Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
0b9d4c56
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
0b9d4c56
编写于
9月 02, 2022
作者:
Y
ykkk2333
提交者:
GitHub
9月 02, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
migrate softmax_with_cross_entropy and topk kernels to phi, test=kunlun (#45650)
上级
3b9b4c34
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
492 addition
and
547 deletion
+492
-547
paddle/fluid/operators/softmax_with_cross_entropy_op_xpu.cc
paddle/fluid/operators/softmax_with_cross_entropy_op_xpu.cc
+0
-310
paddle/fluid/operators/top_k_v2_op_xpu.cc
paddle/fluid/operators/top_k_v2_op_xpu.cc
+0
-237
paddle/phi/kernels/xpu/cross_entropy_grad_kernel.cc
paddle/phi/kernels/xpu/cross_entropy_grad_kernel.cc
+155
-0
paddle/phi/kernels/xpu/cross_entropy_kernel.cc
paddle/phi/kernels/xpu/cross_entropy_kernel.cc
+161
-0
paddle/phi/kernels/xpu/top_k_kernel.cc
paddle/phi/kernels/xpu/top_k_kernel.cc
+176
-0
未找到文件。
paddle/fluid/operators/softmax_with_cross_entropy_op_xpu.cc
已删除
100644 → 0
浏览文件 @
3b9b4c34
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/device/device_wrapper.h"
#include "paddle/phi/kernels/funcs/axis_utils.h"
#include "xpu/refactor/math.h"
#include "xpu/refactor/nn.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
class
SoftmaxWithCrossEntropyXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
PADDLE_ENFORCE_EQ
(
platform
::
is_xpu_place
(
context
.
GetPlace
()),
true
,
platform
::
errors
::
PreconditionNotMet
(
"This kernel only runs on XPU."
));
const
Tensor
*
logits
=
context
.
Input
<
Tensor
>
(
"Logits"
);
const
Tensor
*
labels
=
context
.
Input
<
Tensor
>
(
"Label"
);
Tensor
*
softmax
=
context
.
Output
<
Tensor
>
(
"Softmax"
);
Tensor
*
loss
=
context
.
Output
<
Tensor
>
(
"Loss"
);
const
int
rank
=
logits
->
dims
().
size
();
const
int
axis
=
phi
::
funcs
::
CanonicalAxis
(
context
.
Attr
<
int
>
(
"axis"
),
rank
);
softmax
->
mutable_data
<
T
>
(
context
.
GetPlace
());
loss
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
int
n
=
phi
::
funcs
::
SizeToAxis
(
axis
,
logits
->
dims
());
const
int
d
=
phi
::
funcs
::
SizeFromAxis
(
axis
,
logits
->
dims
());
std
::
vector
<
int
>
logits_dims
=
phi
::
vectorize
<
int
>
(
logits
->
dims
());
const
bool
soft_label
=
context
.
Attr
<
bool
>
(
"soft_label"
);
int
t
=
logits_dims
[
axis
];
auto
logits_data
=
reinterpret_cast
<
const
XPUType
*>
(
logits
->
data
<
T
>
());
auto
softmax_data
=
reinterpret_cast
<
XPUType
*>
(
softmax
->
data
<
T
>
());
auto
loss_data
=
reinterpret_cast
<
XPUType
*>
(
loss
->
data
<
T
>
());
// softmax
auto
&
dev_ctx
=
context
.
template
device_context
<
platform
::
XPUDeviceContext
>();
int
r
=
XPU_SUCCESS
;
xpu
::
ctx_guard
RAII_GUARD
(
dev_ctx
.
x_context
());
if
(
platform
::
get_xpu_version
(
context
.
GetPlace
().
GetDeviceId
())
==
phi
::
backends
::
xpu
::
XPUVersion
::
XPU2
&&
soft_label
&&
axis
==
rank
-
1
)
{
auto
labels_data
=
reinterpret_cast
<
const
XPUType
*>
(
labels
->
data
<
T
>
());
r
=
xpu
::
soft_softmax_with_cross_entropy
<
XPUType
>
(
dev_ctx
.
x_context
(),
logits_data
,
labels_data
,
softmax_data
,
loss_data
,
n
,
d
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"soft_softmax_with_cross_entropy"
);
return
;
}
int
len
=
logits
->
numel
();
T
*
clip_logits
=
RAII_GUARD
.
alloc_l3_or_gm
<
T
>
(
len
);
PADDLE_ENFORCE_XDNN_NOT_NULL
(
clip_logits
);
XPUType
*
clip_logits_data
=
reinterpret_cast
<
XPUType
*>
(
clip_logits
);
float
max_val
=
1e20
;
float
min_val
=
-
1e20
;
if
(
std
::
is_same
<
T
,
platform
::
float16
>::
value
)
{
max_val
=
65504
;
min_val
=
-
65504
;
}
r
=
xpu
::
clip_v2
<
XPUType
>
(
dev_ctx
.
x_context
(),
logits_data
,
clip_logits_data
,
len
,
static_cast
<
XPUType
>
(
min_val
),
static_cast
<
XPUType
>
(
max_val
));
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"clip_v2"
);
r
=
xpu
::
softmax
<
XPUType
>
(
dev_ctx
.
