Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
0b3f6265
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
0b3f6265
编写于
6月 10, 2020
作者:
Z
Zhou Wei
提交者:
GitHub
6月 10, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add new learing rate strategy to reduce lr when loss reach on plateau (#24322) (#24979)
添加loss自适应的学习率衰减策略。
上级
1185a96f
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
304 addition
and
5 deletion
+304
-5
python/paddle/fluid/dygraph/learning_rate_scheduler.py
python/paddle/fluid/dygraph/learning_rate_scheduler.py
+195
-2
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+2
-2
python/paddle/fluid/tests/unittests/test_learning_rate_scheduler.py
...dle/fluid/tests/unittests/test_learning_rate_scheduler.py
+107
-1
未找到文件。
python/paddle/fluid/dygraph/learning_rate_scheduler.py
浏览文件 @
0b3f6265
...
...
@@ -17,10 +17,13 @@ from __future__ import print_function
import
math
from
..
import
unique_name
from
..framework
import
Variable
from
..data_feeder
import
check_type
__all__
=
[
'NoamDecay'
,
'PiecewiseDecay'
,
'NaturalExpDecay'
,
'ExponentialDecay'
,
'InverseTimeDecay'
,
'PolynomialDecay'
,
'CosineDecay'
'InverseTimeDecay'
,
'PolynomialDecay'
,
'CosineDecay'
,
'LinearLrWarmup'
,
'ReduceLROnPlateau'
]
...
...
@@ -619,7 +622,7 @@ class LinearLrWarmup(LearningRateDecay):
learning_rate = 0.1
warmup_steps = 50
start_lr =
1. / 3.
start_lr =
0
end_lr = 0.1
with fluid.dygraph.guard():
...
...
@@ -660,3 +663,193 @@ class LinearLrWarmup(LearningRateDecay):
return
self
.
lr_ratio_before_warmup
*
self
.
step_num
else
:
return
base_lr
class
ReduceLROnPlateau
(
LearningRateDecay
):
"""
Reduce learning rate when ``loss`` has stopped descending. Models often benefit from reducing the learning rate
by 2 to 10 times once model performance has no longer improvement.
The ``loss`` is the one which has been pass into ``step`` , it must be 1-D Tensor with shape [1]. When ``loss``
stop descending for a ``patience`` number of epochs, the learning rate will be reduced to ``learning_rate * decay_rate`` .
(Specially, ``mode`` can also be set to ``'max`` , in this case, when ``loss`` stop ascending for a ``patience`` number
of epochs, the learning rate will be reduced.)
In addition, After each reduction, it will wait a ``cooldown`` number of epochs before resuming normal operation.
Args:
learning_rate (Variable|float|int): The initial learning rate. It can be set to python float or int number.
If the type is Variable, it should be 1-D Tensor with shape [1], the data type can be 'float32' or 'float64'.
mode (str, optional): ``'min'`` or ``'max'`` can be selected. Normally, it is ``'min'`` , which means that the
learning rate will reduce when ``loss`` stops descending. Specially, if it's set to ``'max'`` , the learning
rate will reduce when ``loss`` stops ascending. Default: ``'min'`` .
decay_rate (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * decay_rate`` .
It should be less than 1.0. Default: 0.1.
patience (int, optional): When ``loss`` doesn't improve for this number of epochs, learing rate will be reduced.
Default: 10.
verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False``.
threshold (float, optional): ``threshold`` and ``threshold_mode`` will determine the minimum change of ``loss`` .
This make tiny changes of ``loss`` will be ignored. Default: 1e-4.
threshold_mode (str, optional): ``'rel'`` or ``'abs'`` can be selected. In ``'rel'`` mode, the minimum change of ``loss``
is ``last_loss * threshold`` , where ``last_loss`` is ``loss`` in last epoch. In ``'abs'`` mode, the minimum
change of ``loss`` is ``threshold`` . Default: ``'rel'`` .
cooldown (int, optional): The number of epochs to wait before resuming normal operation. Default: 0.
min_lr (float, optional): The lower bound of the learning rate after reduction. Default: 0.
eps (float, optional): Minimal decay applied to lr. If the difference between new and old lr is smaller than eps, the update is
ignored. Default: 1e-8.
dtype (str, optional): The data type used to create the learning rate variable. The data type can be set as
'float32', 'float64'. Default: 'float32'.
