diff --git a/paddle/fluid/framework/block_desc.h b/paddle/fluid/framework/block_desc.h index 873969b2a884f6d9e133fe87bf72725c36ce8b98..eef19c4f09c60b9df18f154c85c421f5bff9413f 100644 --- a/paddle/fluid/framework/block_desc.h +++ b/paddle/fluid/framework/block_desc.h @@ -92,7 +92,7 @@ class BlockDesc { /* * Remove Op and its input/output variables. - * Note that for either input or ouput variable, if it is also an input or + * Note that for either input or output variable, if it is also an input or * output variable of other ops, we should remain it. */ void RemoveOp(size_t s, size_t e); diff --git a/paddle/fluid/framework/details/computation_op_handle.cc b/paddle/fluid/framework/details/computation_op_handle.cc index 7a1b40c0b60a788b1f0a70e688f8fcbe427ad076..e3f8bbb72f2a1b75b6041d41496cef0efc81874f 100644 --- a/paddle/fluid/framework/details/computation_op_handle.cc +++ b/paddle/fluid/framework/details/computation_op_handle.cc @@ -14,6 +14,8 @@ #include "paddle/fluid/framework/details/computation_op_handle.h" +#include + namespace paddle { namespace framework { namespace details { @@ -33,7 +35,7 @@ void ComputationOpHandle::RunImpl() { } } - op_->Run(*scope_->FindVar("@TMP_SCOPE@")->Get(), place_); + op_->Run(*scope_->FindVar(kLocalExecScopeName)->Get(), place_); } std::string ComputationOpHandle::Name() const { return op_->Type(); } diff --git a/paddle/fluid/framework/details/fetch_op_handle.cc b/paddle/fluid/framework/details/fetch_op_handle.cc index 9180903b864d03e59f55f41410b2240fa4199496..e3e7c55d153aec8ce9c25c962821b266eaa84fe4 100644 --- a/paddle/fluid/framework/details/fetch_op_handle.cc +++ b/paddle/fluid/framework/details/fetch_op_handle.cc @@ -14,6 +14,9 @@ #include "paddle/fluid/framework/details/fetch_op_handle.h" +#include +#include + namespace paddle { namespace framework { namespace details { @@ -57,7 +60,10 @@ void FetchOpHandle::RunImpl() { for (size_t i = 0; i < scopes.size(); ++i) { auto &scope = scopes[i]; - auto &t = scope->FindVar(var_name)->Get(); + auto &t = scope->FindVar(kLocalExecScopeName) + ->Get() + ->FindVar(var_name) + ->Get(); if (platform::is_gpu_place(var->place_)) { #ifdef PADDLE_WITH_CUDA TensorCopy(t, cpu, *dev_ctxes_[t.place()], &tensors_[i]); diff --git a/paddle/fluid/framework/details/op_handle_base.h b/paddle/fluid/framework/details/op_handle_base.h index d7a541ac4bb83625060db337446d03a1afda3ed0..fbdb54ba8d940c8dedd44a42a85825af5d2ec664 100644 --- a/paddle/fluid/framework/details/op_handle_base.h +++ b/paddle/fluid/framework/details/op_handle_base.h @@ -24,6 +24,8 @@ namespace paddle { namespace framework { namespace details { +constexpr char kLocalExecScopeName[] = "@LCOAL_SCOPE@"; + class OpHandleBase { private: DISABLE_COPY_AND_ASSIGN(OpHandleBase); diff --git a/paddle/fluid/framework/details/ssa_graph_executor.h b/paddle/fluid/framework/details/ssa_graph_executor.h index 3b818b1a45b56351e34f9e52ec22b6d02a0c1591..a8833b7388ab907020a260d356f1484ffd227658 100644 --- a/paddle/fluid/framework/details/ssa_graph_executor.h +++ b/paddle/fluid/framework/details/ssa_graph_executor.h @@ -15,13 +15,15 @@ #pragma once #include +#include +#include + #include "paddle/fluid/framework/details/ssa_graph.h" #include "paddle/fluid/framework/feed_fetch_type.h" namespace paddle { namespace framework { namespace details { - class SSAGraphExecutor { DISABLE_COPY_AND_ASSIGN(SSAGraphExecutor); diff --git a/paddle/fluid/framework/details/threaded_ssa_graph_executor.cc b/paddle/fluid/framework/details/threaded_ssa_graph_executor.cc index 62af4c1d79ded5eaa30e4e6d43cc0d7327ae9689..1ce69ab02b09fe7ec17f479bcef97c931e853dc4 100644 --- a/paddle/fluid/framework/details/threaded_ssa_graph_executor.cc +++ b/paddle/fluid/framework/details/threaded_ssa_graph_executor.cc @@ -136,12 +136,6 @@ FeedFetchList ThreadedSSAGraphExecutor::Run( ready_ops.clear(); }; - // Create local scopes. - for (auto &scope : local_scopes_) { - auto &local_scope = scope->NewScope(); - *scope->Var("@TMP_SCOPE@")->GetMutable() = &local_scope; - } - // Step 3. Execution while (!pending_vars.empty() || !ready_ops.empty() || !delayed_ops.empty()) { // 1. Run All Ready ops @@ -189,34 +183,10 @@ FeedFetchList ThreadedSSAGraphExecutor::Run( PADDLE_ENFORCE(ready_ops.empty()); PADDLE_ENFORCE(delayed_ops.empty()); PADDLE_ENFORCE(blocked_by_delayed_ops.empty()); - ++computation_count_; - - auto sync_computation = [&] { - computation_count_ = 0; - // Wait All computational streams - for (auto p : this->places_) { - platform::DeviceContextPool::Instance().Get(p)->Wait(); - } - for (auto &scope : local_scopes_) { - scope->DropKids(); - } - }; // Wait FetchOps. if (!fetch_ops.empty()) { fetch_ops.clear(); - sync_computation(); - } - - if (computation_count_ == max_async_computation) { - sync_computation(); - } - - // NOTE: the temp scope can be dropped lazily if needed. - // Drop tmp scopes; - for (auto &scope : local_scopes_) { - auto &kid = *scope->Var("@TMP_SCOPE@")->GetMutable(); - kid = nullptr; } return fetch_data; diff --git a/paddle/fluid/framework/details/threaded_ssa_graph_executor.h b/paddle/fluid/framework/details/threaded_ssa_graph_executor.h index 79cfc26b461a39811a9a125e5aeac3492d967386..bb5e837b135c35b5aea403496b45aab1ccc288ff 100644 --- a/paddle/fluid/framework/details/threaded_ssa_graph_executor.h +++ b/paddle/fluid/framework/details/threaded_ssa_graph_executor.h @@ -99,9 +99,6 @@ class ThreadedSSAGraphExecutor : public SSAGraphExecutor { std::unique_ptr exception_; std::atomic running_ops_; bool allow_op_delay_; - - size_t computation_count_{0}; - size_t max_async_computation{100}; }; } // namespace details diff --git a/paddle/fluid/framework/operator.cc