x_context
(),
clip_logits_data
,
softmax_data
,
logits_dims
,
axis
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"softmax"
);
// cross_entropy
if
(
axis
!=
rank
-
1
)
{
XPUType
*
trans_softmax
=
RAII_GUARD
.
alloc_l3_or_gm
<
XPUType
>
(
n
*
d
);
PADDLE_ENFORCE_XDNN_NOT_NULL
(
trans_softmax
);
r
=
xpu
::
transpose
(
dev_ctx
.
x_context
(),
softmax_data
,
trans_softmax
,
{
n
,
t
,
d
/
t
},
{
0
,
2
,
1
});
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"transpose"
);
softmax_data
=
trans_softmax
;
}
if
(
soft_label
)
{
auto
labels_data
=
reinterpret_cast
<
const
XPUType
*>
(
labels
->
data
<
T
>
());
if
(
axis
!=
rank
-
1
)
{
XPUType
*
trans_label
=
RAII_GUARD
.
alloc_l3_or_gm
<
XPUType
>
(
n
*
d
);
PADDLE_ENFORCE_XDNN_NOT_NULL
(
trans_label
);
r
=
xpu
::
transpose
(
dev_ctx
.
x_context
(),
labels_data
,
trans_label
,
{
n
,
t
,
d
/
t
},
{
0
,
2
,
1
});
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"transpose"
);
labels_data
=
trans_label
;
}
r
=
xpu
::
soft_cross_entropy
<
XPUType
>
(
dev_ctx
.
x_context
(),
softmax_data
,
labels_data
,
loss_data
,
axis
==
rank
-
1
?
n
:
n
*
d
/
t
,
axis
==
rank
-
1
?
d
:
t
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"soft_cross_entropy"
);
}
else
{
auto
ignore_index
=
context
.
Attr
<
int
>
(
"ignore_index"
);
Tensor
labels_int32
;
labels_int32
.
mutable_data
<
int32_t
>
(
context
.
GetPlace
(),
labels
->
numel
()
*
sizeof
(
int32_t
));
r
=
xpu
::
cast_v2
<
int64_t
,
int32_t
>
(
dev_ctx
.
x_context
(),
labels
->
data
<
int64_t
>
(),
labels_int32
.
data
<
int32_t
>
(),
labels
->
numel
());
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"clip_v2"
);
r
=
xpu
::
hard_cross_entropy
<
XPUType
,
int32_t
>
(
dev_ctx
.
x_context
(),
softmax_data
,
labels_int32
.
data
<
int32_t
>
(),
loss_data
,
nullptr
,
axis
==
rank
-
1
?
n
:
n
*
d
/
t
,
axis
==
rank
-
1
?
d
:
t
,
ignore_index
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"hard_cross_entropy"
);
}
}
};
template
<
typename
T
>
class
SoftmaxWithCrossEntropyGradXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
Tensor
*
out_grad
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Loss"
));
const
Tensor
*
labels
=
context
.
Input
<
Tensor
>
(
"Label"
);
Tensor
*
logit_grad
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Logits"
));
logit_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
Tensor
*
softmax
=
context
.
Input
<
Tensor
>
(
"Softmax"
);
const
bool
use_softmax
=
context
.
Attr
<
bool
>
(
"use_softmax"
);
const
bool
soft_label
=
context
.
Attr
<
bool
>
(
"soft_label"
);
auto
ignore_index
=
context
.
Attr
<
int
>
(
"ignore_index"
);
const
int
rank
=
logit_grad
->
dims
().
size
();
const
int
axis
=
phi
::
funcs
::
CanonicalAxis
(
context
.
Attr
<
int
>
(
"axis"
),
rank
);
const
int
n
=
phi
::
funcs
::
SizeToAxis
(
axis
,
logit_grad
->
dims
());
const
int
d
=
phi
::
funcs
::
SizeFromAxis
(
axis
,
logit_grad
->
dims
());
auto
&
dev_ctx
=
context
.
template
device_context
<
platform
::
XPUDeviceContext
>();
int
r
=
XPU_SUCCESS
;
if
(
axis
==
rank
-
1
)
{
if
(
soft_label
)
{
r
=
xpu
::
soft_softmax_with_cross_entropy_grad
<
XPUType
>
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
out_grad
->
data
<
T
>
()),
reinterpret_cast
<
const
XPUType
*>
(
labels
->
data
<
T
>
()),
reinterpret_cast
<
const
XPUType
*>
(
softmax
->
data
<
T
>
()),
reinterpret_cast
<
XPUType
*>
(
logit_grad
->
data
<
T
>
()),
use_softmax
,
n
,
d
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"soft_softmax_with_cross_entropy_grad"
);
}
else
{
xpu
::
ctx_guard
RAII_GUARD
(
dev_ctx
.
x_context
());
int
*
labels_int_ptr_l3
=
RAII_GUARD
.
alloc_l3_or_gm
<
int32_t
>
(
labels
->
numel
());
PADDLE_ENFORCE_XDNN_NOT_NULL
(
labels_int_ptr_l3
);
r
=
xpu
::
cast_v2
<
int64_t
,
int32_t
>
(
dev_ctx
.
