
......
......@@ -325,7 +325,7 @@ def spawn(func, args=(), nprocs=-1, join=True, daemon=False, **options):
func (function): The target function is called by spawned process.
This function need to be able to pickled, so it must be defined
at the top level of a module.
args (tuple, optional): Arguments passed to ``func``.
args (list|tuple, optional): Arguments passed to ``func``.
nprocs (int, optional): Number of processed to start. Default: -1.
when nprocs is -1, the available device will be obtained from
the environment variable when the model is executed: If use GPU,
......
......@@ -233,7 +233,7 @@ class TensorDataset(Dataset):
each sample by indexing tensors in the 1st dimension.
Args:
tensors(list of Tensor): tensors with same shape in the 1st dimension.
tensors(list|tuple): A list/tuple of tensors with same shape in the 1st dimension.
Returns:
Dataset: a Dataset instance wrapping tensors.
......
......@@ -418,7 +418,7 @@ def cuda_places(device_ids=None):
[paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
Parameters:
device_ids (list or tuple of int, optional): list of GPU device ids.
device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
Returns:
list of paddle.CUDAPlace: Created GPU place list.
......@@ -429,6 +429,8 @@ def cuda_places(device_ids=None):
import paddle
import paddle.static as static
# required: gpu
paddle.enable_static()
cuda_places = static.cuda_places()
......
......@@ -1913,7 +1913,7 @@ def load(program, model_path, executor=None, var_list=None):
model_path(str): The file prefix store the program
executor(Executor, optional): The executor used for initialize the parameter
When startup program is not run.
var_list(list, optional): The Tensor list to load single model file saved with
var_list(list|tuple, optional): The Tensor list/tuple to load single model file saved with
[ save_params, save_persistables, save_vars ].
Default: None
......@@ -2103,7 +2103,7 @@ def load_program_state(model_path, var_list=None):
Args:
model_path(str): The file prefix store the program
var_list(list, optional): The Tensor list to load saved with
var_list(list|tuple, optional): The Tensor list/tuple to load saved with
[ save_params, save_persistables, save_vars ].
Default: None.
The var_list is only used to get name,
......
......@@ -148,7 +148,7 @@ def create_global_var(shape,
This function creates a new tensor variable with value in the global block(block 0).
Parameters:
shape (list of int): Shape of the variable
shape (list[int]|tuple[int]): Shape of the variable
value (float): The value of the variable. The new created
variable will be filled with it.
dtype (str): Data type of the variable
......
......@@ -81,7 +81,7 @@ def set_cuda_rng_state(state_list):
Sets generator state for all cuda generators
Args:
state_list(list): The cuda states to set back to cuda generators. state_list is obtained from get_cuda_rng_state().
state_list(list|tuple): The cuda states to set back to cuda generators. state_list is obtained from get_cuda_rng_state().
Returns:
None
......
......@@ -182,7 +182,7 @@ class Accuracy(Metric):
Encapsulates accuracy metric logic.
Args:
topk (int|tuple(int)): Number of top elements to look at
topk (int|list[int]|tuple[int]): Number of top elements to look at
for computing accuracy. Default is (1,).
name (str, optional): String name of the metric instance. Default
is `acc`.
......
......@@ -207,7 +207,7 @@ def interpolate(x,
size (list|tuple|Tensor|None): Output shape of image resize
layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w)
when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor.
Default: None. If a list, each element can be an integer or a Tensor of shape: [1].
Default: None. If a list/tuple, each element can be an integer or a Tensor of shape: [1].
If a Tensor, its dimensions size should be a 1.
scale_factor (float|Tensor|list|tuple|None): The multiplier for the input height or width. At
least one of :attr:`size` or :attr:`scale_factor` must be set.
......@@ -638,7 +638,7 @@ def upsample(x,
size (list|tuple|Tensor|None): Output shape of image resize
layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w)
when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor.
Default: None. If a list, each element can be an integer or a Tensor of shape: [1].
Default: None. If a list/tuple, each element can be an integer or a Tensor of shape: [1].
If a Tensor , its dimensions size should be a 1.
scale_factor (float|Tensor|list|tuple|None): The multiplier for the input height or width. At
least one of :attr:`size` or :attr:`scale_factor` must be set.
......
......@@ -218,7 +218,7 @@ def conv1d(x,
weight (Tensor): The convolution kernel with shape [M, C/g, K], where M is
the number of output channels, g is the number of groups, K is the kernel's size.
bias (Tensor, optional): The bias with shape [M,]. Default: None.
stride (int or tuple, optional): The stride size. If stride is a tuple, it must
stride (int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
contain one integers, (stride_size). Default: 1.
padding(int|str|tuple|list, optional): The padding size. Padding could be in one of the following forms.
1. a string in ['valid', 'same'].
......@@ -227,7 +227,7 @@ def conv1d(x,
4. a list[int] or tuple[int] whose length is 2. It has the form [pad_before, pad_after].
5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
The default value is 0.
dilation (int or tuple, optional): The dilation size. If dilation is a tuple, it must
dilation (int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
contain one integer, (dilation_size). Default: 1.
groups (int, optional): The groups number of the conv1d function. According to grouped
convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
......@@ -250,7 +250,7 @@ def conv1d(x,
ValueError: If the channel dimension of the input is less than or equal to zero.
ValueError: If `data_format` is not "NCL" or "NLC".
ValueError: If `padding` is a string, but not "SAME" or "VALID".
ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0
ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0
or the element corresponding to the input's channel is not 0.
ShapeError: If the input is not 3-D Tensor.
ShapeError: If the input's dimension size and filter's dimension size not equal.