b/paddle/fluid/framework/operator.cc index a3b4a8c0829ae3324e933309b2eaea35fe571997..f97bd0827428feeb590fcad16c48f3461517a646 100644 --- a/paddle/fluid/framework/operator.cc +++ b/paddle/fluid/framework/operator.cc @@ -46,7 +46,8 @@ proto::VarType::Type GetDataTypeOfVar(const Variable* var) { } } -static DDim GetDims(const Scope& scope, const std::string& name) { +static DDim GetDims(const Scope& scope, const std::string& name, + bool get_actual_dim = false) { Variable* var = scope.FindVar(name); if (var == nullptr) { return DDim({-1}); @@ -55,7 +56,11 @@ static DDim GetDims(const Scope& scope, const std::string& name) { if (var->IsType()) { return var->Get().dims(); } else if (var->IsType()) { - return var->Get().GetCompleteDims(); + if (get_actual_dim) { + return var->Get().value().dims(); + } else { + return var->Get().GetCompleteDims(); + } } else { return DDim({-1}); } @@ -129,7 +134,7 @@ std::string OperatorBase::DebugStringEx(const Scope* scope) const { for (size_t i = 0; i < input.second.size(); ++i) { ss << input.second[i]; if (scope) { - ss << "[" << GetDims(*scope, input.second[i]) << "]"; + ss << "[" << GetDims(*scope, input.second[i], true) << "]"; ss << "(" << GetLoD(*scope, input.second[i]) << ")"; } if (i != input.second.size() - 1) { @@ -149,7 +154,7 @@ std::string OperatorBase::DebugStringEx(const Scope* scope) const { for (size_t i = 0; i < output.second.size(); ++i) { ss << output.second[i]; if (scope) { - ss << "[" << GetDims(*scope, output.second[i]) << "]"; + ss << "[" << GetDims(*scope, output.second[i], true) << "]"; ss << "(" << GetLoD(*scope, output.second[i]) << ")"; } if (i != output.second.size() - 1) { diff --git a/paddle/fluid/framework/parallel_executor.cc b/paddle/fluid/framework/parallel_executor.cc index 20dcc080b696431b9972c0a972904d957f9b47d8..c1486b527d2e06d2b3f7e0f89458bf9a22564586 100644 --- a/paddle/fluid/framework/parallel_executor.cc +++ b/paddle/fluid/framework/parallel_executor.cc @@ -15,6 +15,7 @@ limitations under the License. */ #include "paddle/fluid/framework/parallel_executor.h" #include +#include #include #ifdef PADDLE_WITH_CUDA @@ -41,6 +42,8 @@ class ParallelExecutorPrivate { #ifdef PADDLE_WITH_CUDA std::unique_ptr nccl_ctxs_; #endif + + std::vector> var_types_; }; std::vector &ParallelExecutor::GetLocalScopes() { @@ -97,14 +100,9 @@ ParallelExecutor::ParallelExecutor( allow_op_delay)); // Step 3. Create vars in each scope; - for (auto *scope : member_->local_scopes_) { - for (auto *var : main_program.Block(0).AllVars()) { - if (scope->FindVar(var->Name()) != nullptr) { - continue; - } - - InitializeVariable(scope->Var(var->Name()), var->GetType()); - } + for (auto *var : main_program.Block(0).AllVars()) { + member_->var_types_.emplace_back(var->Name(), var->GetType(), + var->Persistable()); } } @@ -163,9 +161,42 @@ void ParallelExecutor::Run( const std::unordered_map &feed_tensors) { platform::RecordBlock b(0); SplitTensorToPlaces(feed_tensors); + + // Create local scopes. + for (auto &scope : member_->local_scopes_) { + Scope &local_scope = scope->NewScope(); + *scope->Var(details::kLocalExecScopeName)->GetMutable() = + &local_scope; + + for (auto &name_type_pair : member_->var_types_) { + if (scope->FindVar(std::get<0>(name_type_pair)) != nullptr) { + continue; + } + + if (std::get<2>(name_type_pair)) { // Persistable + InitializeVariable(scope->Var(std::get<0>(name_type_pair)), + std::get<1>(name_type_pair)); + } else { + InitializeVariable(scope->Var(std::get<0>(name_type_pair)), + std::get<1>(name_type_pair)); + } + } + } + auto fetch_data = member_->executor_->Run(fetch_tensors); *member_->global_scope_->Var(fetched_var_name)->GetMutable() = fetch_data; + + // Wait All computational streams + for (auto p : member_->places_) { + platform::DeviceContextPool::Instance().Get(p)->Wait(); + } + for (auto &scope : member_->local_scopes_) { + auto &local_scope = + *scope->Var(details::kLocalExecScopeName)->GetMutable(); + scope->DeleteScope(local_scope); + local_scope = nullptr; + } } void ParallelExecutor::SplitTensorToPlaces( diff --git a/paddle/fluid/operators/concat_op.cc b/paddle/fluid/operators/concat_op.cc index d65a7b34678cda38d5f8beb9154d61928f517ce0..4a36b03cb63ac3ea61be1bbc56b8dd0adbe7d334 100644 --- a/paddle/fluid/operators/concat_op.cc +++ b/paddle/fluid/operators/concat_op.cc @@ -13,6 +13,7 @@ See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/concat_op.h" + #include #include @@ -34,7 +35,10 @@ class ConcatOp : public framework::OperatorWithKernel { size_t axis = static_cast(ctx->Attrs().Get("axis")); const size_t n = ins.size(); - PADDLE_ENFORCE_GT(n, 1, "Input tensors count should > 1."); + PADDLE_ENFORCE_GT(n, 0, "Input tensors count should > 0."); + if (n == 1) { + VLOG(3) << "Warning: concat op have only one input, may waste memory"; + } auto out_dims = ins[0]; size_t in_zero_dims_size = out_dims.size(); diff --git a/paddle/fluid/operators/detail/grpc_server.cc b/paddle/fluid/operators/detail/grpc_server.cc index d5fc163bc25409e0607b149b61c6266b38119d9d..0b582a08bc0bfbcfdc8f338a6add8edaa5e80818 100644 --- a/paddle/fluid/operators/detail/grpc_server.cc +++ b/paddle/fluid/operators/detail/grpc_server.cc @@ -161,6 +161,7 @@ class RequestPrefetch final : public RequestBase { ::grpc::ByteBuffer reply; std::string var_name = request_->OutVarname(); + VLOG(3) << "prefetch var " << var_name; auto var_desc = program_->Block(0).FindVar(var_name); framework::Scope* local_scope = &scope_->NewScope(); auto* var = local_scope->FindVar(var_name); diff --git a/paddle/fluid/operators/listen_and_serv_op.cc b/paddle/fluid/operators/listen_and_serv_op.cc index 