From 0dffe68ca9973c5cf7d95029e369330ffcfe0187 Mon Sep 17 00:00:00 2001 From: hedaoyuan Date: Thu, 24 Aug 2017 23:45:17 +0800 Subject: [PATCH] Add NeonDepthwiseConvFunction. --- paddle/function/CMakeLists.txt | 2 + paddle/function/DepthwiseConvOpTest.cpp | 5 + paddle/function/Im2Col.h | 92 +++++++++ paddle/function/neon/NeonDepthwiseConv.cpp | 227 +++++++++++++++++++++ paddle/function/neon/NeonDepthwiseConv.h | 25 +++ paddle/function/neon/neon_util.h | 47 +++++ 6 files changed, 398 insertions(+) create mode 100644 paddle/function/neon/NeonDepthwiseConv.cpp create mode 100644 paddle/function/neon/NeonDepthwiseConv.h create mode 100644 paddle/function/neon/neon_util.h diff --git a/paddle/function/CMakeLists.txt b/paddle/function/CMakeLists.txt index c572a9d433..05f808a6a1 100644 --- a/paddle/function/CMakeLists.txt +++ b/paddle/function/CMakeLists.txt @@ -21,6 +21,8 @@ if(USE_NNPACK) endif() endif() +list(APPEND cpp_files neon/NeonDepthwiseConv.cpp) + add_library(paddle_function STATIC ${cpp_files} ${cu_objs}) add_dependencies(paddle_function ${external_project_dependencies}) add_dependencies(paddle_function paddle_proto) diff --git a/paddle/function/DepthwiseConvOpTest.cpp b/paddle/function/DepthwiseConvOpTest.cpp index f44ae0c342..bdace2c372 100644 --- a/paddle/function/DepthwiseConvOpTest.cpp +++ b/paddle/function/DepthwiseConvOpTest.cpp @@ -34,4 +34,9 @@ TEST(DepthwiseConv, BackwardFilter) { } #endif +TEST(DepthwiseConv, Forward) { + DepthwiseConvolution( + "GemmConv-CPU", "NeonDepthwiseConv-CPU", forward); +} + } // namespace paddle diff --git a/paddle/function/Im2Col.h b/paddle/function/Im2Col.h index 48e2e32f92..9b91e223a6 100644 --- a/paddle/function/Im2Col.h +++ b/paddle/function/Im2Col.h @@ -16,6 +16,7 @@ limitations under the License. */ #include "TensorShape.h" #include "TensorType.h" +#include "neon/neon_util.h" namespace paddle { @@ -93,4 +94,95 @@ public: int paddingWidth); }; +template +struct Padding { + static void run(const T* src, + T* dest, + int channels, + int inputHeight, + int inputWidth, + int paddingHeight, + int paddingWidth) { + const int destWidth = inputWidth + 2 * paddingWidth; + for (int c = 0; c < channels; c++) { + if (paddingHeight > 0) { + memset(dest, 0, destWidth * paddingHeight * sizeof(T)); + dest += destWidth * paddingHeight; + } + + for (int i = 0; i < inputHeight; i++) { + // padding head + for (int j = 0; j < paddingWidth; j++) { + *dest++ = T(0); + } + + memcpy(dest, src, inputWidth * sizeof(T)); + dest += inputWidth; + src += inputWidth; + + // padding tail + for (int j = 0; j < paddingWidth; j++) { + *dest++ = T(0); + } + } + + if (paddingHeight > 0) { + memset(dest, 0, destWidth * paddingHeight * sizeof(T)); + dest += destWidth * paddingHeight; + } + } + } +}; + +#if defined(__ARM_NEON__) || defined(__ARM_NEON) +template <> +struct Padding { + static void run(const float* src, + float* dest, + int channels, + int inputHeight, + int inputWidth, + int paddingHeight, + int paddingWidth) { + const int destWidth = inputWidth + 2 * paddingWidth; + for (int c = 0; c < channels; c++) { + if (paddingHeight > 0) { + memset(dest, 0, destWidth * paddingHeight * sizeof(float)); + dest += destWidth * paddingHeight; + } + + for (int i = 0; i < inputHeight; i++) { + // padding head + for (int j = 0; j < paddingWidth; j++) { + *dest++ = float(0); + } + + int step = inputWidth >> 2; + int remain = inputWidth & 3; + for (int s = 0; s < step; s++) { + float32x4_t s0 = vld1q_f32(src); + vst1q_f32(dest, s0); + src += 4; + dest += 4; + } + for (int r = 0; r < remain; r++) { + *dest++ = *src++; + } + + // padding tail + for (int j = 0; j < paddingWidth; j++) { + *dest++ = float(0); + } + } + + if (paddingHeight > 0) { + memset(dest, 0, destWidth * paddingHeight * sizeof(float)); + dest += destWidth * paddingHeight; + } + } + } +}; + +#endif + } // namespace paddle diff --git a/paddle/function/neon/NeonDepthwiseConv.cpp b/paddle/function/neon/NeonDepthwiseConv.cpp new file mode 100644 index 0000000000..16d94c976e --- /dev/null +++ b/paddle/function/neon/NeonDepthwiseConv.cpp @@ -0,0 +1,227 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "neon_util.h" +#include "paddle/function/ConvOp.h" +#include "paddle/function/Im2Col.h" + +namespace paddle { + +namespace neon { + +#if defined(__ARM_NEON__) || defined(__ARM_NEON) + +template +struct DepthwiseConvKernel {}; + +inline float32_t conv3x3(float32x4_t r0, + float32x4_t r1, + float32x4_t r2, + float32x4_t k0, + float32x4_t k1, + float32x4_t k2) { + float32x4_t tmp; + tmp = vmulq_f32(r0, k0); + tmp = vmlaq_f32(tmp, r1, k1); + tmp = vmlaq_f32(tmp, r2, k2); + return vaddvq_f32(tmp); +} + +/** + * Each step calculates four elements of the output. + * First step: + * R0[0, 1, 2, 3...] * K[0][0] + * R0[1, 2, 3, 4...] * K[0][1] + * R0[2, 3, 4, 5...] * K[0][2] + * R1[0, 1, 2, 3...] * K[1][0] + * R1[1, 2, 3, 4...] * K[1][1] + * R1[2, 3, 4, 5...] * K[1][2] + * R2[0, 1, 2, 3...] * K[2][0] + * R2[1, 2, 3, 4...] * K[2][1] + * + R2[2, 3, 4, 5...] * K[2][2] + * ------------------------------ + * Output[0, 1, 2, 3] + */ +template <> +struct DepthwiseConvKernel<3, 1> { + static void run(const float* inputData, + const float* filterData, + int inputHeight, + int inputWidth, + int outputChannels, + int outputHeight, + int outputWidth, + int filterMultiplier, + float* outputData) { + const int steps = outputWidth >> 2; + const int remain = outputWidth & 3; + for (int c = 0; c < outputChannels; c++, filterData += 9) { + // Load the filters + float32x4_t k[3]; + k[0] = vld1q_f32(filterData); + k[1] = vld1q_f32(filterData + 3); + k[2] = vld1q_f32(filterData + 6); + k[0] = vsetq_lane_f32(0.f, k[0], 3); + k[1] = vsetq_lane_f32(0.f, k[1], 3); + k[2] = vsetq_lane_f32(0.f, k[2], 3); + + const float* r0 = + inputData + (c / filterMultiplier) * (inputHeight * inputWidth); + const float* r1 = r0 + inputWidth; + const float* r2 = r0 + inputWidth * 2; + float32x4_t input[3][3]; + for (int h = 0; h < outputHeight; h++) { + for (int s = 0; s < steps; s++) { + // Load the inputs + float32x4_t tmp; + input[0][0] = vld1q_f32(r0); + tmp = vld1q_f32(r0 + 4); + input[0][1] = vextq_f32(input[0][0], tmp, 1); + input[0][2] = vextq_f32(input[0][0], tmp, 2); + input[1][0] = vld1q_f32(r1); + tmp = vld1q_f32(r1 + 4); + input[1][1] = vextq_f32(input[1][0], tmp, 1); + input[1][2] = vextq_f32(input[1][0], tmp, 2); + input[2][0] = vld1q_f32(r2); + tmp = vld1q_f32(r2 + 4); + input[2][1] = vextq_f32(input[2][0], tmp, 1); + input[2][2] = vextq_f32(input[2][0], tmp, 2); + + float32x4_t tmp1 = vdupq_n_f32(0.f); + float32x4_t tmp2 = vdupq_n_f32(0.f); + tmp1 = vmlaq_laneq_f32(tmp1, input[0][0], k[0], 0); + tmp2 = vmlaq_laneq_f32(tmp2, input[0][1], k[0], 1); + tmp1 = vmlaq_laneq_f32(tmp1, input[0][2], k[0], 2); + tmp2 = vmlaq_laneq_f32(tmp2, input[1][0], k[1], 0); + tmp1 = vmlaq_laneq_f32(tmp1, input[1][1], k[1], 1); + tmp2 = vmlaq_laneq_f32(tmp2, input[1][2], k[1], 2); + tmp1 = vmlaq_laneq_f32(tmp1, input[2][0], k[2], 0); + tmp2 = vmlaq_laneq_f32(tmp2, input[2][1], k[2], 1); + tmp1 = vmlaq_laneq_f32(tmp1, input[2][2], k[2], 2); + tmp1 = vaddq_f32(tmp1, tmp2); + + vst1q_f32(outputData, tmp1); + r0 += 4; + r1 += 4; + r2 += 4; + outputData += 4; + } + + for (int r = 0; r < remain; r++) { + float32x4_t i0 = vld1q_f32(r0); + float32x4_t i1 = vld1q_f32(r1); + float32x4_t i2 = vld1q_f32(r2); + *outputData = conv3x3(i0, i1, i2, k[0], k[1], k[2]); + r0++; + r1++; + r2++; + outputData++; + } + + r0 += 2; + r1 += 2; + r2 += 2; + } + } + } +}; + +template +class NeonDepthwiseConvFunction : public ConvFunctionBase { +public: + void init(const FuncConfig& config) override { + ConvFunctionBase::init(config); + } + + void check(const BufferArgs& inputs, const BufferArgs& outputs) override { + const TensorShape& input = inputs[0].shape(); + const TensorShape& filter = inputs[1].shape(); + const TensorShape& output = outputs[0].shape(); + checkShape(input, filter, output); + } + + void calc(const BufferArgs& inputs, const BufferArgs& outputs) override { + CHECK_EQ(numInputs_, inputs.size()); + CHECK_EQ(numOutputs_, outputs.size()); + check(inputs, outputs); + + const TensorShape& input = inputs[0].shape(); + const TensorShape& filter = inputs[1].shape(); + const TensorShape& output = outputs[0].shape(); + + size_t batchSize = input[0]; + size_t inputChannels = input[1]; + size_t inputHeight = input[2]; + size_t inputWidth = input[3]; + size_t filterHeight = getFilterHeight(filter); + size_t filterWidth = getFilterWidth(filter); + size_t outputChannels = output[1]; + size_t outputHeight = output[2]; + size_t outputWidth = output[3]; + size_t filterMultiplier = outputChannels / groups_; + CHECK_EQ(inputChannels, groups_); + + // only support + CHECK_EQ(strideH(), strideW()); + CHECK_EQ(filterHeight, filterWidth); + CHECK_EQ(filterHeight, size_t(3)); + CHECK_LT(strideH(), size_t(3)); + + float* inputData = inputs[0].data(); + float* filterData = inputs[1].data(); + float* outputData = outputs[0].data(); + + // padding the input + float* inputPadding = inputData; + if (paddingH() > 0 || paddingW() > 0) { + int newSize = batchSize * inputChannels * (inputHeight + 2 * paddingH()) * + (inputWidth + 2 * paddingW()); + resizeBuffer(newSize); + inputPadding = reinterpret_cast(memory_->getBuf()); + Padding::run(inputData, + inputPadding, + batchSize * inputChannels, + inputHeight, + inputWidth, + paddingH(), + paddingW()); + + // height and width of padding data + inputHeight += 2 * paddingH(); + inputWidth += 2 * paddingW(); + } + + for (size_t i = 0; i < batchSize; i++) { + DepthwiseConvKernel<3, 1>::run(inputPadding, + filterData, + inputHeight, + inputWidth, + outputChannels, + outputHeight, + outputWidth, + filterMultiplier, + outputData); + + inputPadding += inputChannels * inputHeight * inputWidth; + outputData += outputChannels * outputHeight * outputWidth; + } + } +}; + +REGISTER_TYPED_FUNC(NeonDepthwiseConv, CPU, NeonDepthwiseConvFunction); + +#endif + +} // namespace neon +} // namespace paddle diff --git a/paddle/function/neon/NeonDepthwiseConv.h b/paddle/function/neon/NeonDepthwiseConv.h new file mode 100644 index 0000000000..23e4be1921 --- /dev/null +++ b/paddle/function/neon/NeonDepthwiseConv.h @@ -0,0 +1,25 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +namespace paddle { + +namespace neon { + +template +struct DepthwiseConvKernel {}; + +} // namespace neon +} // namespace paddle diff --git a/paddle/function/neon/neon_util.h b/paddle/function/neon/neon_util.h new file mode 100644 index 0000000000..56b3febe2d --- /dev/null +++ b/paddle/function/neon/neon_util.h @@ -0,0 +1,47 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#if defined(__ARM_NEON__) || defined(__ARM_NEON) + +#include + +namespace paddle { + +namespace neon { + +inline float32x4_t vld1q_f32_aligned(const float* p) { + return vld1q_f32( + (const float*)__builtin_assume_aligned(p, sizeof(float32x4_t))); +} + +#ifndef __aarch64__ +inline float32_t vaddvq_f32(float32x4_t a) { + float32x2_t v = vadd_f32(vget_high_f32(a), vget_low_f32(a)); + return vget_lane_f32(vpadd_f32(v, v), 0); +} + +inline float32x4_t vmlaq_laneq_f32(float32x4_t a, + float32x4_t b, + float32x4_t v, + const int lane) { + return vmlaq_n_f32(a, b, vgetq_lane_f32(v, lane)); +} +#endif + +} // namespace neon +} // namespace paddle + +#endif -- GitLab