......@@ -451,8 +451,8 @@ def conv2d(x,
the number of output channels, g is the number of groups, kH is the filter's
height, kW is the filter's width.
bias (Tensor, optional): The bias with shape [M,].
stride (int|tuple): The stride size. It means the stride in convolution.
If stride is a tuple, it must contain two integers, (stride_height, stride_width).
stride (int|list|tuple): The stride size. It means the stride in convolution.
If stride is a list/tuple, it must contain two integers, (stride_height, stride_width).
Otherwise, stride_height = stride_width = stride. Default: stride = 1.
padding (string|int|list|tuple): The padding size. It means the number of zero-paddings
on both sides for each dimension.If `padding` is a string, either 'VALID' or
......@@ -464,8 +464,8 @@ def conv2d(x,
when `data_format` is `"NHWC"`, `padding` can be in the form
`[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
Default: padding = 0.
dilation (int|tuple): The dilation size. It means the spacing between the kernel
points. If dilation is a tuple, it must contain two integers, (dilation_height,
dilation (int|list|tuple): The dilation size. It means the spacing between the kernel
points. If dilation is a list/tuple, it must contain two integers, (dilation_height,
dilation_width). Otherwise, dilation_height = dilation_width = dilation.
Default: dilation = 1.
groups (int): The groups number of the Conv2D Layer. According to grouped
......@@ -488,7 +488,7 @@ def conv2d(x,
ValueError: If `data_format` is not "NCHW" or "NHWC".
ValueError: If the channel dimension of the input is less than or equal to zero.
ValueError: If `padding` is a string, but not "SAME" or "VALID".
ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0
ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0
or the element corresponding to the input's channel is not 0.
ShapeError: If the input is not 4-D Tensor.
ShapeError: If the input's dimension size and filter's dimension size not equal.
......@@ -637,7 +637,7 @@ def conv1d_transpose(x,
K is the size of the kernel.
bias(Tensor, optional): The bias, a Tensor with shape [M, ].
stride(int|tuple|list, optional): The stride size. It means the stride in transposed convolution.
If stride is a tuple, it must contain one integer, `(stride_size)`.
If stride is a list/tuple, it must contain one integer, `(stride_size)`.
Default: stride = 1.
padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
`dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
......@@ -645,7 +645,7 @@ def conv1d_transpose(x,
If `padding` is a tuple or list, it could be in two forms:
`[pad]` or `[pad_left, pad_right]`. Default: padding = 0.
output_padding(int|list|tuple, optional): The count of zeros to be added to tail of each dimension.
If it is a tuple, it must contain one integer. Default: 0.
If it is a list/tuple, it must contain one integer. Default: 0.
groups(int, optional): The groups number of the conv1d transpose function. Inspired by
grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
when group=2, the first half of the filters is only connected to the
......@@ -653,10 +653,10 @@ def conv1d_transpose(x,
filters is only connected to the second half of the input channels.
Default: groups = 1.
dilation(int|tuple|list, optional): The dilation size. It means the spacing between the kernel points.
If dilation is a tuple, it must contain one integer, `(dilation_size)`.
If dilation is a list/tuple, it must contain one integer, `(dilation_size)`.
Default: dilation = 1.
output_size(int|tuple|list, optional): The output image size. If output size is a
tuple, it must contain one integer, `(feature_length)`. None if use
tuple/list, it must contain one integer, `(feature_length)`. None if use
filter_size(shape of weight), padding, and stride to calculate output_size.
data_format (str, optional): Specify the data format of the input, and the data format of the output
will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
......@@ -675,7 +675,7 @@ def conv1d_transpose(x,
Raises:
ValueError: If `data_format` is a string, but not "NCL" or "NLC".
ValueError: If `padding` is a string, but not "SAME" or "VALID".
ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0
ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0
or the element corresponding to the input's channel is not 0.
ValueError: If `output_size` and filter_size are None at the same time.
ValueError: If `output_padding` is greater than `stride`.
......@@ -900,7 +900,7 @@ def conv2d_transpose(x,
kH is the height of the kernel, and kW is the width of the kernel.
bias(Tensor, optional): The bias, a Tensor with shape [M, ].
stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution.
If stride is a tuple, it must contain two integers, (stride_height, stride_width).
If stride is a list/tuple, it must contain two integers, (stride_height, stride_width).
Otherwise, stride_height = stride_width = stride. Default: stride = 1.
padding(str|int|list|tuple, optional): The padding size. It means the number of zero-paddings
on both sides for each dimension. If `padding` is a string, either 'VALID' or
......@@ -921,10 +921,10 @@ def conv2d_transpose(x,
filters is only connected to the second half of the input channels.
Default: groups = 1.
dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points.
If dilation is a tuple, it must contain two integers, (dilation_height, dilation_width).
If dilation is a list/tuple, it must contain two integers, (dilation_height, dilation_width).
Otherwise, dilation_height = dilation_width = dilation. Default: dilation = 1.
output_size(int|tuple|list, optional): The output image size. If output size is a
tuple, it must contain two integers, (image_height, image_width). None if use
tuple/list, it must contain two integers, (image_height, image_width). None if use
filter_size(shape of weight), padding, and stride to calculate output_size.
data_format (str, optional): Specify the data format of the input, and the data format of the output
will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
......@@ -943,7 +943,7 @@ def conv2d_transpose(x,
Raises:
ValueError: If `data_format` is not "NCHW" or "NHWC".
ValueError: If `padding` is a string, but not "SAME" or "VALID".
ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0
ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0
or the element corresponding to the input's channel is not 0.
ValueError: If `output_size` and kernel_size are None at the same time.
ShapeError: If the input is not 4-D Tensor.