9188f2d989e601b7a97dedaf71f7080829cdb7c3..5d293665f0bcc098126ad3ec6c9bf34ff54c3b6f 100644 --- a/paddle/fluid/operators/listen_and_serv_op.cc +++ b/paddle/fluid/operators/listen_and_serv_op.cc @@ -13,7 +13,8 @@ See the License for the specific language governing permissions and limitations under the License. */ #include -#include +#include // NOLINT +#include #include "paddle/fluid/operators/listen_and_serv_op.h" @@ -88,8 +89,9 @@ void ListenAndServOp::RunImpl(const framework::Scope &scope, auto ins = Inputs("X"); auto fan_in = Attr("Fanin"); - auto *block = Attr(kOptimizeBlock); - auto *program = block->Program(); + auto *optimize_block = Attr(kOptimizeBlock); + auto *prefetch_block = Attr(kPrefetchBlock); + auto *program = optimize_block->Program(); size_t num_blocks = program->Size(); PADDLE_ENFORCE_GE(num_blocks, 2, "server program should have at least 2 blocks"); @@ -97,18 +99,25 @@ void ListenAndServOp::RunImpl(const framework::Scope &scope, framework::Executor executor(dev_place); std::vector block_list; for (size_t blkid = 1; blkid < num_blocks; ++blkid) { - block_list.push_back(blkid); + if (blkid != prefetch_block->ID()) { + block_list.push_back(blkid); + } } - auto prepared = executor.Prepare(*program, block_list); + auto optimize_prepared = executor.Prepare(*program, block_list); // Insert placeholder for block0 which holds current op itself. - prepared.insert(prepared.begin(), - std::shared_ptr(nullptr)); + optimize_prepared.insert( + optimize_prepared.begin(), + std::shared_ptr(nullptr)); rpc_service_->SetScope(&recv_scope); rpc_service_->SetDevCtx(&dev_ctx); // TODO(qiao) set proper fields for table lookup and update rpc_service_->SetExecutor(&executor); - rpc_service_->SetPrefetchBlkdId(0); + VLOG(3) << "prefetch block id is " << prefetch_block->ID(); + auto prefetch_prepared = executor.Prepare(*program, prefetch_block->ID()); + rpc_service_->SetPrefetchBlkdId(prefetch_block->ID()); + rpc_service_->SetPrefetchPreparedCtx(prefetch_prepared.get()); + prefetch_prepared.release(); rpc_service_->SetProgram(program); // start the server listening after all member initialized. server_thread_.reset(new std::thread(RunServer, rpc_service_)); @@ -166,16 +175,18 @@ void ListenAndServOp::RunImpl(const framework::Scope &scope, parallel_blkids.push_back(1); double ts = detail::GetTimestamp(); for (size_t blkid = 2; blkid < num_blocks; ++blkid) { - if (program->Block(blkid).Parent() != last_parent_blkid) { - ParallelExecuteBlocks(parallel_blkids, &executor, prepared, program, - &recv_scope); - parallel_blkids.clear(); - last_parent_blkid = program->Block(blkid).Parent(); + if (blkid != prefetch_block->ID()) { + if (program->Block(blkid).Parent() != last_parent_blkid) { + ParallelExecuteBlocks(parallel_blkids, &executor, optimize_prepared, + program, &recv_scope); + parallel_blkids.clear(); + last_parent_blkid = program->Block(blkid).Parent(); + } + parallel_blkids.push_back(blkid); } - parallel_blkids.push_back(blkid); } - ParallelExecuteBlocks(parallel_blkids, &executor, prepared, program, - &recv_scope); + ParallelExecuteBlocks(parallel_blkids, &executor, optimize_prepared, + program, &recv_scope); VLOG(2) << "run all blocks spent " << detail::GetTimestamp() - ts << "(ms)"; // Reset the received sparse variables, the sum operator would not @@ -211,6 +222,8 @@ from send_op and send back variables to recv_op. .AddCustomChecker([](const std::string &ip) { return !ip.empty(); }); AddAttr(kOptimizeBlock, "BlockID to run on server side."); + AddAttr(kPrefetchBlock, + "prefetch block to run on server side."); AddAttr("Fanin", "How many clients send to this server.") .SetDefault(1); } diff --git a/paddle/fluid/operators/listen_and_serv_op.h b/paddle/fluid/operators/listen_and_serv_op.h index 0da87afc961e896f04b4f0028bf9b17d5e992548..759b2a462ba5b938991aa86be9b9dc3e59fe3f7e 100644 --- a/paddle/fluid/operators/listen_and_serv_op.h +++ b/paddle/fluid/operators/listen_and_serv_op.h @@ -16,6 +16,7 @@ limitations under the License. */ #include #include +#include #include "paddle/fluid/framework/executor.h" #include "paddle/fluid/framework/lod_tensor.h" @@ -27,6 +28,7 @@ namespace paddle { namespace operators { constexpr char kOptimizeBlock[] = "OptimizeBlock"; +constexpr char kPrefetchBlock[] = "PrefetchBlock"; void RunServer(std::shared_ptr service); diff --git a/paddle/fluid/operators/lookup_table_op.cc b/paddle/fluid/operators/lookup_table_op.cc index bf33be310686640fa187a07cf46a157b7f433340..5e59bd1b178ad1803f6f70c5f3f9fd7af495ac3c 100644 --- a/paddle/fluid/operators/lookup_table_op.cc +++ b/paddle/fluid/operators/lookup_table_op.cc @@ -78,6 +78,9 @@ class LookupTableOpMaker : public framework::OpProtoAndCheckerMaker { "(boolean, default false) " "Sparse update.") .SetDefault(false); + AddAttr("is_distributed", + "(boolean, default false) distributed lookup table.") + .SetDefault(false); AddAttr("padding_idx", "(int64, default -1) " "If the value is -1, it makes no effect to lookup. " diff --git a/paddle/fluid/operators/prefetch_op.cc b/paddle/fluid/operators/prefetch_op.cc index 09ab7da663b5ef5f099b9f65b0df661ceea0d9e2..f9ae01ab5d2972d2a74b36ae6035985d1d874bb6 100644 --- a/paddle/fluid/operators/prefetch_op.cc +++ b/paddle/fluid/operators/prefetch_op.cc @@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ -#include +#include // NOLINT #include #include "paddle/fluid/framework/data_type.h" @@ -50,8 +50,8 @@ class PrefetchOp : public framework::OperatorBase { for (size_t i = 0; i < ins.size(); i++) { if (NeedSend(scope, ins[i])) { - VLOG(3) << "sending " << ins[i] << " to " << epmap[i] << "to get " - << outs[i] << "back"; + VLOG(3) << "sending " << ins[i] << " to " << epmap[i] << " to get " + << outs[i] << " back"; rpc_client->AsyncPrefetchVariable(epmap[i], ctx, scope, ins[i], outs[i]); } else { @@ -71,7 +71,7 @@ class PrefetchOpMaker : public framework::OpProtoAndCheckerMaker { "(RPCClient) The RPC client object which will be" "initialized at most once."); AddOutput("Out", - "(SelectedRows) result " + "(LoDTensor) result " "to be fetched from parameter server") .AsDuplicable(); AddAttr>( diff --git a/paddle/fluid/operators/send_recv_op_test.cc b/paddle/fluid/operators/send_recv_op_test.cc index 542bc3fde2a3616807eea560be85fb42026d5825..3bf5d57809019d3ae469471c2ee2e7aac70b9faf 100644 --- a/paddle/fluid/operators/send_recv_op_test.cc +++ b/paddle/fluid/operators/send_recv_op_test.cc @@ -14,7 +14,7 @@ limitations under the License. */ #include #include -#include +#include // NOLINT #include "gtest/gtest.h" #include "paddle/fluid/framework/op_registry.h" @@ -37,11 +37,11 @@ namespace m = paddle::operators::math; std::unique_ptr listen_and_serv_op; int selected_port; -void InitTensorsInScope(f::Scope &scope, p::CPUPlace &place) { +void InitTensorsInScope(const p::CPUPlace &place, f::Scope *scope) { p::CPUDeviceContext ctx(place); for (int i = 0; i < 2; ++i) { auto var_name = paddle::string::Sprintf("x%d", i); - auto var = scope.Var(var_name); + auto var = scope->Var(var_name); auto tensor = var->GetMutable(); tensor->Resize({10, 10}); float *expect = tensor->mutable_data(place); @@ -50,20 +50,20 @@ void InitTensorsInScope(f::Scope &scope, p::CPUPlace &place) { } } - auto out_var = scope.Var("Out"); + auto out_var = scope->Var("Out"); auto out_tensor = out_var->GetMutable(); out_tensor->Resize({10, 10}); out_tensor->mutable_data(place); // allocate } -void InitSelectedRowsInScope(f::Scope &scope, p::CPUPlace &place) { +void InitSelectedRowsInScope(const p::CPUPlace &place, f::Scope *scope) { p::CPUDeviceContext ctx(place); int64_t height = 10; int64_t row_numel = 10; m::SetConstant set_one; // init x0 std::vector rows0{0, 4, 7}; - auto x0_var = scope.Var("x0"); + auto x0_var = scope->Var("x0"); auto x0 = x0_var->GetMutable(); x0->set_rows(rows0); x0->set_height(height); @@ -74,7 +74,7 @@ void InitSelectedRowsInScope(f::Scope &scope, p::CPUPlace &place) { // init x1 std::vector rows1{2, 9}; - auto x1_var = scope.Var("x1"); + auto x1_var = scope->Var("x1"); auto x1 = x1_var->GetMutable(); x1->set_rows(rows1); x1->set_height(height); @@ -83,7 +83,7 @@ void InitSelectedRowsInScope(f::Scope &scope, p::CPUPlace &place) { f::make_ddim({static_cast(rows1.size()), row_numel}), place); set_one(ctx, x1_value, 1.0); - auto out_var = scope.Var("Out"); + auto out_var = scope->Var("Out"); auto out = out_var->GetMutable(); auto out_value = out->mutable_value(); out->set_height(height); @@ -117,15 +117,16 @@ void StartServerNet(bool is_sparse) { f::Scope scope; p::CPUPlace place; if (is_sparse) { - InitSelectedRowsInScope(scope, place); + InitSelectedRowsInScope(place, &scope); } else { - InitTensorsInScope(scope, place); + InitTensorsInScope(place, &scope); } // sub program run in listen_and_serv_op, for simple test we use sum f::ProgramDesc program; const auto &root_block = program.Block(0); auto *optimize_block = program.AppendBlock(root_block); + auto *prefetch_block = program.AppendBlock(root_block); // X for server side tensors, RX for received tensers, must be of same shape. AddOp("sum", {{"X", {"x0", "x1"}}}, {{"Out", {"Out"}}}, {}, optimize_block); @@ -135,6 +136,7 @@ void StartServerNet(bool is_sparse) { attrs.insert({"ParamList", std::vector({"Out"})}); attrs.insert({"GradList", std::vector({"x1"})}); attrs.insert({"OptimizeBlock", optimize_block}); + attrs.insert({"PrefetchBlock", prefetch_block}); listen_and_serv_op = f::OpRegistry::CreateOp("listen_and_serv", {{"X", {"x1"}}}, {}, attrs); LOG(INFO) << "selected port before run " << selected_port; @@ -148,7 +150,7 @@ TEST(SendRecvOp, CPUDense) { // local net f::Scope scope; p::CPUPlace place; - InitTensorsInScope(scope, place); + InitTensorsInScope(place, &scope); // create rpc client var scope.Var("RPC_CLIENT_VAR"); @@ -191,7 +193,7 @@ TEST(SendRecvOp, CPUSparse) { f::Scope scope; p::CPUPlace place; p::CPUDeviceContext ctx(place); - InitSelectedRowsInScope(scope, place); + InitSelectedRowsInScope(place, &scope); scope.Var("RPC_CLIENT_VAR"); f::AttributeMap attrs; selected_port = static_cast( diff --git a/paddle/fluid/operators/send_vars_op.cc b/paddle/fluid/operators/send_vars_op.cc index 2cbd9e2394800dc3b9c5be1163d16bbec435c533..56b3713d6af28d0787e114a672a503e86cbd85fd 100644 --- a/paddle/fluid/operators/send_vars_op.cc +++ b/paddle/fluid/operators/send_vars_op.cc @@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ -#include +#include // NOLINT #include #include "paddle/fluid/framework/data_type.h" @@ -36,7 +36,7 @@ class SendVarsOp : public framework::OperatorBase { auto ins = Inputs("X"); std::vector epmap = Attr>("epmap"); - int sync_send = Attr("sync_sent"); + int sync_send = Attr("sync_send"); platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); auto& ctx = *pool.Get(place); diff --git a/paddle/fluid/operators/sgd_op.cc b/paddle/fluid/operators/sgd_op.cc index 074fa9e00f2ec531f324ff10113d95144687d500..06cb0550ad7d4ad0241a4f439ea9ac16d9714c38 100644 --- a/paddle/fluid/operators/sgd_op.cc +++ b/paddle/fluid/operators/sgd_op.cc @@ -35,8 +35,8 @@ class SGDOp : public framework::OperatorWithKernel { PADDLE_ENFORCE_EQ(framework::product(lr_dims), 1, "Learning rate should have 1 element"); auto param_dim = ctx->GetInputDim("Param"); - // TODO(qijun): check dimensions of Param and Grad at complie - // and run