x_context
(),
labels
->
data
<
int64_t
>
(),
labels_int_ptr_l3
,
labels
->
numel
());
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"cast_v2"
);
r
=
xpu
::
hard_softmax_with_cross_entropy_grad
<
XPUType
,
int
>
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
out_grad
->
data
<
T
>
()),
labels_int_ptr_l3
,
reinterpret_cast
<
const
XPUType
*>
(
softmax
->
data
<
T
>
()),
reinterpret_cast
<
XPUType
*>
(
logit_grad
->
data
<
T
>
()),
ignore_index
,
use_softmax
,
n
,
d
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"hard_softmax_with_cross_entropy_grad"
);
}
}
else
{
int
t
=
logit_grad
->
dims
()[
axis
];
xpu
::
ctx_guard
RAII_GUARD
(
dev_ctx
.
x_context
());
int
len
=
softmax
->
numel
();
XPUType
*
trans_logit
=
RAII_GUARD
.
alloc_l3_or_gm
<
XPUType
>
(
len
);
PADDLE_ENFORCE_XDNN_NOT_NULL
(
trans_logit
);
XPUType
*
trans_softmax
=
RAII_GUARD
.
alloc_l3_or_gm
<
XPUType
>
(
len
);
PADDLE_ENFORCE_XDNN_NOT_NULL
(
trans_softmax
);
r
=
xpu
::
transpose
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
softmax
->
data
<
T
>
()),
trans_softmax
,
{
n
,
t
,
d
/
t
},
{
0
,
2
,
1
});
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"transpose"
);
if
(
soft_label
)
{
XPUType
*
trans_labels
=
RAII_GUARD
.
alloc_l3_or_gm
<
XPUType
>
(
len
);
PADDLE_ENFORCE_XDNN_NOT_NULL
(
trans_labels
);
r
=
xpu
::
transpose
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
labels
->
data
<
T
>
()),
trans_labels
,
{
n
,
t
,
d
/
t
},
{
0
,
2
,
1
});
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"transpose"
);
r
=
xpu
::
soft_softmax_with_cross_entropy_grad
<
XPUType
>
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
out_grad
->
data
<
T
>
()),
trans_labels
,
trans_softmax
,
trans_logit
,
use_softmax
,
n
*
d
/
t
,
t
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"soft_softmax_with_cross_entropy_grad"
);
}
else
{
int
*
labels_int_ptr_l3
=
RAII_GUARD
.
alloc_l3_or_gm
<
int32_t
>
(
labels
->
numel
());
PADDLE_ENFORCE_XDNN_NOT_NULL
(
labels_int_ptr_l3
);
r
=
xpu
::
cast_v2
<
int64_t
,
int32_t
>
(
dev_ctx
.
x_context
(),
labels
->
data
<
int64_t
>
(),
labels_int_ptr_l3
,
labels
->
numel
());
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"clip_v2"
);
r
=
xpu
::
hard_softmax_with_cross_entropy_grad
<
XPUType
,
int
>
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
out_grad
->
data
<
T
>
()),
labels_int_ptr_l3
,
trans_softmax
,
trans_logit
,
ignore_index
,
use_softmax
,
n
*
d
/
t
,
t
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"hard_softmax_with_cross_entropy_grad"
);
}
r
=
xpu
::
transpose
<
XPUType
>
(
dev_ctx
.
x_context
(),
trans_logit
,
reinterpret_cast
<
XPUType
*>
(
logit_grad
->
data
<
T
>
()),
{
n
,
d
/
t
,
t
},
{
0
,
2
,
1
});
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"transpose"
);
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_XPU_KERNEL
(
softmax_with_cross_entropy
,
ops
::
SoftmaxWithCrossEntropyXPUKernel
<
float
>
,
ops
::
SoftmaxWithCrossEntropyXPUKernel
<
paddle
::
platform
::
float16
>
);
REGISTER_OP_XPU_KERNEL
(
softmax_with_cross_entropy_grad
,
ops
::
SoftmaxWithCrossEntropyGradXPUKernel
<
float
>
,
ops
::
SoftmaxWithCrossEntropyGradXPUKernel
<
paddle
::
platform
::
float16
>
);
#endif
paddle/fluid/operators/top_k_v2_op_xpu.cc
已删除
100644 → 0
浏览文件 @
3b9b4c34
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include <memory>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/transpose_op.h"
#include "xpu/refactor/math.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
class
TopkV2XPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
*
indices
=
ctx
.
Output
<
Tensor
>
(
"Indices"
);
const
auto
&
in_dims
=
input
->
dims
();
const
T
*
in_data
=
input
->
data
<
T
>
();
int64_t
*
indices_data
=
indices
->
mutable_data
<
int64_t
>
(
ctx
.
GetPlace
());
T
*
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
auto
&
out_dims
=
output
->
dims
();
const
auto
&
sorted
=
static_cast
<
bool
>
(
ctx
.
Attr
<
bool
>
(
"sorted"
));
const
auto
&
largest
=
static_cast
<
bool
>
(
ctx
.
Attr
<
bool
>
(
"largest"
));
PADDLE_ENFORCE_EQ
(
sorted
,
true
,
platform
::
errors
::
External
(
"XPU API does not support unsorted topk operation currently."
" Operator will be supported in future update."
));
PADDLE_ENFORCE_EQ
(
largest
,
true
,
platform
::
errors
::
External
(
"XPU API does not support smallest topk operation currently."
" Operator will be supported in future update."