......@@ -1120,8 +1120,8 @@ def conv3d(x,
where M is the number of filters(output channels), g is the number of groups,
kD, kH, kW are the filter's depth, height and width respectively.
bias (Tensor, optional): The bias, a Tensor of shape [M, ].
stride (int|tuple): The stride size. It means the stride in convolution. If stride is a
tuple, it must contain three integers, (stride_depth, stride_height, stride_width).
stride (int|list|tuple): The stride size. It means the stride in convolution. If stride is a
list/tuple, it must contain three integers, (stride_depth, stride_height, stride_width).
Otherwise, stride_depth = stride_height = stride_width = stride. Default: stride = 1.
padding (string|int|list|tuple): The padding size. It means the number of zero-paddings
on both sides for each dimension. If `padding` is a string, either 'VALID' or
......@@ -1133,8 +1133,8 @@ def conv3d(x,
when `data_format` is `"NDHWC"`, `padding` can be in the form
`[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
Default: padding = 0.
dilation (int|tuple): The dilation size. It means the spacing between the kernel points.
If dilation is a tuple, it must contain three integers, (dilation_depth, dilation_height,
dilation (int|list|tuple): The dilation size. It means the spacing between the kernel points.
If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height,
dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation.
Default: dilation = 1.
groups (int): The groups number of the Conv3D Layer. According to grouped
......@@ -1292,7 +1292,7 @@ def conv3d_transpose(x,
kD, kH, kW are the filter's depth, height and width respectively.
bias (Tensor, optional): The bias, a Tensor of shape [M, ].
stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution.
If stride is a tuple, it must contain three integers, (stride_depth, stride_height,
If stride is a list/tuple, it must contain three integers, (stride_depth, stride_height,
stride_width). Otherwise, stride_depth = stride_height = stride_width = stride.
Default: stride = 1.
padding (string|int|list|tuple, optional): The padding size. It means the number of zero-paddings
......@@ -1314,11 +1314,11 @@ def conv3d_transpose(x,
filters is only connected to the second half of the input channels.
Default: groups=1
dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points.
If dilation is a tuple, it must contain three integers, (dilation_depth, dilation_height,
If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height,
dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation.
Default: dilation = 1.
output_size(int|list|tuple, optional): The output image size. If output size is a
tuple, it must contain three integers, (image_depth, image_height, image_width).
list/tuple, it must contain three integers, (image_depth, image_height, image_width).
None if use filter_size(shape of weight), padding, and stride to calculate output_size.
data_format (str, optional): Specify the data format of the input, and the data format of the output
will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
......@@ -1338,7 +1338,7 @@ def conv3d_transpose(x,
Raises:
ValueError: If `data_format` is not "NCDHW" or "NDHWC".
ValueError: If `padding` is a string, but not "SAME" or "VALID".
ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0
ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0
or the element corresponding to the input's channel is not 0.
ValueError: If `output_size` and kernel_size are None at the same time.
ShapeError: If the input is not 5-D Tensor.
......
......@@ -300,7 +300,7 @@ class Upsample(layers.Layer):
size (list|tuple|Tensor|None): Output shape of image resize
layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w)
when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor.
Default: None. If a list, each element can be an integer or a Tensor of shape: [1].
Default: None. If a list/tuple, each element can be an integer or a Tensor of shape: [1].
If a Tensor , its dimensions size should be a 1.
scale_factor (float|Tensor|list|tuple|None): The multiplier for the input height or width. At
least one of :attr:`size` or :attr:`scale_factor` must be set.
......@@ -419,7 +419,7 @@ class UpsamplingNearest2D(layers.Layer):
its data format is specified by :attr:`data_format`.
size (list|tuple|Tensor|None): Output shape of image resize
layer, the shape is (out_h, out_w) when input is a 4-D Tensor.
Default: None. If a list, each element can be an integer or a Tensor of shape: [1].
Default: None. If a list/tuple, each element can be an integer or a Tensor of shape: [1].
If a Tensor , its dimensions size should be a 1.
scale_factor (float|int|list|tuple|Tensor|None): The multiplier for the input height or width. At
least one of :attr:`size` or :attr:`scale_factor` must be set.
......@@ -506,7 +506,7 @@ class UpsamplingBilinear2D(layers.Layer):
its data format is specified by :attr:`data_format`.
size (list|tuple|Tensor|None): Output shape of image resize
layer, the shape is (out_h, out_w) when input is a 4-D Tensor.
Default: None. If a list, each element can be an integer or a Tensor of shape: [1].
Default: None. If a list/tuple, each element can be an integer or a Tensor of shape: [1].
If a Tensor , its dimensions size should be a 1.
scale_factor (float|int|list|tuple|Tensor|None): The multiplier for the input height or width. At
least one of :attr:`size` or :attr:`scale_factor` must be set.
......
......@@ -232,16 +232,16 @@ class Conv1D(_ConvNd):
in_channels(int): The number of channels in the input image.
out_channels(int): The number of filter. It is as same as the output
feature map.
kernel_size (int|tuple|list): The filter size. If kernel_size is a tuple,
kernel_size (int|tuple|list): The filter size. If kernel_size is a tuple/list,
it must contain one integer, (kernel_size).
stride (int|tuple|list, optional): The stride size. If stride is a tuple, it must
stride (int|tuple|list, optional): The stride size. If stride is a tuple/list, it must
contain one integer, (stride_size). Default: 1.
padding(int|str|tuple|list, optional): The size of zeros to be padded. It must be in one of the following forms.
1. a string in ['valid', 'same'].
2. an int, which means the feature map is zero paded by size of `padding` on both sides.
3. a list[int] or tuple[int] whose length is 1, which means the feature map is zero paded by size of `padding[0]` on both sides.
