Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
0b3d8fcd
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
0b3d8fcd
编写于
8月 22, 2018
作者:
D
dzhwinter
提交者:
GitHub
8月 22, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Feature/op standard (#12860)
* new doc * standard
上级
9ee698e6
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
33 addition
and
1 deletion
+33
-1
doc/fluid/dev/new_op_cn.md
doc/fluid/dev/new_op_cn.md
+33
-1
未找到文件。
doc/fluid/dev/new_op_cn.md
浏览文件 @
0b3d8fcd
...
...
@@ -119,10 +119,29 @@ $$Out = scale*X$$
这个例子有
`AddAttr<AttrType>("scale", "...").SetDefault(1.0);`
: 增加
`scale`
系数,作为参数属性,并且设置默认值为1.0。
### 定义GradProtoMaker类
每个Op的必须有一个对应的GraProtoMaker,若未定制对应前向Op的GradProtoMaker,fluid提供了DefaultGradProtoMaker,默认注册会使用全部输入输出,包括Input, Output, Output@Grad等,使用不需要的变量的会造成显存浪费。
下面示例定义了ScaleOp的GradProtoMaker。
```
cpp
class
ScaleGradMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
auto
*
grad_op
=
new
framework
::
OpDesc
();
grad_op
->
SetType
(
"scale"
);
grad_op
->
SetInput
(
"X"
,
OutputGrad
(
"Out"
));
grad_op
->
SetOutput
(
"Out"
,
InputGrad
(
"X"
));
grad_op
->
SetAttr
(
"scale"
,
GetAttr
(
"scale"
));
return
std
::
unique_ptr
<
framework
::
OpDesc
>
(
grad_op
);
}
};
```
### 定义Operator类
下面
的点
实现了MulOp的定义:
下面实现了MulOp的定义:
```
cpp
class
MulOp
:
public
framework
::
OperatorWithKernel
{
...
...
@@ -383,6 +402,19 @@ PADDLE_ENFORCE(forward_pd != nullptr,
"Fail to find eltwise_fwd_pd in device context"); //eltwise_fwd_pd用户可能看不懂
```
3.
OP内部调用非法接口:Op内部如果出现Output = ShareDataWith(Input)
问题示例:
```
cpp
auto
*
out
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
auto
*
in
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
);
out
->
ShareDataWith
(
*
in
);
```
Op内部如果出现Output = ShareDataWith(Input),相当于operator图的中有一条隐藏边,连接了Input和Output,这条边无法在图分析中表达,引发基于图优化的错误。
4.
OP实现的性能实践
调用了eigen的broadcast, chop等操作,性能会比手写cuda kernel差几倍以上。此时cpu的实现可以复用eigen,gpu实现可以实现cuda kernel.
#### OP InferShape检查提示信息特别说明
-
检查输入输出变量,请统一遵循以下格式
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录