));
int
axis
=
static_cast
<
int
>
(
ctx
.
Attr
<
int
>
(
"axis"
));
if
(
axis
<
0
)
axis
+=
in_dims
.
size
();
size_t
k
=
static_cast
<
int
>
(
ctx
.
Attr
<
int
>
(
"k"
));
auto
*
k_t
=
ctx
.
Input
<
Tensor
>
(
"K"
);
if
(
k_t
)
{
k
=
k_t
->
data
<
int
>
()[
0
];
framework
::
DDim
output_dims
=
output
->
dims
();
output_dims
[
axis
]
=
k
;
output
->
Resize
(
output_dims
);
indices
->
Resize
(
output_dims
);
}
if
(
axis
+
1
==
in_dims
.
size
())
{
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
XPUDeviceContext
>();
xpu
::
ctx_guard
RAII_GUARD
(
dev_ctx
.
x_context
());
int32_t
*
indices_int_data
=
RAII_GUARD
.
alloc_l3_or_gm
<
int32_t
>
(
indices
->
numel
());
const
size_t
row
=
phi
::
product
(
phi
::
slice_ddim
(
in_dims
,
0
,
in_dims
.
size
()
-
1
));
const
size_t
col
=
in_dims
[
in_dims
.
size
()
-
1
];
int
r
=
xpu
::
sorted_topk
<
T
>
(
dev_ctx
.
x_context
(),
in_data
,
output_data
,
indices_int_data
,
row
,
col
,
k
);
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API return wrong value[%d %s] in call kernel name "
"[%s], please check "
"where Baidu Kunlun Card is properly installed."
,
r
,
XPUAPIErrorMsg
[
r
],
"sorted_topk"
));
r
=
xpu
::
cast_v2
<
int32_t
,
int64_t
>
(
dev_ctx
.
x_context
(),
(
const
int32_t
*
)
indices_int_data
,
indices_data
,
indices
->
numel
());
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API return wrong value[%d %s] in call kernel name "
"[%s], please check "
"where Baidu Kunlun Card is properly installed."
,
r
,
XPUAPIErrorMsg
[
r
],
"cast_v2"
));
}
else
{
// do transpose if axis is not the last dim of input
std
::
vector
<
int
>
trans_axes
;
for
(
int
i
=
0
;
i
<
axis
;
i
++
)
{
trans_axes
.
emplace_back
(
i
);
}
for
(
int
i
=
axis
+
1
;
i
<
in_dims
.
size
();
i
++
)
{
trans_axes
.
emplace_back
(
i
);
}
trans_axes
.
emplace_back
(
axis
);
// Get input and output dims for transpose
framework
::
DDim
trans_dims
(
in_dims
);
framework
::
DDim
trans_out_dims
(
output
->
dims
());
for
(
size_t
i
=
0
;
i
<
trans_axes
.
size
();
i
++
)
{
trans_dims
[
i
]
=
in_dims
[
trans_axes
[
i
]];
trans_out_dims
[
i
]
=
out_dims
[
trans_axes
[
i
]];
}
std
::
vector
<
int
>
x_shape_host
(
in_dims
.
size
(),
0
);
for
(
int
i
=
0
;
i
<
in_dims
.
size
();
++
i
)
{
x_shape_host
[
i
]
=
in_dims
[
i
];
}
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
XPUDeviceContext
>();
xpu
::
ctx_guard
RAII_GUARD
(
dev_ctx
.
x_context
());
T
*
trans_in_data
=
RAII_GUARD
.
alloc_l3_or_gm
<
T
>
(
input
->
numel
());
// Transpose and save interval output to trans_in
int
r
=
xpu
::
transpose
<
T
>
(
dev_ctx
.
x_context
(),
in_data
,
trans_in_data
,
x_shape_host
,
trans_axes
);
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU API 1st Transpose kernel"
" returns wrong value[%d %s]!"
,
r
,
XPUAPIErrorMsg
[
r
]));
T
*
trans_out_data
=
RAII_GUARD
.
alloc_l3_or_gm
<
T
>
(
output
->
numel
());
int64_t
*
trans_idx_data
=
RAII_GUARD
.
alloc_l3_or_gm
<
int64_t
>
(
output
->
numel
());
int32_t
*
trans_idx_int32_data
=
RAII_GUARD
.
alloc_l3_or_gm
<
int32_t
>
(
output
->
numel
());
const
size_t
row
=
phi
::
product
(
phi
::
slice_ddim
(
trans_dims
,
0
,
trans_dims
.
size
()
-
1
));
const
size_t
col
=
trans_dims
[
trans_dims
.
size
()
-
1
];
// Do top k on transposed input
r
=
xpu
::
sorted_topk
<
T
>
(
dev_ctx
.
x_context
(),
trans_in_data
,
trans_out_data
,
trans_idx_int32_data
,
row
,
col
,
k
);
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API return wrong value[%d %s] in call kernel name "
"[%s], please check "
"where Baidu Kunlun Card is properly installed."
,
r
,
XPUAPIErrorMsg
[
r
],
"sorted_topk"
));
r
=
xpu
::
cast_v2
<
int32_t
,
int64_t
>
(
dev_ctx
.
x_context
(),
(
const
int32_t
*
)
trans_idx_int32_data
,
trans_idx_data
,
indices
->
numel
());
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API return wrong value[%d %s in call kernel name "
"[%s], please check "
"where Baidu Kunlun Card is properly installed."