The default value is 0.
dilation (int|tuple|list, optional): The dilation size. If dilation is a tuple, it must
dilation (int|tuple|list, optional): The dilation size. If dilation is a tuple/list, it must
contain one integer, (dilation_size). Default: 1.
groups (int, optional): The groups number of the conv2d Layer. According to grouped
convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
......@@ -410,12 +410,12 @@ class Conv1DTranspose(_ConvNd):
in_channels(int): The number of channels in the input image.
out_channels(int): The number of the filter. It is as same as the output
feature map.
kernel_size(int|tuple|list, optional): The filter size. If kernel_size is a tuple,
kernel_size(int|tuple|list, optional): The filter size. If kernel_size is a tuple/list,
it must contain one integers, (kernel_size). None if
use output size to calculate kernel_size. Default: None. kernel_size and
output_size should not be None at the same time.
stride(int|tuple|list, optional): The stride size. It means the stride in transposed convolution.
If stride is a tuple, it must contain one integer, (stride_size).
If stride is a tuple/list, it must contain one integer, (stride_size).
Default: stride = 1.
padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
`dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
......@@ -423,7 +423,7 @@ class Conv1DTranspose(_ConvNd):
If `padding` is a tuple or list, it could be in two forms:
`[pad]` or `[pad_left, pad_right]`. Default: padding = 0.
output_padding(int|list|tuple, optional): The count of zeros to be added to tail of each dimension.
If it is a tuple, it must contain one integer. Default: 0.
If it is a tuple/list, it must contain one integer. Default: 0.
groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
when group=2, the first half of the filters is only connected to the
......@@ -432,7 +432,7 @@ class Conv1DTranspose(_ConvNd):
Default: groups = 1.
bias(bool, optional): Whether to use bias. Default: True.
dilation(int|tuple|list, optional): The dilation size. It means the spacing between the kernel points.
If dilation is a tuple, it must contain one integer, (dilation_size).
If dilation is a tuple/list, it must contain one integer, (dilation_size).
Default: dilation = 1.
weight_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
of conv1d_transpose. If it is set to None or one attribute of ParamAttr, conv1d_transpose
......@@ -451,7 +451,7 @@ class Conv1DTranspose(_ConvNd):
Shape:
- x(Tensor): 3-D tensor with shape (batch, in_channels, length) when data_format is "NCL" or shape (batch, length, in_channels) when data_format is "NLC".
- output_size(int|tuple|list, optional): The output image size. If output size is a tuple, it must contain one integer, (feature_length). None if use kernel_size, padding, output_padding and stride to calculate output_size. If output_size and kernel_size are specified at the same time, They should follow the formula above. Default: None. output_size and kernel_size should not be None at the same time.
- output_size(int|tuple|list, optional): The output image size. If output size is a tuple/list, it must contain one integer, (feature_length). None if use kernel_size, padding, output_padding and stride to calculate output_size. If output_size and kernel_size are specified at the same time, They should follow the formula above. Default: None. output_size and kernel_size should not be None at the same time.
- output(Tensor): 3-D tensor with same shape as input x.
Examples:
......@@ -555,7 +555,7 @@ class Conv2D(_ConvNd):
in_channels(int): The number of input channels in the input image.
out_channels(int): The number of output channels produced by the convolution.
kernel_size(int|list|tuple, optional): The size of the convolving kernel.
stride(int|list|tuple, optional): The stride size. If stride is a tuple, it must
stride(int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
contain three integers, (stride_H, stride_W). Otherwise, the
stride_H = stride_W = stride. The default value is 1.
padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
......@@ -565,7 +565,7 @@ class Conv2D(_ConvNd):
4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
The default value is 0.
dilation(int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
groups(int, optional): The groups number of the Conv3D Layer. According to grouped
......@@ -710,10 +710,10 @@ class Conv2DTranspose(_ConvNd):
Parameters:
in_channels(int): The number of channels in the input image.
out_channels(int): The number of channels produced by the convolution.
kernel_size(int|list|tuple): The kernel size. If kernel_size is a tuple,
kernel_size(int|list|tuple): The kernel size. If kernel_size is a list/tuple,
it must contain two integers, (kernel_size_H, kernel_size_W).
Otherwise, the kernel will be a square.
stride(int|list|tuple, optional): The stride size. If stride is a tuple, it must
stride(int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
contain two integers, (stride_H, stride_W). Otherwise, the
stride_H = stride_W = stride. Default: 1.
padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
......@@ -725,7 +725,7 @@ class Conv2DTranspose(_ConvNd):
The default value is 0.
output_padding(int|list|tuple, optional): Additional size added to one side
of each dimension in the output shape. Default: 0.
dilation(int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
contain two integers, (dilation_H, dilation_W). Otherwise, the
dilation_H = dilation_W = dilation. Default: 1.
groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
......@@ -866,7 +866,7 @@ class Conv3D(_ConvNd):
in_channels(int): The number of input channels in the input image.
out_channels(int): The number of output channels produced by the convolution.
kernel_size(int|list|tuple, optional): The size of the convolving kernel.
stride(int|list|tuple, optional): The stride size. If stride is a tuple, it must
stride(int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
stride_D = stride_H = stride_W = stride. The default value is 1.
padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
......@@ -876,7 +876,7 @@ class Conv3D(_ConvNd):
4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
The default value is 0.
dilation(int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
groups(int, optional): The groups number of the Conv3D Layer. According to grouped
......@@ -1037,11 +1037,11 @@ class Conv3DTranspose(_ConvNd):
Parameters:
in_channels(int): The number of channels in the input image.
out_channels(int): The number of channels produced by the convolution.
kernel_size(int|list|tuple): The kernel size. If kernel_size is a tuple,
kernel_size(int|list|tuple): The kernel size. If kernel_size is a list/tuple,
it must contain three integers, (kernel_size_D, kernel_size_H, kernel_size_W).
