Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
0db41a9c
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0db41a9c
编写于
1月 28, 2019
作者:
W
WangZhen
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add op_role attr when creating op node.
上级
c67b29c1
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
30 addition
and
8 deletion
+30
-8
python/paddle/fluid/contrib/slim/quantization/quantization_pass.py
...ddle/fluid/contrib/slim/quantization/quantization_pass.py
+20
-5
python/paddle/fluid/contrib/slim/tests/test_quantization_pass.py
...paddle/fluid/contrib/slim/tests/test_quantization_pass.py
+10
-3
未找到文件。
python/paddle/fluid/contrib/slim/quantization/quantization_pass.py
浏览文件 @
0db41a9c
...
...
@@ -180,9 +180,14 @@ class QuantizationTransformPass(object):
Constant
(
value
=
0
,
force_cpu
=
True
)
global_step_out
=
graph
.
create_var_node_from_desc
(
global_step_in
.
var
())
# The attribute of `op_role` is needed by ParallelExecutor.
increment_op
=
graph
.
create_op_node
(
op_type
=
'increment'
,
attrs
=
{
'step'
:
1.0
},
attrs
=
{
'step'
:
1.0
,
'op_role'
:
core
.
op_proto_and_checker_maker
.
OpRole
.
Forward
},
inputs
=
{
'X'
:
global_step_in
},
outputs
=
{
'Out'
:
global_step_out
})
graph
.
link_to
(
global_step_in
,
increment_op
)
...
...
@@ -217,7 +222,10 @@ class QuantizationTransformPass(object):
var_dtype
=
var_node
.
var
().
dtype
())
quant_op_node
=
graph
.
create_op_node
(
op_type
=
'fake_quantize_abs_max'
,
attrs
=
{
'bit_length'
:
quant_bits
},
attrs
=
{
'bit_length'
:
quant_bits
,
'op_role'
:
core
.
op_proto_and_checker_maker
.
OpRole
.
Forward
},
inputs
=
{
'X'
:
var_node
},
outputs
=
{
'Out'
:
quant_var_node
,
'OutScale'
:
scale_var_node
})
...
...
@@ -262,7 +270,8 @@ class QuantizationTransformPass(object):
attrs
=
{
'window_size'
:
self
.
_window_size
,
'bit_length'
:
quant_bits
,
'is_test'
:
self
.
_is_test
'is_test'
:
self
.
_is_test
,
'op_role'
:
core
.
op_proto_and_checker_maker
.
OpRole
.
Forward
}
quant_op_node
=
graph
.
create_op_node
(
op_type
=
'fake_quantize_range_abs_max'
,
...
...
@@ -295,7 +304,10 @@ class QuantizationTransformPass(object):
max_range
=
(
1
<<
(
quant_bits
-
1
))
-
1
dequant_op_node
=
graph
.
create_op_node
(
op_type
=
'fake_dequantize_max_abs'
,
attrs
=
{
'max_range'
:
float
(
max_range
)},
attrs
=
{
'max_range'
:
float
(
max_range
),
'op_role'
:
core
.
op_proto_and_checker_maker
.
OpRole
.
Forward
},
inputs
=
{
'X'
:
var_node
,
'Scale'
:
scale_var_node
},
outputs
=
{
'Out'
:
dequant_var_node
})
...
...
@@ -444,7 +456,10 @@ class QuantizationFreezePass(object):
var_dtype
=
output_var_node
.
var
().
dtype
())
dequant_op_node
=
graph
.
create_op_node
(
op_type
=
'fake_dequantize_max_abs'
,
attrs
=
{
'max_range'
:
float
(
max_range
)},
attrs
=
{
'max_range'
:
float
(
max_range
),
'op_role'
:
core
.
op_proto_and_checker_maker
.
OpRole
.
Forward
},
inputs
=
{
'X'
:
output_var_node
,
'Scale'
:
scale_var_node
},
outputs
=
{
'Out'
:
dequant_var_node
})
...
...
python/paddle/fluid/contrib/slim/tests/test_quantization_pass.py
浏览文件 @
0db41a9c
...
...
@@ -251,6 +251,11 @@ class TestQuantizationFreezePass(unittest.TestCase):
iters
=
10
batch_size
=
128
train_exe
=
fluid
.
ParallelExecutor
(
main_program
=
quantized_main_program
,
use_cuda
=
bool
(
use_cuda
),
loss_name
=
loss
.
name
,
scope
=
scope
)
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
mnist
.
train
(),
buf_size
=
500
),
...
...
@@ -261,9 +266,11 @@ class TestQuantizationFreezePass(unittest.TestCase):
with
fluid
.
scope_guard
(
scope
):
for
_
in
range
(
iters
):
data
=
next
(
train_reader
())
loss_v
=
exe
.
run
(
program
=
quantized_main_program
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
loss
])
#loss_v = exe.run(program=quantized_main_program,
# feed=feeder.feed(data),
# fetch_list=[loss])
loss_v
=
train_exe
.
run
(
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
loss
.
name
])
print
(
'{}: {}'
.
format
(
'loss'
+
dev_name
+
quant_type
,
loss_v
))
test_data
=
next
(
test_reader
())
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录