,
r
,
XPUAPIErrorMsg
[
r
],
"cast_v2"
));
// Transpose back to original dims
std
::
vector
<
int
>
trans_back_axes
;
for
(
int
i
=
0
;
i
<
axis
;
i
++
)
{
trans_axes
.
emplace_back
(
i
);
}
trans_axes
.
emplace_back
(
trans_out_dims
.
size
()
-
1
);
for
(
int
i
=
axis
;
i
<
trans_out_dims
.
size
()
-
1
;
i
++
)
{
trans_axes
.
emplace_back
(
i
);
}
std
::
vector
<
int
>
trans_out_shape_host
(
trans_back_axes
.
size
(),
0
);
for
(
size_t
i
=
0
;
i
<
trans_back_axes
.
size
();
++
i
)
{
trans_out_shape_host
[
i
]
=
trans_out_dims
[
i
];
}
r
=
xpu
::
transpose
<
T
>
(
dev_ctx
.
x_context
(),
trans_out_data
,
output_data
,
trans_out_shape_host
,
trans_back_axes
);
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU API 2nd Transpose kernel"
" returns wrong value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
r
=
xpu
::
transpose
<
int64_t
>
(
dev_ctx
.
x_context
(),
trans_idx_data
,
indices_data
,
trans_out_shape_host
,
trans_back_axes
);
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU API 3rd Transpose kernel"
" returns wrong value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_XPU_KERNEL
(
top_k_v2
,
ops
::
TopkV2XPUKernel
<
float
>
);
#endif
paddle/phi/kernels/xpu/cross_entropy_grad_kernel.cc
0 → 100644
浏览文件 @
0b9d4c56
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/kernels/cross_entropy_grad_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/axis_utils.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
CrossEntropyWithSoftmaxGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
labels
,
const
DenseTensor
&
softmax
,
const
DenseTensor
&
loss_grad
,
bool
soft_label
,
bool
use_softmax
,
bool
numeric_stable_mode
,
int
ignore_index
,
int
axis_in
,
DenseTensor
*
logit_grad
)
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
dev_ctx
.
template
Alloc
<
T
>(
logit_grad
);
const
int
rank
=
logit_grad
->
dims
().
size
();
const
int
axis
=
phi
::
funcs
::
CanonicalAxis
(
axis_in
,
rank
);
const
int
n
=
phi
::
funcs
::
SizeToAxis
(
axis
,
logit_grad
->
dims
());
const
int
d
=
phi
::
funcs
::
SizeFromAxis
(
axis
,
logit_grad
->
dims
());
int
r
=
XPU_SUCCESS
;
if
(
axis
==
rank
-
1
)
{
if
(
soft_label
)
{
r
=
xpu
::
soft_softmax_with_cross_entropy_grad
<
XPUType
>
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
loss_grad
.
data
<
T
>
()),
reinterpret_cast
<
const
XPUType
*>
(
labels
.
data
<
T
>
()),
reinterpret_cast
<
const
XPUType
*>
(
softmax
.
data
<
T
>
()),
reinterpret_cast
<
XPUType
*>
(
logit_grad
->
data
<
T
>
()),
use_softmax
,
n
,
d
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"soft_softmax_with_cross_entropy_grad"
);
}
else
{
xpu
::
ctx_guard
RAII_GUARD
(
dev_ctx
.
x_context
());
int
*
labels_int_ptr_l3
=
RAII_GUARD
.
alloc_l3_or_gm
<
int32_t
>
(
labels
.
numel
());
PADDLE_ENFORCE_XDNN_NOT_NULL
(
labels_int_ptr_l3
);
r
=
xpu
::
cast_v2
<
int64_t
,
int32_t
>
(
dev_ctx
.
x_context
(),
labels
.
data
<
int64_t
>
(),
labels_int_ptr_l3
,
labels
.
numel
());
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"cast_v2"
);
r
=
xpu
::
hard_softmax_with_cross_entropy_grad
<
XPUType
,
int
>
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
loss_grad
.
data
<
T
>
()),
labels_int_ptr_l3
,
reinterpret_cast
<
const
XPUType
*>
(
softmax
.
data
<
T
>
()),
reinterpret_cast
<
XPUType
*>
(
logit_grad
->
data
<
T
>
()),
ignore_index
,
use_softmax
,
n
,
d
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"hard_softmax_with_cross_entropy_grad"
);
}
}
else
{
int
t
=
logit_grad
->
dims
()[
axis
];
xpu
::
ctx_guard
RAII_GUARD
(
dev_ctx
.
x_context
());
int
len
=
softmax
.
numel
();
XPUType
*
trans_logit
=
RAII_GUARD
.
alloc_l3_or_gm
<
XPUType
>
(
len
);
PADDLE_ENFORCE_XDNN_NOT_NULL
(
trans_logit
);
XPUType
*
trans_softmax
=
RAII_GUARD
.
alloc_l3_or_gm
<
XPUType
>
(
len
);
PADDLE_ENFORCE_XDNN_NOT_NULL
(
trans_softmax
);
r
=
xpu
::
transpose
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
softmax
.