Otherwise, the kernel will be a square.
stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution.
If stride is a tuple, it must contain three integers, (stride_depth, stride_height,
If stride is a list/tuple, it must contain three integers, (stride_depth, stride_height,
stride_width). Otherwise, stride_depth = stride_height = stride_width = stride.
The default value is 1.
padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
......@@ -1053,7 +1053,7 @@ class Conv3DTranspose(_ConvNd):
The default value is 0.
output_padding(int|list|tuple, optional): Additional size added to one side
of each dimension in the output shape. Default: 0.
dilation(int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
......@@ -1071,11 +1071,6 @@ class Conv3DTranspose(_ConvNd):
If it is set to None or one attribute of ParamAttr, conv3d_transpose
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero. The default value is None.
output_size(int|list|tuple, optional): The output image size. If output size is a
tuple, it must contain two integers, (image_H, image_W). None if use
filter_size, padding, and stride to calculate output_size.
if output_size and filter_size are specified at the same time, They
should follow the formula above. Default: None.
data_format(str, optional): Data format that specifies the layout of input.
It can be "NCDHW" or "NDHWC". Default: "NCDHW".
......
......@@ -447,7 +447,7 @@ class LSTMCell(RNNCellBase):
Inputs:
- **inputs** (Tensor): shape `[batch_size, input_size]`, the input, corresponding to :math:`x_t` in the formula.
- **states** (tuple, optional): a tuple of two tensors, each of shape `[batch_size, hidden_size]`, the previous hidden state, corresponding to :math:`h_{t-1}, c_{t-1}` in the formula. When states is None, zero state is used. Defaults to None.
- **states** (list|tuple, optional): a list/tuple of two tensors, each of shape `[batch_size, hidden_size]`, the previous hidden state, corresponding to :math:`h_{t-1}, c_{t-1}` in the formula. When states is None, zero state is used. Defaults to None.
Returns:
- **outputs** (Tensor): shape `[batch_size, hidden_size]`, the output, corresponding to :math:`h_{t}` in the formula.
......@@ -1251,7 +1251,7 @@ class LSTM(RNNBase):
Inputs:
- **inputs** (Tensor): the input sequence. If `time_major` is True, the shape is `[time_steps, batch_size, input_size]`, else, the shape is `[batch_size, time_steps, hidden_size]`.
- **initial_states** (tuple, optional): the initial state, a tuple of (h, c), the shape of each is `[num_layers * num_directions, batch_size, hidden_size]`. If initial_state is not given, zero initial states are used.
- **initial_states** (list|tuple, optional): the initial state, a list/tuple of (h, c), the shape of each is `[num_layers * num_directions, batch_size, hidden_size]`. If initial_state is not given, zero initial states are used.
- **sequence_length** (Tensor, optional): shape `[batch_size]`, dtype: int64 or int32. The valid lengths of input sequences. Defaults to None. If `sequence_length` is not None, the inputs are treated as padded sequences. In each input sequence, elements whos time step index are not less than the valid length are treated as paddings.
Returns:
......
......@@ -461,14 +461,14 @@ class TransformerEncoderLayer(Layer):
normalization and post-precess includes dropout, residual connection.
Otherwise, no pre-process and post-precess includes dropout, residual
connection, layer normalization. Default False
weight_attr(ParamAttr|tuple, optional): To specify the weight parameter property.
If it is a tuple, `weight_attr[0]` would be used as `weight_attr` for
weight_attr(ParamAttr|list|tuple, optional): To specify the weight parameter property.
If it is a list/tuple, `weight_attr[0]` would be used as `weight_attr` for
MHA, and `weight_attr[1]` would be used as `weight_attr` for linear in FFN.
Otherwise, MHA and FFN both use it as `weight_attr` to create parameters.
Default: None, which means the default weight parameter property is used.
See usage for details in :code:`ParamAttr` .
bias_attr (ParamAttr|tuple|bool, optional): To specify the bias parameter property.
If it is a tuple, `bias_attr[0]` would be used as `bias_attr` for
bias_attr (ParamAttr|list|tuple|bool, optional): To specify the bias parameter property.
If it is a list/tuple, `bias_attr[0]` would be used as `bias_attr` for
MHA, and `bias_attr[1]` would be used as `bias_attr` for linear in FFN.
Otherwise, MHA and FFN both use it as `bias_attr` to create parameters.
The `False` value means the corresponding layer would not have trainable
......@@ -747,16 +747,16 @@ class TransformerDecoderLayer(Layer):
normalization and post-precess includes dropout, residual connection.
Otherwise, no pre-process and post-precess includes dropout, residual
connection, layer normalization. Default False
weight_attr(ParamAttr|tuple, optional): To specify the weight parameter property.
If it is a tuple, `weight_attr[0]` would be used as `weight_attr` for
weight_attr(ParamAttr|list|tuple, optional): To specify the weight parameter property.
If it is a list/tuple, `weight_attr[0]` would be used as `weight_attr` for
self attention, `weight_attr[1]` would be used as `weight_attr` for
cross attention, and `weight_attr[2]` would be used as `weight_attr`
for linear in FFN. Otherwise, the three sub-layers all uses it as
`weight_attr` to create parameters. Default: None, which means the
default weight parameter property is used. See usage for details
in :ref:`api_paddle_fluid_param_attr_ParamAttr` .
bias_attr (ParamAttr|tuple|bool, optional): To specify the bias parameter property.