Returns:
Reduced learning rate.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
with fluid.dygraph.guard():
x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
linear = fluid.dygraph.Linear(10, 10)
input = fluid.dygraph.to_variable(x)
reduce_lr = fluid.dygraph.ReduceLROnPlateau(
learning_rate = 1.0,
decay_rate = 0.5,
patience = 5,
verbose = True,
cooldown = 3)
adam = fluid.optimizer.Adam(
learning_rate = reduce_lr,
parameter_list = linear.parameters())
for epoch in range(10):
total_loss = 0
for bath_id in range(5):
out = linear(input)
loss = fluid.layers.reduce_mean(out)
total_loss += loss
adam.minimize(loss)
avg_loss = total_loss/5
# adjust learning rate according to avg_loss
reduce_lr.step(avg_loss)
lr = adam.current_step_lr()
print("current avg_loss is %s, current lr is %s" % (avg_loss.numpy()[0], lr))
"""
def
__init__
(
self
,
learning_rate
,
mode
=
'min'
,
decay_rate
=
0.1
,
patience
=
10
,
verbose
=
False
,
threshold
=
1e-4
,
threshold_mode
=
'rel'
,
cooldown
=
0
,
min_lr
=
0
,
eps
=
1e-8
,
dtype
=
'float32'
):
super
(
ReduceLROnPlateau
,
self
).
__init__
(
dtype
=
dtype
)
mode
=
mode
.
lower
()
if
mode
not
in
[
'min'
,
'max'
]:
raise
ValueError
(
'mode '
+
mode
+
' is unknown!'
)
self
.
mode
=
mode
if
decay_rate
>=
1.0
:
raise
ValueError
(
'new_lr = origin_lr * decay_rate and decay_rate should be < 1.0.'
)
self
.
decay_rate
=
decay_rate
threshold_mode
=
threshold_mode
.
lower
()
if
threshold_mode
not
in
[
'rel'
,
'abs'
]:
raise
ValueError
(
'threshold mode '
+
threshold_mode
+
' is unknown!'
)
self
.
threshold_mode
=
threshold_mode
check_type
(
learning_rate
,
'learning_rate'
,
(
float
,
int
,
Variable
),
'ReduceLROnPlateau'
)
if
isinstance
(
learning_rate
,
(
float
,
int
)):
learning_rate
=
self
.
create_lr_var
(
learning_rate
)
self
.
learning_rate
=
learning_rate
self
.
verbose
=
verbose
self
.
patience
=
patience
self
.
threshold
=
threshold
self
.
threshold_mode
=
threshold_mode
self
.
cooldown
=
cooldown
self
.
min_lr
=
self
.
create_lr_var
(
min_lr
)
self
.
eps
=
eps
self
.
cooldown_counter
=
0
self
.
best_loss
=
None
self
.
num_bad_epochs
=
0
self
.
epoch
=
0
def
__call__
(
self
):
return
self
.
learning_rate
def
step
(
self
,
loss
):
"""
It should be invoked on each epoch. Update the learning rate in optimizer according to ``loss`` .
The new learning rate will take effect on next call to ``optimizer.minimize`` .
Args:
loss (Variable): A ``Variable`` that will be monitored to determine whether the learning rate will reduce.
If it stop descending for a ``patience`` number of epochs, the learning rate will reduce. It should
be 1-D Tensor with shape [1].
Specially, if ``mode`` has been set to ``'max'`` , the learning rate will reduce when it stops ascending.
Returns:
None
Examples:
Please refer to the example of current LearningRateDecay.
"""
# loss must be 1-D Tensor with shape [1]
check_type
(
loss
,
'loss'
,
Variable
,
'ReduceLROnPlateau.step'
)
assert
len
(
loss
.
shape
)
==
1
and
loss
.
shape
[
0
]
==
1
,
"the loss.shape "
\
"should be (1L,), but the current loss.shape is {}. Maybe that "
\
"you should call fluid.layers.mean to process it first."