time. + // TODO(qijun): check dimensions of Param and Grad at compile + // and runtime. ctx->SetOutputDim("ParamOut", param_dim); } diff --git a/paddle/fluid/operators/split_ids_op.cc b/paddle/fluid/operators/split_ids_op.cc index a54f8a2878c8606e6b487552324d1e7dfa94b9b8..a53cbc8ac5199061dafdc7f4cf560b9e4fc577ab 100644 --- a/paddle/fluid/operators/split_ids_op.cc +++ b/paddle/fluid/operators/split_ids_op.cc @@ -48,11 +48,11 @@ class SplitIdsOp : public framework::OperatorWithKernel { PADDLE_ENFORCE(ctx->HasOutputs("Out"), "SplitIdsOp must has output Out."); auto ids_var_type = ctx->GetInputsVarType("Ids").front(); - PADDLE_ENFORCE_EQ(ids_var_type, framework::proto::VarType::LOD_TENSOR); - auto ids_dims = ctx->GetInputDim("Ids"); - PADDLE_ENFORCE_EQ(ids_dims.size(), 2); - PADDLE_ENFORCE_EQ(ids_dims[1], 1); + if (ids_var_type == framework::proto::VarType::LOD_TENSOR) { + PADDLE_ENFORCE_EQ(ids_dims.size(), 2); + PADDLE_ENFORCE_EQ(ids_dims[1], 1); + } } }; @@ -60,8 +60,9 @@ class SplitIdsOpInferVarType : public framework::VarTypeInference { public: void operator()(const framework::OpDesc &op_desc, framework::BlockDesc *block) const override { + auto *input_var = block->Var(op_desc.Input("Ids")[0]); for (auto &out_var : op_desc.Output("Out")) { - block->Var(out_var)->SetType(framework::proto::VarType::LOD_TENSOR); + block->Var(out_var)->SetType(input_var->GetType()); } } }; @@ -73,4 +74,5 @@ namespace ops = paddle::operators; REGISTER_OPERATOR(split_ids, ops::SplitIdsOp, ops::SplitIdsOpMaker, ops::SplitIdsOpInferVarType); REGISTER_OP_CPU_KERNEL( - split_ids, ops::SplitIdsOpKernel); + split_ids, ops::SplitIdsOpKernel, + ops::SplitIdsOpKernel); diff --git a/paddle/fluid/operators/split_ids_op.h b/paddle/fluid/operators/split_ids_op.h index d36ed398ebce661a62ca92696b0089b5289d5b1c..ba1e903dbb6daaa86b1b664322d100a800fd16b3 100644 --- a/paddle/fluid/operators/split_ids_op.h +++ b/paddle/fluid/operators/split_ids_op.h @@ -24,35 +24,63 @@ namespace operators { template class SplitIdsOpKernel : public framework::OpKernel { public: - void Compute(const framework::ExecutionContext& ctx) const override { + void Compute(const framework::ExecutionContext &ctx) const override { auto place = ctx.GetPlace(); if (!platform::is_cpu_place(place)) { PADDLE_THROW("SplitIds do not support GPU kernel"); } - auto& ids_dims = ctx.Input("Ids")->dims(); - const T* ids = ctx.Input("Ids")->data(); - auto outs = ctx.MultiOutput("Out"); - const size_t shard_num = outs.size(); + const auto *ids_var = ctx.InputVar("Ids"); + if (ids_var->IsType()) { + const auto &ids_dims = ctx.Input("Ids")->dims(); + const T *ids = ctx.Input("Ids")->data(); + auto outs = ctx.MultiOutput("Out"); + const size_t shard_num = outs.size(); - std::vector> out_ids; - out_ids.resize(outs.size()); + std::vector> out_ids; + out_ids.resize(outs.size()); - // split id by their shard_num. - for (int i = 0; i < ids_dims[0]; ++i) { - T id = ids[i]; - size_t shard_id = static_cast(id) % shard_num; - out_ids[shard_id].push_back(id); - } + // split id by their shard_num. + for (int i = 0; i < ids_dims[0]; ++i) { + T id = ids[i]; + size_t shard_id = static_cast(id) % shard_num; + out_ids[shard_id].push_back(id); + } + + // create tensor for each shard and send to parameter server + for (size_t i = 0; i < out_ids.size(); ++i) { + auto *shard_t = outs[i]; + std::vector ids = out_ids[i]; + auto *shard_data = shard_t->mutable_data( + framework::make_ddim({static_cast(ids.size()), 1}), place); + for (size_t i = 0; i < ids.size(); ++i) { + shard_data[i] = ids[i]; + } + } + } else if (ids_var->IsType()) { + const auto *ids_selected_rows = ctx.Input("Ids"); + auto &ids_dims = ids_selected_rows->value().dims(); + PADDLE_ENFORCE_EQ(ids_dims[0], ids_selected_rows->rows().size(), ""); + const T *ids = ids_selected_rows->value().data(); + const auto &ids_rows = ids_selected_rows->rows(); + auto outs = ctx.MultiOutput("Out"); + const size_t shard_num = outs.size(); + // get rows for outputs + for (auto &id : ids_rows) { + size_t shard_id = static_cast(id) % shard_num; + outs[shard_id]->mutable_rows()->push_back(id); + } - // create tensor for each shard and send to parameter server - for (size_t i = 0; i < out_ids.size(); ++i) { - auto* shard_t = outs[i]; - std::vector ids = out_ids[i]; - auto* shard_data = shard_t->mutable_data( - framework::make_ddim({static_cast(ids.size()), 1}), place); - for (size_t i = 0; i < ids.size(); ++i) { - shard_data[i] = ids[i]; + int64_t row_width = ids_dims[1]; + for (auto &out : outs) { + out->set_height(ids_selected_rows->height()); + framework::DDim ddim = framework::make_ddim( + {static_cast(out->rows().size()), row_width}); + T *output = out->mutable_value()->mutable_data(ddim, place); + for (size_t i = 0; i < ddim[0]; ++i) { + memcpy(output + i * row_width, ids + out->rows()[i] * row_width, + row_width * sizeof(T)); + } } } } diff --git a/paddle/fluid/operators/sum_op.cc b/paddle/fluid/operators/sum_op.cc index 9061e137bd1c789d34665729c48c1c2ea9525c8e..108f26fafe7af76eaa613d77ed77748ee43ea234 100644 --- a/paddle/fluid/operators/sum_op.cc +++ b/paddle/fluid/operators/sum_op.cc @@ -10,9 +10,11 @@ See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/sum_op.h" + #include #include #include + #include "paddle/fluid/framework/var_type_inference.h" #include "paddle/fluid/operators/detail/safe_ref.h" @@ -37,7 +39,10 @@ class SumOp : public framework::OperatorWithKernel { auto x_dims = ctx->GetInputsDim("X"); size_t N = x_dims.size(); - PADDLE_ENFORCE_GT(N, 1, "Input tensors count should > 1."); + PADDLE_ENFORCE_GT(N, 0, "Input tensors count should > 0."); + if (N == 1) { + VLOG(3) << "Warning: sum have only one input, may waste memory"; + } framework::DDim in_dim({0}); for (auto& x_dim : x_dims) { diff --git a/python/paddle/fluid/distribute_transpiler.py b/python/paddle/fluid/distribute_transpiler.py index e18ace844e203be5b1b37040432bdad565a0734c..b0522b49f44d8ed0c8c7e3148e24f312fbdd1123 100644 --- a/python/paddle/fluid/distribute_transpiler.py +++ b/python/paddle/fluid/distribute_transpiler.py @@ -13,14 +13,17 @@ # limitations under the License. from __future__ import print_function -import framework -from framework import Program, default_main_program, default_startup_program, Parameter, Variable -import optimizer -from layer_helper import LayerHelper -import distributed_splitter as splitter + import math + +import distributed_splitter as splitter +import framework +from framework import Program, default_main_program, Variable from . import core -import debuger + +LOOKUP_TABLE_TYPE = "lookup_table" +LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad" +RPC_CLIENT_VAR_NAME = "RPC_CLIENT_VAR" class VarBlock: @@ -35,9 +38,9 @@ class VarBlock: class UnionFind(object): - """ Union-find data struct. + """ Union-find data structure. - Union-find is a data struct that keeps track of a set of elements partitioned + Union-find is a data structure that keeps track of a set of elements partitioned into a number of disjoint (non-overlapping) subsets. Reference: @@ -185,19 +188,66 @@ class DistributeTranspiler: assert (callable(split_method)) if program is None: program = default_main_program() - self.program = program - self.trainers = trainers + self.origin_program = program + self.trainer_num = trainers self.optimize_ops = optimize_ops # TODO(typhoonzero): currently trainer_id is fetched from cluster system # like Kubernetes, we should port this to use etcd later when developing # fluid distributed training with fault-tolerance. self.trainer_id = trainer_id pserver_endpoints = pservers.split(",") + self.pserver_endpoints = pserver_endpoints + + # process lookup_table_op + # 1. check all lookup_table_op is distributed + # 2. check all lookup_table_op share the same table. + distributed_lookup_table_ops = [] + # support only one distributed_lookup_table now + self.table_name = None + for op in program.global_block().ops: + if op.type == LOOKUP_TABLE_TYPE: + if op.attrs['is_distributed'] is True: + if self.table_name is None: + self.table_name = op.input("W")[0] + if self.table_name != op.input("W")[0]: + raise RuntimeError("all distributed lookup_table_ops" + " should have only one table") + distributed_lookup_table_ops.append(op) + else: + if self.table_name is not None: + assert op.input("W")[0] != self.table_name + + self.has_distributed_lookup_table = len( + distributed_lookup_table_ops) > 0 # step1: For large parameters and gradients, split them into smaller # blocks. param_list = [pg[0] for pg in params_grads] grad_list = [pg[1] for pg in params_grads] + + if self.has_distributed_lookup_table: + param_list = [ + param for param in param_list if param.name != self.table_name + ] + grad_list = [ + grad for grad in grad_list + if grad.name != framework.grad_var_name(self.table_name) + ] + self.table_param_grad = [ + param_grad for param_grad in params_grads + if param_grad[0].name == self.table_name + ][0] + table_grad_var = self.table_param_grad[1] + self.table_grad_list = [ + program.global_block().create_var( + name="%s.trainer_%d.pserver_%d" % + (table_grad_var.name, trainer_id, index), + type=table_grad_var.type, + shape=table_grad_var.shape, + dtype=table_grad_var.dtype) + for index in range(len(self.pserver_endpoints)) + ] + grad_blocks = split_dense_variable(grad_list, len(pserver_endpoints)) param_blocks = split_dense_variable(param_list, len(pserver_endpoints)) # step2: Create new vars for the parameters and gradients blocks and @@ -229,7 +279,7 @@ class DistributeTranspiler: self.param_grad_ep_mapping[ep]["grads"].append(grad) rpc_client_var = program.global_block().create_var( - name="RPC_CLIENT_VAR", + name=RPC_CLIENT_VAR_NAME, persistable=True, type=core.VarDesc.VarType.RAW) @@ -252,13 +302,19 @@ class DistributeTranspiler: outputs={"Out": [orig_param]}, attrs={"axis": 0}) + if self.has_distributed_lookup_table: + self._replace_lookup_table_op_with_prefetch(program, rpc_client_var, + eplist) + self._split_table_grad_and_add_send_vars(program, rpc_client_var, + pserver_endpoints) + def get_trainer_program(self): # remove optimize ops and add a send op to main_program - self.program.global_block().delete_ops(self.optimize_ops) - self.program.sync_with_cpp() + self.origin_program.global_block().delete_ops(self.optimize_ops) + self.origin_program.sync_with_cpp() # FIXME(typhoonzero): serialize once will fix error occurs when clone. - self.program.__str__() - return self.program + self.origin_program.