data
<
T
>
()),
trans_softmax
,
{
n
,
t
,
d
/
t
},
{
0
,
2
,
1
});
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"transpose"
);
if
(
soft_label
)
{
XPUType
*
trans_labels
=
RAII_GUARD
.
alloc_l3_or_gm
<
XPUType
>
(
len
);
PADDLE_ENFORCE_XDNN_NOT_NULL
(
trans_labels
);
r
=
xpu
::
transpose
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
labels
.
data
<
T
>
()),
trans_labels
,
{
n
,
t
,
d
/
t
},
{
0
,
2
,
1
});
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"transpose"
);
r
=
xpu
::
soft_softmax_with_cross_entropy_grad
<
XPUType
>
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
loss_grad
.
data
<
T
>
()),
trans_labels
,
trans_softmax
,
trans_logit
,
use_softmax
,
n
*
d
/
t
,
t
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"soft_softmax_with_cross_entropy_grad"
);
}
else
{
int
*
labels_int_ptr_l3
=
RAII_GUARD
.
alloc_l3_or_gm
<
int32_t
>
(
labels
.
numel
());
PADDLE_ENFORCE_XDNN_NOT_NULL
(
labels_int_ptr_l3
);
r
=
xpu
::
cast_v2
<
int64_t
,
int32_t
>
(
dev_ctx
.
x_context
(),
labels
.
data
<
int64_t
>
(),
labels_int_ptr_l3
,
labels
.
numel
());
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"clip_v2"
);
r
=
xpu
::
hard_softmax_with_cross_entropy_grad
<
XPUType
,
int
>
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
loss_grad
.
data
<
T
>
()),
labels_int_ptr_l3
,
trans_softmax
,
trans_logit
,
ignore_index
,
use_softmax
,
n
*
d
/
t
,
t
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"hard_softmax_with_cross_entropy_grad"
);
}
r
=
xpu
::
transpose
<
XPUType
>
(
dev_ctx
.
x_context
(),
trans_logit
,
reinterpret_cast
<
XPUType
*>
(
logit_grad
->
data
<
T
>
()),
{
n
,
d
/
t
,
t
},
{
0
,
2
,
1
});
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"transpose"
);
}
}
}
// namespace phi
PD_REGISTER_KERNEL
(
cross_entropy_with_softmax_grad
,
XPU
,
ALL_LAYOUT
,
phi
::
CrossEntropyWithSoftmaxGradKernel
,
float
,
phi
::
dtype
::
float16
)
{}
paddle/phi/kernels/xpu/cross_entropy_kernel.cc
0 → 100644
浏览文件 @
0b9d4c56
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/kernels/cross_entropy_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/axis_utils.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
CrossEntropyWithSoftmaxKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
logits
,
const
DenseTensor
&
labels
,
bool
soft_label
,
bool
use_softmax
,
bool
numeric_stable_mode
,
int
ignore_index
,
int
axis_in
,
DenseTensor
*
softmax
,
DenseTensor
*
loss
)
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
PADDLE_ENFORCE_EQ
(
logits
.
place
().
GetType
()
==
phi
::
AllocationType
::
XPU
,
true
,
errors
::
PreconditionNotMet
(
"This kernel only runs on XPU."
));
const
int
rank
=
logits
.
dims
().
size
();
const
int
axis
=
phi
::
funcs
::
CanonicalAxis
(
axis_in
,
rank
);
dev_ctx
.
template
Alloc
<
T
>(
softmax
);
dev_ctx
.
template
Alloc
<
T
>(
loss
);
const
int
n
=
phi
::
funcs
::
SizeToAxis
(
axis
,
logits
.
dims
());
const
int
d
=
phi
::
funcs
::
SizeFromAxis
(
axis
,
logits
.
dims
());
std
::
vector
<
int
>
logits_dims
=
phi
::
vectorize
<
int
>
(
logits
.
dims
());
int
t
=
logits_dims
[
axis
];
auto
logits_data
=
reinterpret_cast
<
const
XPUType
*>
(
logits
.
data
<
T
>
());
auto
softmax_data
=
reinterpret_cast
<
XPUType
*>
(
softmax
->
data
<
T
>
());
auto
loss_data
=
reinterpret_cast
<
XPUType
*>
(
loss
->
data
<
T
>
());
// softmax
int
r
=
XPU_SUCCESS
;
xpu
::
ctx_guard
RAII_GUARD
(
dev_ctx
.
x_context
());
if
(
phi
::
backends
::
xpu
::
get_xpu_version
(
dev_ctx
.
GetPlace
().