.
format
(
loss
.
shape
)
self
.
epoch
+=
1
if
self
.
cooldown_counter
>
0
:
self
.
cooldown_counter
-=
1
else
:
if
self
.
best_loss
is
None
or
self
.
_is_better
(
loss
,
self
.
best_loss
):
self
.
best_loss
=
loss
self
.
num_bad_epochs
=
0
else
:
self
.
num_bad_epochs
+=
1
if
self
.
num_bad_epochs
>
self
.
patience
:
from
..
import
layers
self
.
cooldown_counter
=
self
.
cooldown
self
.
num_bad_epochs
=
0
new_lr
=
layers
.
elementwise_max
(
self
.
learning_rate
*
self
.
decay_rate
,
self
.
min_lr
)
if
self
.
learning_rate
-
new_lr
>
self
.
eps
:
if
self
.
verbose
:
print
(
'Epoch {}: reducing learning rate from {} to {}.'
.
format
(
self
.
epoch
,
self
.
learning_rate
.
numpy
()[
0
],
new_lr
.
numpy
()[
0
]))
self
.
learning_rate
=
new_lr
def
_is_better
(
self
,
current
,
best
):
if
self
.
mode
==
'min'
and
self
.
threshold_mode
==
'rel'
:
return
current
<
best
-
best
*
self
.
threshold
elif
self
.
mode
==
'min'
and
self
.
threshold_mode
==
'abs'
:
return
current
<
best
-
self
.
threshold
elif
self
.
mode
==
'max'
and
self
.
threshold_mode
==
'rel'
:
return
current
>
best
+
best
*
self
.
threshold
else
:
return
current
>
best
+
self
.
threshold
python/paddle/fluid/optimizer.py
浏览文件 @
0b3f6265
...
...
@@ -708,7 +708,7 @@ class Optimizer(object):
params_grads
,
table_param_and_grad
,
table_optimize_op
=
\
self
.
_process_distribute_lookuptable
(
params_grads
)
# '
minimize
(grad_clip)' or 'set_gradient_clip'
# '
optimizer
(grad_clip)' or 'set_gradient_clip'
if
self
.
_grad_clip
is
not
None
:
params_grads
=
self
.
_grad_clip
(
params_grads
)
else
:
...
...
@@ -1460,7 +1460,7 @@ class DGCMomentumOptimizer(Optimizer):
else
:
dgc_params_grads
.
append
((
param
,
grad
))
# '
minimize
(grad_clip)' or 'set_gradient_clip'
# '
optimizer
(grad_clip)' or 'set_gradient_clip'
if
self
.
_grad_clip
is
not
None
:
not_dgc_params_grads
=
self
.
_grad_clip
(
not_dgc_params_grads
)
else
:
...
...
python/paddle/fluid/tests/unittests/test_learning_rate_scheduler.py
浏览文件 @
0b3f6265
...
...
@@ -199,7 +199,7 @@ class TestLearningRateDecay(unittest.TestCase):
]
for
py_decay_fn
,
fluid_decay_fn
,
kwargs
in
decay_fns
:
print
(
"class="
+
self
.
__class__
.
__name__
+
"decay_fn="
+
print
(
"class="
+
self
.
__class__
.
__name__
+
"
decay_fn="
+
py_decay_fn
.
__name__
+
" kwargs="
+
str
(
kwargs
))
main_program
=
framework
.
Program
()
startup_program
=
framework
.
Program
()
...
...