__str__() + return self.origin_program def get_pserver_program(self, endpoint): """ @@ -294,8 +350,8 @@ class DistributeTranspiler: type=v.type, dtype=v.dtype, shape=v.shape) - if self.trainers > 1: - for trainer_id in xrange(self.trainers): + if self.trainer_num > 1: + for trainer_id in xrange(self.trainer_num): var = pserver_program.global_block().create_var( name="%s.trainer_%d" % (orig_var_name, trainer_id), persistable=False, @@ -309,7 +365,7 @@ class DistributeTranspiler: # step3 optimize_block = pserver_program.create_block(0) # step 4 - # Create a union-find data struct from optimize ops, + # Create a union-find data structure from optimize ops, # If two ops are connected, we could add these two ops # into one set. ufind = self._create_ufind(self.optimize_ops) @@ -384,6 +440,23 @@ class DistributeTranspiler: # __append_optimize_op__(glb_op, optimize_block) # break + # process distributed lookup_table + prefetch_block = None + if self.has_distributed_lookup_table: + pserver_index = self.pserver_endpoints.index(endpoint) + self._create_table_optimize_block(pserver_index, pserver_program, + append_block) + prefetch_block = self._create_prefetch_block( + pserver_index, pserver_program, optimize_block) + + # NOTE: if has_distributed_lookup_table is False, then prefetch_block will + # not be executed, so it's safe to use optimize_block to hold the place + if self.has_distributed_lookup_table: + assert prefetch_block is not None + else: + assert prefetch_block is None + prefetch_block = pserver_program.global_block() + # step5 append the listen_and_serv op pserver_program.global_block().append_op( type="listen_and_serv", @@ -392,8 +465,10 @@ class DistributeTranspiler: attrs={ "OptimizeBlock": optimize_block, "endpoint": endpoint, - "Fanin": self.trainers + "Fanin": self.trainer_num, + "PrefetchBlock": prefetch_block }) + pserver_program.sync_with_cpp() return pserver_program @@ -451,6 +526,197 @@ class DistributeTranspiler: attrs=op.attrs) return s_prog + # transpiler function for dis lookup_table + def _replace_lookup_table_op_with_prefetch(self, program, rpc_client_var, + eplist): + # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op + self.prefetch_input_vars = None + self.prefetch_output_vars = None + + continue_search_lookup_table_op = True + while continue_search_lookup_table_op: + continue_search_lookup_table_op = False + all_ops = program.global_block().ops + for op in all_ops: + if op.type == LOOKUP_TABLE_TYPE: + continue_search_lookup_table_op = True + + op_index = list(all_ops).index(op) + ids_name = op.input("Ids") + out_name = op.output("Out") + + if self.prefetch_input_vars is None: + ids_var = program.global_block().vars[ids_name[0]] + self.prefetch_input_vars = self.create_splited_vars( + source_var=ids_var, + block=program.global_block(), + tag="_prefetch_in_") + if self.prefetch_output_vars is None: + out_var = program.global_block().vars[out_name[0]] + self.prefetch_output_vars = self.create_splited_vars( + source_var=out_var, + block=program.global_block(), + tag="_prefetch_out_") + + # insert split_ids_op + program.global_block().insert_op( + index=op_index, + type="split_ids", + inputs={ + 'Ids': [ + program.global_block().vars[varname] + for varname in ids_name + ] + }, + outputs={"Out": self.prefetch_input_vars}) + + # insert prefetch_op + program.global_block().insert_op( + index=op_index + 1, + type="prefetch", + inputs={'X': self.prefetch_input_vars}, + outputs={ + "Out": self.prefetch_output_vars, + "RPCClient": rpc_client_var + }, + attrs={"epmap": eplist}) + + # insert concat_op + program.global_block().insert_op( + index=op_index + 2, + type="concat", + inputs={'X': self.prefetch_output_vars}, + outputs={ + "Out": [ + program.global_block().vars[varname] + for varname in out_name + ] + }, + attrs={"axis": 0}) + + # delete lookup_table_op + program.global_block().delete_ops([op]) + program.sync_with_cpp() + # break for loop + break + + def _split_table_grad_and_add_send_vars(self, program, rpc_client_var, + pserver_endpoints): + # 2. add split_ids_op and send_vars_op to send gradient to pservers + # there should only be one table_name + all_ops = program.global_block().ops + table_grad_name = framework.grad_var_name(self.table_name) + for op in all_ops: + if table_grad_name in op.output_arg_names: + op_index = list(all_ops).index(op) + # insert split_ids_op + program.global_block().insert_op( + index=op_index + 1, + type="split_ids", + inputs={ + 'Ids': [program.global_block().vars[table_grad_name]] + }, + outputs={"Out": self.table_grad_list}) + program.global_block().insert_op( + index=op_index + 2, + type="send_vars", + inputs={'X': self.table_grad_list}, + outputs={"RPCClient": rpc_client_var}, + attrs={"sync_send": True, + "epmap": pserver_endpoints}) + break + + def _create_prefetch_block(self, pserver_index, pserver_program, + optimize_block): + # STEP: create prefetch block + table_var = pserver_program.global_block().vars[self.table_name] + prefetch_block = pserver_program.create_block(optimize_block.idx) + trainer_ids = self.prefetch_input_vars[pserver_index] + pserver_ids = pserver_program.global_block().create_var( + name=trainer_ids.name, + type=trainer_ids.type, + shape=trainer_ids.shape, + dtype=trainer_ids.dtype) + trainer_out = self.prefetch_output_vars[pserver_index] + pserver_out = pserver_program.global_block().create_var( + name=trainer_out.name, + type=trainer_out.type, + shape=trainer_out.shape, + dtype=trainer_out.dtype) + prefetch_block.append_op( + type=LOOKUP_TABLE_TYPE, + inputs={'Ids': pserver_ids, + "W": table_var}, + outputs={"Out": pserver_out}, + attrs={ + "is_sparse": True, # has no effect on lookup_table op + "is_distributed": True, + "padding_idx": -1 + }) + return prefetch_block + + def _create_table_optimize_block(self, pserver_index, pserver_program, + append_block): + def _clone_var(block, var, persistable=True): + assert isinstance(var, Variable) + return block.create_var( + name=var.name, + shape=var.shape, + dtype=var.dtype, + type=var.type, + persistable=persistable) + + # STEP: create table optimize block + # create table param and grad var in pserver program + param_var = _clone_var( + pserver_program.global_block(), + self.origin_program.global_block().vars[self.table_name]) + grad_var = _clone_var( + pserver_program.global_block(), + self.origin_program.global_block().vars[framework.grad_var_name( + self.table_name)], + persistable=False) + + # create