From 12ed53c1f29775ec9c957f8f15f1b92ff11d0031 Mon Sep 17 00:00:00 2001 From: yangyaming Date: Mon, 8 Jan 2018 15:54:12 +0800 Subject: [PATCH] Inherit LoD from x to x_grad and enhance the unit test. --- paddle/operators/shrink_rnn_memory_op.cc | 1 + .../v2/fluid/tests/test_shrink_rnn_memory.py | 95 +++++++++++++------ 2 files changed, 69 insertions(+), 27 deletions(-) diff --git a/paddle/operators/shrink_rnn_memory_op.cc b/paddle/operators/shrink_rnn_memory_op.cc index b958e6c595..47948adde3 100644 --- a/paddle/operators/shrink_rnn_memory_op.cc +++ b/paddle/operators/shrink_rnn_memory_op.cc @@ -146,6 +146,7 @@ class ShrinkRNNMemoryGradInferShape : public framework::InferShapeBase { PADDLE_ENFORCE(context->HasOutput(framework::GradVarName("X"))); context->SetOutputDim(framework::GradVarName("X"), context->GetInputDim("X")); + context->ShareLoD("X", framework::GradVarName("X")); } }; diff --git a/python/paddle/v2/fluid/tests/test_shrink_rnn_memory.py b/python/paddle/v2/fluid/tests/test_shrink_rnn_memory.py index 9d8565b168..a14721b9aa 100644 --- a/python/paddle/v2/fluid/tests/test_shrink_rnn_memory.py +++ b/python/paddle/v2/fluid/tests/test_shrink_rnn_memory.py @@ -3,45 +3,86 @@ import paddle.v2.fluid.core as core from paddle.v2.fluid.executor import Executor import paddle.v2.fluid.layers as layers from paddle.v2.fluid.backward import append_backward -from paddle.v2.fluid.framework import default_main_program -import numpy +from paddle.v2.fluid.framework import default_main_program, switch_main_program +from paddle.v2.fluid.framework import Program +import numpy as np -main_program = default_main_program() - -class TestShrinkRNNMemory(unittest.TestCase): - def test_shrink_rnn_memory(self): +class TestShrinkRNNMemoryBase(unittest.TestCase): + def setUp(self): + self.main_program = Program() + switch_main_program(self.main_program) x = layers.data('x', shape=[100], dtype='float32') x.stop_gradient = False - table = layers.lod_rank_table(x=x) + rank_table_tensor = layers.data( + 'rank_table_tensor', shape=[1], dtype='float32', lod_level=1) + table = layers.lod_rank_table(x=rank_table_tensor) i = layers.zeros(dtype='int64', shape=[1]) - mem1 = layers.shrink_memory(x=x, i=i, table=table) + self.mem1 = layers.shrink_memory(x=x, i=i, table=table) i = layers.increment(x=i) i.stop_gradient = True - mem2 = layers.shrink_memory(x=mem1, i=i, table=table) + self.mem2 = layers.shrink_memory(x=self.mem1, i=i, table=table) i = layers.increment(x=i) i.stop_gradient = True - mem3 = layers.shrink_memory(x=mem2, i=i, table=table) + self.mem3 = layers.shrink_memory(x=self.mem2, i=i, table=table) + mem3_mean = layers.mean(x=self.mem3) + append_backward(loss=mem3_mean) + self.x_grad = self.main_program.global_block().var('x@GRAD') + + def sum_lodtensor(self, tensor): + sum_res = 0.0 + for i in xrange(np.product(tensor.get_dims())): + sum_res += tensor.get_float_element(i) + return sum_res + +class TestShrinkRNNMemoryReferLoD(TestShrinkRNNMemoryBase): + def test_refer_lod(self): cpu = core.CPUPlace() - tensor = core.LoDTensor() - tensor.set_lod([[0, 2, 5, 6]]) - tensor_np = numpy.random.random(size=(6, 100)).astype('float32') - tensor.set(tensor_np, cpu) + x_tensor = core.LoDTensor() + x_tensor.set_lod([[0, 2, 5, 6]]) + tensor_np = np.random.random(size=(6, 100)).astype('float32') + x_tensor.set(tensor_np, cpu) + + rank_table_tensor = core.LoDTensor() + rank_table_tensor.set_lod([[0, 1, 3, 6]]) + rank_table_tensor.set(np.random.random(size=(6, 1)).astype('float32'), + cpu) + exe = Executor(cpu) - outs = exe.run(feed={'x': tensor}, - fetch_list=[mem1, mem2, mem3], - return_numpy=False) - self.assertTrue(numpy.allclose(tensor_np[0:6], outs[0])) - self.assertTrue(numpy.allclose(tensor_np[0:5], outs[1])) - self.assertTrue(numpy.allclose(tensor_np[0:2], outs[2])) - - mem3_mean = layers.mean(x=mem3) - append_backward(loss=mem3_mean) - x_grad = exe.run( - feed={'x': tensor}, - fetch_list=[main_program.global_block().var('x@GRAD')])[0] - self.assertAlmostEqual(1.0, x_grad.sum(), delta=0.1) + outs = exe.run( + feed={'x': x_tensor, + 'rank_table_tensor': rank_table_tensor}, + fetch_list=[self.mem1, self.mem2, self.mem3, self.x_grad], + return_numpy=False) + self.assertTrue(np.allclose(tensor_np[0:6], outs[0])) + self.assertTrue(np.allclose(tensor_np[0:5], outs[1])) + self.assertTrue(np.allclose(tensor_np[0:2], outs[2])) + self.assertAlmostEqual(1.0, self.sum_lodtensor(outs[3]), delta=0.01) + + +class TestShrinkRNNMemoryNoLoD(TestShrinkRNNMemoryBase): + def test_no_lod(self): + cpu = core.CPUPlace() + x_tensor = core.LoDTensor() + tensor_np = np.random.random(size=(3, 100)).astype('float32') + x_tensor.set(tensor_np, cpu) + + rank_table_tensor = core.LoDTensor() + rank_table_tensor.set_lod([[0, 1, 3, 6]]) + rank_table_tensor.set(np.random.random(size=(6, 1)).astype('float32'), + cpu) + + exe = Executor(cpu) + outs = exe.run( + feed={'x': x_tensor, + 'rank_table_tensor': rank_table_tensor}, + fetch_list=[self.mem1, self.mem2, self.mem3, self.x_grad], + return_numpy=False) + self.assertTrue(np.allclose(tensor_np[0:3], outs[0])) + self.assertTrue(np.allclose(tensor_np[0:2], outs[1])) + self.assertTrue(np.allclose(tensor_np[0:1], outs[2])) + self.assertAlmostEqual(1.0, self.sum_lodtensor(outs[3]), delta=0.01) if __name__ == '__main__': -- GitLab