If it is a tuple, `bias_attr[0]` would be used as `bias_attr` for
bias_attr (ParamAttr|list|tuple|bool, optional): To specify the bias parameter property.
If it is a list/tuple, `bias_attr[0]` would be used as `bias_attr` for
self attention, `bias_attr[1]` would be used as `bias_attr` for
cross attention, and `bias_attr[2]` would be used as `bias_attr`
for linear in FFN. Otherwise, the three sub-layers all uses it as
......@@ -1129,8 +1129,8 @@ class Transformer(Layer):
normalization and post-precess includes dropout, residual connection.
Otherwise, no pre-process and post-precess includes dropout, residual
connection, layer normalization. Default False
weight_attr(ParamAttr|tuple, optional): To specify the weight parameter property.
If it is a tuple, the length of `weight_attr` could be 1, 2 or 3. If it is 3,
weight_attr(ParamAttr|list|tuple, optional): To specify the weight parameter property.
If it is a list/tuple, the length of `weight_attr` could be 1, 2 or 3. If it is 3,
`weight_attr[0]` would be used as `weight_attr` for self attention, `weight_attr[1]`
would be used as `weight_attr` for cross attention of `TransformerDecoder`,
and `weight_attr[2]` would be used as `weight_attr` for linear in FFN.
......@@ -1142,8 +1142,8 @@ class Transformer(Layer):
Default: None, which means the default weight parameter property is used.
See usage for details
in :code:`ParamAttr` .
bias_attr (ParamAttr|tuple|bool, optional): To specify the bias parameter property.
If it is a tuple, the length of `bias_attr` could be 1, 2 or 3. If it is 3,
bias_attr (ParamAttr|list|tuple|bool, optional): To specify the bias parameter property.
If it is a list/tuple, the length of `bias_attr` could be 1, 2 or 3. If it is 3,
`bias_attr[0]` would be used as `bias_attr` for self attention, `bias_attr[1]`
would be used as `bias_attr` for cross attention of `TransformerDecoder`,
and `bias_attr[2]` would be used as `bias_attr` for linear in FFN.
......
......@@ -40,7 +40,7 @@ class Adadelta(Optimizer):
It can be a float value, a ``Tensor`` with a float type or a LearningRateDecay. The default value is 0.001.
epsilon (float): a small float number for numeric stability. Default 1.0e-6.
rho (float): a floating point value indicating the decay rate. Default 0.95.
parameters (list, optional): List of ``Tensor`` to update to minimize ``loss``. \
parameters (list|tuple, optional): List/Tuple of ``Tensor`` to update to minimize ``loss``. \
This parameter is required in dygraph mode. \
The default value is None in static mode, at this time all parameters will be updated.
weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
......
......@@ -43,7 +43,7 @@ class Adagrad(Optimizer):
It can be a float value or a ``Variable`` with a float type.
epsilon (float, optional): A small float value for numerical stability.
The default value is 1e-06.
parameters (list, optional): List of ``Tensor`` to update to minimize ``loss``. \
parameters (list|tuple, optional): List/Tuple of ``Tensor`` to update to minimize ``loss``. \
This parameter is required in dygraph mode. \
The default value is None in static mode, at this time all parameters will be updated.
weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
......
......@@ -60,7 +60,7 @@ class Adam(Optimizer):
The default value is 0.999.
epsilon (float, optional): A small float value for numerical stability.
The default value is 1e-08.
parameters (list, optional): List of ``Tensor`` to update to minimize ``loss``. \
parameters (list|tuple, optional): List/Tuple of ``Tensor`` to update to minimize ``loss``. \
This parameter is required in dygraph mode. \
The default value is None in static mode, at this time all parameters will be updated.
weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
......
......@@ -53,7 +53,7 @@ class Adamax(Optimizer):
The default value is 0.999.
epsilon (float, optional): A small float value for numerical stability.
The default value is 1e-08.
parameters (list, optional): List of ``Tensor`` to update to minimize ``loss``. \
parameters (list|tuple, optional): List/Tuple of ``Tensor`` to update to minimize ``loss``. \
This parameter is required in dygraph mode. \
The default value is None in static mode, at this time all parameters will be updated.
weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
......
......@@ -43,7 +43,7 @@ class AdamW(Adam):
Args:
learning_rate (float|LRScheduler, optional): The learning rate used to update ``Parameter``.
It can be a float value or a LRScheduler. The default value is 0.001.
parameters (list, optional): List of ``Tensor`` names to update to minimize ``loss``. \
parameters (list|tuple, optional): List/Tuple of ``Tensor`` names to update to minimize ``loss``. \
This parameter is required in dygraph mode. \
The default value is None in static mode, at this time all parameters will be updated.
beta1 (float|Tensor, optional): The exponential decay rate for the 1st moment estimates.
......
......@@ -312,8 +312,8 @@ class PiecewiseDecay(LRScheduler):
learning_rate = 0.1
Args:
boundaries(list): A list of steps numbers. The type of element in the list is python int.
values(list): A list of learning rate values that will be picked during different epoch boundaries.
boundaries(list|tuple): A list/tuple of steps numbers. The type of element in the list is python int.
values(list|tuple): A list/tuple of learning rate values that will be picked during different epoch boundaries.
The type of element in the list is python float.
last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
......
......@@ -49,7 +49,7 @@ class Momentum(Optimizer):
learning_rate (float|Tensor|LearningRateDecay, optional): The learning rate used to update ``Parameter``.