GetDeviceId
())
==
phi
::
backends
::
xpu
::
XPUVersion
::
XPU2
&&
soft_label
&&
axis
==
rank
-
1
)
{
auto
labels_data
=
reinterpret_cast
<
const
XPUType
*>
(
labels
.
data
<
T
>
());
r
=
xpu
::
soft_softmax_with_cross_entropy
<
XPUType
>
(
dev_ctx
.
x_context
(),
logits_data
,
labels_data
,
softmax_data
,
loss_data
,
n
,
d
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"soft_softmax_with_cross_entropy"
);
return
;
}
int
len
=
logits
.
numel
();
T
*
clip_logits
=
RAII_GUARD
.
alloc_l3_or_gm
<
T
>
(
len
);
PADDLE_ENFORCE_XDNN_NOT_NULL
(
clip_logits
);
XPUType
*
clip_logits_data
=
reinterpret_cast
<
XPUType
*>
(
clip_logits
);
float
max_val
=
1e20
;
float
min_val
=
-
1e20
;
if
(
std
::
is_same
<
T
,
dtype
::
float16
>::
value
)
{
max_val
=
65504
;
min_val
=
-
65504
;
}
r
=
xpu
::
clip_v2
<
XPUType
>
(
dev_ctx
.
x_context
(),
logits_data
,
clip_logits_data
,
len
,
static_cast
<
XPUType
>
(
min_val
),
static_cast
<
XPUType
>
(
max_val
));
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"clip_v2"
);
r
=
xpu
::
softmax
<
XPUType
>
(
dev_ctx
.
x_context
(),
clip_logits_data
,
softmax_data
,
logits_dims
,
axis
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"softmax"
);
// cross_entropy
if
(
axis
!=
rank
-
1
)
{
XPUType
*
trans_softmax
=
RAII_GUARD
.
alloc_l3_or_gm
<
XPUType
>
(
n
*
d
);
PADDLE_ENFORCE_XDNN_NOT_NULL
(
trans_softmax
);
r
=
xpu
::
transpose
(
dev_ctx
.
x_context
(),
softmax_data
,
trans_softmax
,
{
n
,
t
,
d
/
t
},
{
0
,
2
,
1
});
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"transpose"
);
softmax_data
=
trans_softmax
;
}
if
(
soft_label
)
{
auto
labels_data
=
reinterpret_cast
<
const
XPUType
*>
(
labels
.
data
<
T
>
());
if
(
axis
!=
rank
-
1
)
{
XPUType
*
trans_label
=
RAII_GUARD
.
alloc_l3_or_gm
<
XPUType
>
(
n
*
d
);
PADDLE_ENFORCE_XDNN_NOT_NULL
(
trans_label
);
r
=
xpu
::
transpose
(
dev_ctx
.
x_context
(),
labels_data
,
trans_label
,
{
n
,
t
,
d
/
t
},
{
0
,
2
,
1
});
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"transpose"
);
labels_data
=
trans_label
;
}
r
=
xpu
::
soft_cross_entropy
<
XPUType
>
(
dev_ctx
.
x_context
(),
softmax_data
,
labels_data
,
loss_data
,
axis
==
rank
-
1
?
n
:
n
*
d
/
t
,
axis
==
rank
-
1
?
d
:
t
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"soft_cross_entropy"
);
}
else
{
DenseTensor
labels_int32
;
int
*
labels_int_ptr_l3
=
RAII_GUARD
.
alloc_l3_or_gm
<
int32_t
>
(
labels
.
numel
());
PADDLE_ENFORCE_XDNN_NOT_NULL
(
labels_int_ptr_l3
);
r
=
xpu
::
cast_v2
<
int64_t
,
int32_t
>
(
dev_ctx
.
x_context
(),
labels
.
data
<
int64_t
>
(),
labels_int_ptr_l3
,
labels
.
numel
());
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"clip_v2"
);
r
=
xpu
::
hard_cross_entropy
<
XPUType
,
int32_t
>
(
dev_ctx
.
x_context
(),
softmax_data
,
labels_int_ptr_l3
,
loss_data
,
nullptr
,
axis
==
rank
-
1
?
n
:
n
*
d
/
t
,
axis
==
rank
-
1
?
d
:
t
,
ignore_index
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"hard_cross_entropy"
);
}
}
}
// namespace phi
PD_REGISTER_KERNEL
(
cross_entropy_with_softmax
,
XPU
,
ALL_LAYOUT
,
phi
::
CrossEntropyWithSoftmaxKernel
,
float
,
phi
::
dtype
::
float16
)
{}
paddle/phi/kernels/xpu/top_k_kernel.cc
0 → 100644
浏览文件 @
0b9d4c56
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/top_k_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
TopkKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
Scalar
&
k_scalar
,
int
axis
,
bool
largest
,
bool
sorted
,
DenseTensor
*
out
,
DenseTensor
*
indices
)
{
const
auto
&
in_dims
=
x
.
dims
();
const
T
*
in_data
=
x
.
data
<
T
>
();
int64_t
*
indices_data
=
dev_ctx
.
template
Alloc
<
int64_t
>(
indices
);
T
*
output_data
=
dev_ctx
.
template
Alloc
<
T
>(
out
);
const
auto
&
out_dims
=
out
->
dims
();
PADDLE_ENFORCE_EQ
(
sorted
,
true
,
errors
::
External
(
"XPU API does not support unsorted topk operation currently."
" Operator will be supported in future update."
));
PADDLE_ENFORCE_EQ
(
largest
,
true
,
errors
::
External
(
"XPU API does not support smallest topk operation currently."
" Operator will be supported in future update."