grad vars in pserver program + table_grad_var = self.table_param_grad[1] + table_grad_list = [ + pserver_program.global_block().create_var( + name="%s.trainer_%d.pserver_%d" % + (table_grad_var.name, index, pserver_index), + type=table_grad_var.type, + shape=table_grad_var.shape, + dtype=table_grad_var.dtype) for index in range(self.trainer_num) + ] + + # create table optimize block in pserver program + table_opt_op = [ + op for op in self.optimize_ops + if op.input("Param")[0] == self.table_name + ][0] + table_opt_block = pserver_program.create_block(append_block.idx) + # only support sgd now + assert table_opt_op.type == "sgd" + + # append sum op for table_grad_list + table_opt_block.append_op( + type="sum", + inputs={"X": table_grad_list}, + outputs={"Out": [grad_var]}) + + lr_var = pserver_program.global_block().vars[table_opt_op.input( + "LearningRate")[0]] + inputs = { + "Param": [param_var], + "Grad": [grad_var], + "LearningRate": [lr_var] + } + outputs = {"ParamOut": [param_var]} + table_opt_block.append_op( + type=table_opt_op.type, + inputs=inputs, + outputs=outputs, + attrs=table_opt_op.attrs) + # ====================== private transpiler functions ===================== def _create_vars_from_blocklist(self, program, @@ -512,7 +778,17 @@ class DistributeTranspiler: program.global_block().sync_with_cpp() return var_mapping - def _clone_var(self, block, var): + def create_splited_vars(self, source_var, block, tag): + return [ + block.create_var( + name=str(source_var.name + tag + str(index)), + type=source_var.type, + shape=source_var.shape, + dtype=source_var.dtype) + for index in range(len(self.pserver_endpoints)) + ] + + def _clone_var(self, block, var, persistable=True): assert isinstance(var, Variable) return block.create_var( name=var.name, @@ -520,12 +796,12 @@ class DistributeTranspiler: dtype=var.dtype, type=var.type, lod_level=var.lod_level, - persistable=True) + persistable=persistable) def _append_split_op(self, program, gradblocks): # Split variables that need to be split and append respective ops add_suffix = False - if self.trainers > 1: + if self.trainer_num > 1: add_suffix = True var_mapping = self._create_vars_from_blocklist( program, gradblocks, add_trainer_suffix=add_suffix) @@ -616,9 +892,9 @@ class DistributeTranspiler: return merged_var = \ pserver_block.vars[self._orig_varname(grad_block.name)] - if self.trainers > 1: + if self.trainer_num > 1: vars2merge = [] - for i in xrange(self.trainers): + for i in xrange(self.trainer_num): per_trainer_name = "%s.trainer_%d" % \ (self._orig_varname(grad_block.name), i) vars2merge.append(pserver_block.vars[per_trainer_name]) @@ -633,7 +909,7 @@ class DistributeTranspiler: type="scale", inputs={"X": merged_var}, outputs={"Out": merged_var}, - attrs={"scale": 1.0 / float(self.trainers)}) + attrs={"scale": 1.0 / float(self.trainer_num)}) new_inputs[key] = merged_var elif key == "Param": # param is already created on global program @@ -669,7 +945,7 @@ class DistributeTranspiler: new_shape = None if key in ["Param", "Grad", "LearningRate"]: continue - var = self.program.global_block().vars[opt_op.input(key)[0]] + var = self.origin_program.global_block().vars[opt_op.input(key)[0]] # update accumulator variable shape param_shape = new_inputs["Param"].shape new_shape = self._get_optimizer_input_shape(opt_op.type, key, @@ -682,8 +958,8 @@ class DistributeTranspiler: new_inputs[key] = tmpvar # change output's ParamOut variable - outputs = self._get_output_map_from_op(self.program.global_block().vars, - opt_op) + outputs = self._get_output_map_from_op( + self.origin_program.global_block().vars, opt_op) outputs["ParamOut"] = new_inputs["Param"] optimize_block.append_op( @@ -695,8 +971,8 @@ class DistributeTranspiler: def _append_pserver_non_opt_ops(self, optimize_block, opt_op): program = optimize_block.program # Append the ops for parameters that do not need to be optimized/updated - inputs = self._get_input_map_from_op(self.program.global_block().vars, - opt_op) + inputs = self._get_input_map_from_op( + self.origin_program.global_block().vars, opt_op) for varlist in inputs.itervalues(): if not isinstance(varlist, list): varlist = [varlist] @@ -709,8 +985,8 @@ class DistributeTranspiler: dtype=var.dtype, shape=var.shape) - outputs = self._get_output_map_from_op(self.program.global_block().vars, - opt_op) + outputs = self._get_output_map_from_op( + self.origin_program.global_block().vars, opt_op) for varlist in outputs.itervalues(): if not isinstance(varlist, list): @@ -783,7 +1059,6 @@ class DistributeTranspiler: if same_or_split_var(n, param) and n != param: return True return False - return False def _get_input_map_from_op(self, varmap, op): """Returns a dict from op input name to the vars in varmap.""" @@ -821,7 +1096,7 @@ class DistributeTranspiler: find_ops = [] # find ops which output is lr var - block = self.program.global_block() + block = self.origin_program.global_block() for op in block.ops: if set(op.output_arg_names) & lr_vars: find_ops.append(op) diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index 7ca4ed9a7be32a90e2186f07a5454f1a0e236891..5c2c2dd7abebf8960d68b4c4dfd746a4e27acd03 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -218,6 +218,7 @@ def fc(input, def embedding(input, size, is_sparse=False, + is_distributed=False, padding_idx=None, param_attr=None, dtype='float32'): @@ -268,8 +269,11 @@ def embedding(input, inputs={'Ids': input, 'W': w}, outputs={'Out': tmp}, - attrs={'is_sparse': is_sparse, - 'padding_idx': padding_idx}) + attrs={ + 'is_sparse': is_sparse, + 'is_distributed': is_distributed, + 'padding_idx': padding_idx + }) return tmp