It can be a float value, a ``Tensor`` with a float type or a LearningRateDecay. The default value is 0.001.
momentum (float): Momentum factor. The default value is 0.9.
parameters (list, optional): List of ``Tensor`` to update to minimize ``loss``. \
parameters (list|tuple, optional): List/Tuple of ``Tensor`` to update to minimize ``loss``. \
This parameter is required in dygraph mode. \
The default value is None in static mode, at this time all parameters will be updated.
weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
......
......@@ -53,7 +53,7 @@ class Optimizer(object):
Args:
learning_rate (float|LRScheduler): The learning rate used to update ``Parameter``.
It can be a float value or any subclass of ``LRScheduler`` .
parameters (list, optional): List of ``Tensor`` names to update to minimize ``loss``. \
parameters (list|tuple, optional): List/Tuple of ``Tensor`` names to update to minimize ``loss``. \
This parameter is required in dygraph mode. \
The default value is None in static mode, at this time all parameters will be updated.
weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
......
......@@ -78,7 +78,7 @@ class RMSProp(Optimizer):
the gradient; if False, by the uncentered second moment. Setting this to
True may help with training, but is slightly more expensive in terms of
computation and memory. Defaults to False.
parameters (list, optional): List of ``Tensor`` to update to minimize ``loss``. \
parameters (list|tuple, optional): List/Tuple of ``Tensor`` to update to minimize ``loss``. \
This parameter is required in dygraph mode. \
The default value is None in static mode, at this time all parameters will be updated.
weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
......
......@@ -30,7 +30,7 @@ class SGD(Optimizer):
Parameters:
learning_rate (float|Tensor|LearningRateDecay, optional): The learning rate used to update ``Parameter``.
It can be a float value, a ``Tensor`` with a float type or a LearningRateDecay. The default value is 0.001.
parameters (list, optional): List of ``Tensor`` to update to minimize ``loss``. \
parameters (list|tuple, optional): List/Tuple of ``Tensor`` to update to minimize ``loss``. \
This parameter is required in dygraph mode. \
The default value is None in static mode, at this time all parameters will be updated.
weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
......
......@@ -86,7 +86,7 @@ def fc(x,
out.shape = (1, 2)
Args:
x (Tensor|list of Tensor): A tensor or a list of tensor. The number of dimensions
x (Tensor|list[Tensor]|tuple[Tensor]): A tensor or a list/tuple of tensors. The number of dimensions
of each tensor is at least 2. The data type should be float16, float32 or float64.
size (int): The number of output units in this layer, which also means the feature
size of output tensor.
......@@ -233,16 +233,16 @@ def deform_conv2d(x,
deformable convolution v1.
num_filters(int): The number of filter. It is as same as the output
image channel.
filter_size (int|tuple): The filter size. If filter_size is a tuple,
filter_size (int|list|tuple): The filter size. If filter_size is a list/tuple,
it must contain two integers, (filter_size_H, filter_size_W).
Otherwise, the filter will be a square.
stride (int|tuple, Optional): The stride size. If stride is a tuple, it must
stride (int|list|tuple, Optional): The stride size. If stride is a list/tuple, it must
contain two integers, (stride_H, stride_W). Otherwise, the
stride_H = stride_W = stride. Default: stride = 1.
padding (int|tuple, Optional): The padding size. If padding is a tuple, it must
padding (int|list|tuple, Optional): The padding size. If padding is a list/tuple, it must
contain two integers, (padding_H, padding_W). Otherwise, the
padding_H = padding_W = padding. Default: padding = 0.
dilation (int|tuple, Optional): The dilation size. If dilation is a tuple, it must
dilation (int|list|tuple, Optional): The dilation size. If dilation is a list/tuple, it must
contain two integers, (dilation_H, dilation_W). Otherwise, the
dilation_H = dilation_W = dilation. Default: dilation = 1.
groups (int, Optional): The groups number of the deformable conv layer. According to
......
......@@ -132,7 +132,7 @@ def flip(x, axis, name=None):
Args:
x (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor x
should be float32, float64, int32, int64, bool.
axis (list): The axis(axes) to flip on. Negative indices for indexing from the end are accepted.
axis (list|tuple): The axis(axes) to flip on. Negative indices for indexing from the end are accepted.
name (str, optional): The default value is None. Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name` .
......@@ -545,7 +545,7 @@ def squeeze(x, axis=None, name=None):
Args:
x (Tensor): The input Tensor. Supported data type: float32, float64, bool, int8, int32, int64.
axis (int|list|tuple, optional): An integer or list of integers, indicating the dimensions to be squeezed. Default is None.
axis (int|list|tuple, optional): An integer or list/tuple of integers, indicating the dimensions to be squeezed. Default is None.
The range of axis is :math:`[-ndim(x), ndim(x))`.
If axis is negative, :math:`axis = axis + ndim(x)`.
If axis is None, all the dimensions of x of size 1 will be removed.
......
......@@ -752,7 +752,7 @@ def add_n(inputs, name=None):
[14, 16, 18]]
Args:
inputs (Tensor|list(Tensor)): A Tensor list. The shape and data type of the list elements should be consistent.
inputs (Tensor|list[Tensor]|tuple[Tensor]): A Tensor or a list/tuple of Tensors. The shape and data type of the list/tuple elements should be consistent.
Input can be multi-dimensional Tensor, and data types can be: float32, float64, int32, int64.
name(str, optional): The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`
......@@ -1082,7 +1082,7 @@ def max(x, axis=None, keepdim=False, name=None):
Args:
x(Tensor): A tensor, the data type is float32,
float64, int32, int64.
axis(list|int, optional): The axis along which the maximum is computed.
axis(int|list|tuple, optional): The axis along which the maximum is computed.