));
if
(
axis
<
0
)
axis
+=
in_dims
.
size
();
size_t
k
=
k_scalar
.
to
<
int
>
();
if
(
axis
+
1
==
in_dims
.
size
())
{
xpu
::
ctx_guard
RAII_GUARD
(
dev_ctx
.
x_context
());
int32_t
*
indices_int_data
=
RAII_GUARD
.
alloc_l3_or_gm
<
int32_t
>
(
indices
->
numel
());
const
size_t
row
=
phi
::
product
(
phi
::
slice_ddim
(
in_dims
,
0
,
in_dims
.
size
()
-
1
));
const
size_t
col
=
in_dims
[
in_dims
.
size
()
-
1
];
int
r
=
xpu
::
sorted_topk
<
T
>
(
dev_ctx
.
x_context
(),
in_data
,
output_data
,
indices_int_data
,
row
,
col
,
k
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"sorted_topk"
);
r
=
xpu
::
cast_v2
<
int32_t
,
int64_t
>
(
dev_ctx
.
x_context
(),
(
const
int32_t
*
)
indices_int_data
,
indices_data
,
indices
->
numel
());
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"cast_v2"
);
}
else
{
// do transpose if axis is not the last dim of input
std
::
vector
<
int
>
trans_axes
;
for
(
int
i
=
0
;
i
<
axis
;
i
++
)
{
trans_axes
.
emplace_back
(
i
);
}
for
(
int
i
=
axis
+
1
;
i
<
in_dims
.
size
();
i
++
)
{
trans_axes
.
emplace_back
(
i
);
}
trans_axes
.
emplace_back
(
axis
);
// Get input and output dims for transpose
DDim
trans_dims
(
in_dims
);
DDim
trans_out_dims
(
out
->
dims
());
for
(
size_t
i
=
0
;
i
<
trans_axes
.
size
();
i
++
)
{
trans_dims
[
i
]
=
in_dims
[
trans_axes
[
i
]];
trans_out_dims
[
i
]
=
out_dims
[
trans_axes
[
i
]];
}
std
::
vector
<
int
>
x_shape_host
(
in_dims
.
size
(),
0
);
for
(
int
i
=
0
;
i
<
in_dims
.
size
();
++
i
)
{
x_shape_host
[
i
]
=
in_dims
[
i
];
}
xpu
::
ctx_guard
RAII_GUARD
(
dev_ctx
.
x_context
());
T
*
trans_in_data
=
RAII_GUARD
.
alloc_l3_or_gm
<
T
>
(
x
.
numel
());
// Transpose and save interval output to trans_in
int
r
=
xpu
::
transpose
<
T
>
(
dev_ctx
.
x_context
(),
in_data
,
trans_in_data
,
x_shape_host
,
trans_axes
);
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
errors
::
External
(
"XPU API 1st Transpose kernel"
" returns wrong value[%d %s]!"
,
r
,
XPUAPIErrorMsg
[
r
]));
T
*
trans_out_data
=
RAII_GUARD
.
alloc_l3_or_gm
<
T
>
(
out
->
numel
());
int64_t
*
trans_idx_data
=
RAII_GUARD
.
alloc_l3_or_gm
<
int64_t
>
(
out
->
numel
());
int32_t
*
trans_idx_int32_data
=
RAII_GUARD
.
alloc_l3_or_gm
<
int32_t
>
(
out
->
numel
());
const
size_t
row
=
phi
::
product
(
phi
::
slice_ddim
(
trans_dims
,
0
,
trans_dims
.
size
()
-
1
));
const
size_t
col
=
trans_dims
[
trans_dims
.
size
()
-
1
];
// Do top k on transposed input
r
=
xpu
::
sorted_topk
<
T
>
(
dev_ctx
.
x_context
(),
trans_in_data
,
trans_out_data
,
trans_idx_int32_data
,
row
,
col
,
k
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"sorted_topk"
);
r
=
xpu
::
cast_v2
<
int32_t
,
int64_t
>
(
dev_ctx
.
x_context
(),
(
const
int32_t
*
)
trans_idx_int32_data
,
trans_idx_data
,
indices
->
numel
());
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"cast_v2"
);
// Transpose back to original dims
std
::
vector
<
int
>
trans_back_axes
;
for
(
int
i
=
0
;
i
<
axis
;
i
++
)
{
trans_axes
.
emplace_back
(
i
);
}
trans_axes
.
emplace_back
(
trans_out_dims
.
size
()
-
1
);
for
(
int
i
=
axis
;
i
<
trans_out_dims
.
size
()
-
1
;
i
++
)
{
trans_axes
.
emplace_back
(
i
);
}
std
::
vector
<
int
>
trans_out_shape_host
(
trans_back_axes
.
size
(),
0
);
for
(
size_t
i
=
0
;
i
<
trans_back_axes
.
size
();
++
i
)
{
trans_out_shape_host
[
i
]
=
trans_out_dims
[
i
];
}
r
=
xpu
::
transpose
<
T
>
(
dev_ctx
.
x_context
(),
trans_out_data
,
output_data
,
trans_out_shape_host
,
trans_back_axes
);
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
errors
::
External
(
"XPU API 2nd Transpose kernel"
" returns wrong value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
r
=
xpu
::
transpose
<
int64_t
>
(
dev_ctx
.
x_context
(),
trans_idx_data
,
indices_data
,
trans_out_shape_host
,
trans_back_axes
);
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
errors
::
External
(
"XPU API 3rd Transpose kernel"
" returns wrong value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
}
}
}
// namespace phi
PD_REGISTER_KERNEL
(
top_k
,
XPU
,
ALL_LAYOUT
,
phi
::
TopkKernel
,
float
)
{}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录