@@ -335,5 +335,111 @@ class TestLinearWamrupLearningRateDecayDygraphModeTypeCheck(unittest.TestCase):
end_lr
=
1.0
)
def
reduce_lr_on_plateau
(
decay_rate
,
threshold
,
cooldown
,
patience
,
m
,
n
,
loss
,
var_list
):
def
is_better
(
current
,
best
,
m
,
n
):
if
m
==
'min'
and
n
==
'rel'
:
return
current
<
best
-
best
*
threshold
elif
m
==
'min'
and
n
==
'abs'
:
return
current
<
best
-
threshold
elif
m
==
'max'
and
n
==
'rel'
:
return
current
>
best
+
best
*
threshold
else
:
# mode == 'max' and epsilon_mode == 'abs':
return
current
>
best
+
threshold
if
var_list
[
2
]
>
0
:
var_list
[
2
]
-=
1
return
var_list
[
1
]
if
is_better
(
loss
,
var_list
[
0
],
m
,
n
):
var_list
[
0
]
=
loss
var_list
[
3
]
=
0
else
:
var_list
[
3
]
+=
1
if
var_list
[
3
]
>
patience
:
var_list
[
2
]
=
cooldown
var_list
[
3
]
=
0
new_lr
=
var_list
[
1
]
*
decay_rate
var_list
[
1
]
=
new_lr
if
var_list
[
1
]
-
new_lr
>
1e-8
else
var_list
[
1
]
return
var_list
[
1
]
class
TestReduceLROnPlateauDecay
(
unittest
.
TestCase
):
def
test_dygraph_mode
(
self
):
with
fluid
.
dygraph
.
guard
():
# the decay rate must be less than 1.0
with
self
.
assertRaises
(
ValueError
):
fluid
.
dygraph
.
ReduceLROnPlateau
(
learning_rate
=
1.0
,
decay_rate
=
2.0
)
# the mode must be "min" or "max"
with
self
.
assertRaises
(
ValueError
):
fluid
.
dygraph
.
ReduceLROnPlateau
(
learning_rate
=
1.0
,
mode
=
"test"
)
# the threshold_mode must be "rel" or "abs"
with
self
.
assertRaises
(
ValueError
):
fluid
.
dygraph
.
ReduceLROnPlateau
(
learning_rate
=
1.0
,
threshold_mode
=
"test"
)
base_lr
=
1.0
patience
=
3
cooldown
=
1
decay_rate
=
0.5
threshold
=
1e-4
linear
=
fluid
.
dygraph
.
Linear
(
10
,
10
)
for
m
,
n
in
zip
([
'min'
,
'max'
,
'min'
,
'max'
],
[
'rel'
,
'rel'
,
'abs'
,
'abs'
]):
kwargs
=
{
'learning_rate'
:
base_lr
,
'decay_rate'
:
decay_rate
,
'threshold'
:
threshold
,
'verbose'
:
True
,
'patience'
:
patience
,
'cooldown'
:
cooldown
,
'mode'
:
m
,
'threshold_mode'
:
n
,
'eps'
:
1e-6
}
print
(
"class="
+
fluid
.
dygraph
.
ReduceLROnPlateau
.
__name__
+
" kwargs="
+
str
(
kwargs
))
lr
=
fluid
.
dygraph
.
ReduceLROnPlateau
(
**
kwargs
)
sgd
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
lr
,
parameter_list
=
linear
.
parameters
())
best
=
float
(
"-10000"
)
if
m
==
"max"
else
float
(
"10000"
)
expected_lr
=
1.0
cooldown_counter
=
0
num_bad_epochs
=
0
var_list
=
[
best
,
expected_lr
,
cooldown_counter
,
num_bad_epochs
]
step_num
=
0
epoch_num
=
0
for
epoch
in
range
(
30
):
total_loss
=
0
for
batch_id
in
range
(
2
):
step_num
+=
1
x
=
fluid
.
dygraph
.
to_variable
(
np
.
array
([
step_num
]).
astype
(
'float32'
))
loss
=
layers
.
sin
(
x
)
sgd
.
minimize
(
loss
)
total_loss
+=
loss
epoch_num
+=
1
# get expected lr from fluid
avg_loss
=
total_loss
/
1
lr
.
step
(
avg_loss
)
actual_lr
=
lr
().
numpy
()[
0
]
# get expected lr form python
expected_lr
=
reduce_lr_on_plateau
(
decay_rate
,
threshold
,
cooldown
,
patience
,
m
,
n
,
avg_loss
,
var_list
)
self
.
assertEqual
(
expected_lr
,
actual_lr
,
msg
=
'Failed reduce lr scheduler in epoch {0}, Python result is {1}, Fluid result is {2}'
.
format
(
epoch_num
,
expected_lr
,
actual_lr
))
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录