If :attr:`None`, compute the maximum over all elements of
`x` and return a Tensor with a single element,
otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
......@@ -1174,7 +1174,7 @@ def min(x, axis=None, keepdim=False, name=None):
Args:
x(Tensor): A tensor, the data type is float32, float64, int32, int64.
axis(list|int, optional): The axis along which the minimum is computed.
axis(int|list|tuple, optional): The axis along which the minimum is computed.
If :attr:`None`, compute the minimum over all elements of
`x` and return a Tensor with a single element,
otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
......
......@@ -454,13 +454,13 @@ def deform_conv2d(x,
the number of output channels, g is the number of groups, kH is the filter's
height, kW is the filter's width.
bias (Tensor, optional): The bias with shape [M,].
stride (int|list|tuple, optional): The stride size. If stride is a tuple, it must
stride (int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
contain two integers, (stride_H, stride_W). Otherwise, the
stride_H = stride_W = stride. Default: stride = 1.
padding (int|list|tuple, optional): The padding size. If padding is a tuple, it must
padding (int|list|tuple, optional): The padding size. If padding is a list/tuple, it must
contain two integers, (padding_H, padding_W). Otherwise, the
padding_H = padding_W = padding. Default: padding = 0.
dilation (int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
dilation (int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
contain two integers, (dilation_H, dilation_W). Otherwise, the
dilation_H = dilation_W = dilation. Default: dilation = 1.
deformable_groups (int): The number of deformable group partitions.
......@@ -644,13 +644,13 @@ class DeformConv2D(Layer):
in_channels(int): The number of input channels in the input image.
out_channels(int): The number of output channels produced by the convolution.
kernel_size(int|list|tuple): The size of the convolving kernel.
stride(int|list|tuple, optional): The stride size. If stride is a tuple, it must
stride(int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
contain three integers, (stride_H, stride_W). Otherwise, the
stride_H = stride_W = stride. The default value is 1.
padding (int|list|tuple, optional): The padding size. If padding is a tuple, it must
padding (int|list|tuple, optional): The padding size. If padding is a list/tuple, it must
contain two integers, (padding_H, padding_W). Otherwise, the
padding_H = padding_W = padding. Default: padding = 0.
dilation(int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
deformable_groups (int): The number of deformable group partitions.
......
......@@ -153,8 +153,8 @@ def pad(img, padding, fill=0, padding_mode='constant'):
Args:
img (PIL.Image|np.array): Image to be padded.
padding (int|list|tuple): Padding on each border. If a single int is provided this
is used to pad all borders. If tuple of length 2 is provided this is the padding
on left/right and top/bottom respectively. If a tuple of length 4 is provided
is used to pad all borders. If list/tuple of length 2 is provided this is the padding
on left/right and top/bottom respectively. If a list/tuple of length 4 is provided
this is the padding for the left, top, right and bottom borders
respectively.
fill (float, optional): Pixel fill value for constant fill. If a tuple of
......
......@@ -136,8 +136,8 @@ def pad(img, padding, fill=0, padding_mode='constant'):
Args:
img (np.array): Image to be padded.
padding (int|list|tuple): Padding on each border. If a single int is provided this
is used to pad all borders. If tuple of length 2 is provided this is the padding
on left/right and top/bottom respectively. If a tuple of length 4 is provided
is used to pad all borders. If list/tuple of length 2 is provided this is the padding
on left/right and top/bottom respectively. If a list/tuple of length 4 is provided
this is the padding for the left, top, right and bottom borders
respectively.
fill (float, optional): Pixel fill value for constant fill. If a tuple of
......
......@@ -141,8 +141,8 @@ def pad(img, padding, fill=0, padding_mode='constant'):
Args:
img (PIL.Image): Image to be padded.
padding (int|list|tuple): Padding on each border. If a single int is provided this
is used to pad all borders. If tuple of length 2 is provided this is the padding
on left/right and top/bottom respectively. If a tuple of length 4 is provided
is used to pad all borders. If list/tuple of length 2 is provided this is the padding
on left/right and top/bottom respectively. If a list/tuple of length 4 is provided
this is the padding for the left, top, right and bottom borders
respectively.
fill (float, optional): Pixel fill value for constant fill. If a tuple of
......
......@@ -86,7 +86,7 @@ class Compose(object):
together for a dataset transform.
Args:
transforms (list): List of transforms to compose.
transforms (list|tuple): List/Tuple of transforms to compose.
Returns:
A compose object which is callable, __call__ for this Compose
......@@ -608,8 +608,8 @@ class Normalize(BaseTransform):
``output[channel] = (input[channel] - mean[channel]) / std[channel]``
Args:
mean (int|float|list): Sequence of means for each channel.
std (int|float|list): Sequence of standard deviations for each channel.
mean (int|float|list|tuple): Sequence of means for each channel.
std (int|float|list|tuple): Sequence of standard deviations for each channel.
data_format (str, optional): Data format of img, should be 'HWC' or
'CHW'. Default: 'CHW'.
to_rgb (bool, optional): Whether to convert to rgb. Default: False.
......@@ -1022,11 +1022,11 @@ class Pad(BaseTransform):
Args:
padding (int|list|tuple): Padding on each border. If a single int is provided this
is used to pad all borders. If tuple of length 2 is provided this is the padding
on left/right and top/bottom respectively. If a tuple of length 4 is provided
is used to pad all borders. If list/tuple of length 2 is provided this is the padding
on left/right and top/bottom respectively. If a list/tuple of length 4 is provided
this is the padding for the left, top, right and bottom borders
respectively.
fill (int|list|tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
fill (int|list|tuple): Pixel fill value for constant fill. Default is 0. If a list/tuple of
length 3, it is used to fill R, G, B channels respectively.
This value is only used when the padding_mode is constant
padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册