From 0ae8a2d67623f33c13f2dc14141587619cc3ba7e Mon Sep 17 00:00:00 2001 From: Leo Chen <39020268+leo0519@users.noreply.github.com> Date: Tue, 31 May 2022 14:21:14 +0800 Subject: [PATCH] Fix the underflow of fp16 fake quantize operators (#43088) Co-authored-by: Ryan Jeng --- paddle/fluid/operators/fake_quantize_op.cu.h | 61 +- .../tests/unittests/test_fake_quantize_op.py | 587 +++++++----------- 2 files changed, 263 insertions(+), 385 deletions(-) diff --git a/paddle/fluid/operators/fake_quantize_op.cu.h b/paddle/fluid/operators/fake_quantize_op.cu.h index 6c068d25d0..a6130c272d 100644 --- a/paddle/fluid/operators/fake_quantize_op.cu.h +++ b/paddle/fluid/operators/fake_quantize_op.cu.h @@ -217,16 +217,18 @@ __global__ void ClipAndQuantKernel(const T* in, const T* scale, int bid = threadIdx.x + blockIdx.x * blockDim.x; int tid = threadIdx.x; - T s = scale[0]; - T inv_s = inverse(s); - T bin_cnt_t = static_cast(bin_cnt); + using ComputeDataType = typename QuantizeDataType::type; + + ComputeDataType s = static_cast(scale[0]); + ComputeDataType inv_s = inverse(s); + ComputeDataType bin_cnt_t = static_cast(bin_cnt); + for (int i = bid; i < n; i += blockDim.x * gridDim.x) { - T x = in[i]; - T v = x > s ? s : x; + ComputeDataType x = static_cast(in[i]); + ComputeDataType v = x > s ? s : x; v = v < -s ? -s : v; v = bin_cnt_t * inv_s * v; - out[i] = static_cast( - round(static_cast::type>(v))); + out[i] = static_cast(round(v)); } } @@ -237,18 +239,19 @@ __global__ void ClipAndQuantDequantKernel(const T* in, const T* scale, int bid = threadIdx.x + blockIdx.x * blockDim.x; int tid = threadIdx.x; - T s = scale[0]; - T inv_s = inverse(s); - T bin_cnt_t = static_cast(bin_cnt); + using ComputeDataType = typename QuantizeDataType::type; + + ComputeDataType s = static_cast(scale[0]); + ComputeDataType inv_s = inverse(s); + ComputeDataType bin_cnt_t = static_cast(bin_cnt); for (int i = bid; i < n; i += blockDim.x * gridDim.x) { - T x = in[i]; + ComputeDataType x = static_cast(in[i]); x = x > s ? s : x; x = x < -s ? -s : x; x = bin_cnt_t * inv_s * x; - x = static_cast( - round(static_cast::type>(x))); - out[i] = (x * s) / bin_cnt_t; + x = round(x); + out[i] = static_cast((x * s) / bin_cnt_t); } } @@ -302,17 +305,18 @@ __global__ void ChannelClipAndQuantKernelQuantAxis0(const T* in, const T* scale, const T* in_c = in + blockIdx.x * channel_size; T* out_c = out + blockIdx.x * channel_size; - T s = scale[blockIdx.x]; - T inv_s = inverse(s); - T bin_cnt_t = static_cast(bin_cnt); + using ComputeDataType = typename QuantizeDataType::type; + + ComputeDataType s = static_cast(scale[blockIdx.x]); + ComputeDataType inv_s = inverse(s); + ComputeDataType bin_cnt_t = static_cast(bin_cnt); for (int64_t i = tid; i < channel_size; i += blockDim.x) { - T x = in_c[i]; - T v = x > s ? s : x; + ComputeDataType x = static_cast(in_c[i]); + ComputeDataType v = x > s ? s : x; v = v < -s ? -s : v; v = bin_cnt_t * inv_s * v; - out_c[i] = static_cast( - round(static_cast::type>(v))); + out_c[i] = static_cast(round(v)); } } @@ -322,16 +326,17 @@ __global__ void ChannelClipAndQuantKernelQuantAxisN( const T* in, const T* scale, const int bin_cnt, const int64_t n, const int nScale, const int quant_stride, T* out) { int64_t idx = blockDim.x * blockIdx.x + threadIdx.x; - T bin_cnt_t = static_cast(bin_cnt); + using ComputeDataType = typename QuantizeDataType::type; + ComputeDataType bin_cnt_t = static_cast(bin_cnt); for (int64_t i = idx; i < n; i += blockDim.x * gridDim.x) { - T s = scale[(i / quant_stride) % nScale]; - T inv_s = inverse(s); - T x = in[i]; - T v = x > s ? s : x; + ComputeDataType s = + static_cast(scale[(i / quant_stride) % nScale]); + ComputeDataType inv_s = inverse(s); + ComputeDataType x = static_cast(in[i]); + ComputeDataType v = x > s ? s : x; v = v < -s ? -s : v; v = bin_cnt_t * inv_s * v; - out[i] = static_cast( - round(static_cast::type>(v))); + out[i] = static_cast(round(v)); } } diff --git a/python/paddle/fluid/tests/unittests/test_fake_quantize_op.py b/python/paddle/fluid/tests/unittests/test_fake_quantize_op.py index 230bc15e0f..0c8e115d7c 100644 --- a/python/paddle/fluid/tests/unittests/test_fake_quantize_op.py +++ b/python/paddle/fluid/tests/unittests/test_fake_quantize_op.py @@ -1,4 +1,4 @@ -# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -15,439 +15,312 @@ from __future__ import print_function import unittest -import math +import itertools import numpy as np import math from op_test import OpTest -import paddle.fluid.core as core # numpy.round has different behavior in comparision to c++ round function # so we use round_c instead of numpy.round to align the output data -def round_c_single_element(x): - dtype = type(x) - if x >= 0: - return dtype(np.floor(x + 0.5)) - else: - return dtype(np.ceil(x - 0.5)) +def round_c_single_element(val): + dtype = type(val) + if val >= 0: + return dtype(np.floor(val + 0.5)) + return dtype(np.ceil(val - 0.5)) round_c = np.vectorize(round_c_single_element) -class TestFakeQuantizeOp(OpTest): - def setUp(self): - self.set_dtype() - self.op_type = "fake_quantize_abs_max" - self.attrs = {'bit_length': 8} - self.inputs = {'X': np.random.random((124, 240)).astype(self.dtype), } - scale = np.max(np.abs(self.inputs['X'])).astype(self.dtype) - self.outputs = { - 'Out': round_c(self.inputs['X'] / scale * ( - (1 << (self.attrs['bit_length'] - 1)) - 1)), - 'OutScale': np.array(scale).astype(self.dtype), - } - - def set_dtype(self): - self.dtype = np.float32 +def get_compute_type(dtype): + assert dtype in [np.float16, np.float32, np.float64] + if dtype == np.float16: + return np.float32 + return dtype - def test_check_output(self): - self.check_output() - -class TestFakeQuantizeOpFloat16(TestFakeQuantizeOp): - def set_dtype(self): - self.dtype = np.float16 - - -class TestFakeQuantizeOp1(OpTest): +class TestFakeQuantizeAbsMaxOp(OpTest): def setUp(self): - self.op_type = "fake_quantize_abs_max" + self.op_type = 'fake_quantize_abs_max' self.attrs = {'bit_length': 8} - self.inputs = {'X': np.zeros((10, 10)).astype("float32"), } - scale = np.max(np.abs(self.inputs['X'])).astype("float32") - inv_scale = 1.0 / (scale + 1e-6) if scale < 1e-30 else 1.0 / scale - self.outputs = { - 'Out': np.round(self.inputs['X'] * inv_scale * ( - (1 << (self.attrs['bit_length'] - 1)) - 1)), - 'OutScale': np.array(scale).astype("float32"), - } - - def test_check_output(self): - self.check_output() - -class TestFakeQuantizeOp2(OpTest): - def setUp(self): - self.op_type = "fake_quantize_abs_max" - self.attrs = {'bit_length': 8} - self.inputs = {'X': np.full((10, 10), 1e-40).astype("float32"), } - scale = np.max(np.abs(self.inputs['X'])).astype("float32") + def _fake_quantize_abs_max(self, dtype, input_shape, distribution): + input_data = distribution(input_shape).astype(dtype) + compute_type = get_compute_type(dtype) + scale = np.max(np.abs(input_data)) + bnt = (1 << (self.attrs['bit_length'] - 1)) - 1 inv_scale = 1.0 / (scale + 1e-6) if scale < 1e-30 else 1.0 / scale - self.outputs = { - 'Out': np.round(self.inputs['X'] * inv_scale * ( - (1 << (self.attrs['bit_length'] - 1)) - 1)), - 'OutScale': np.array(scale).astype("float32"), - } - - def test_check_output(self): + output_data = round_c(input_data.astype(compute_type) * inv_scale * bnt) + self.inputs = {'X': input_data} + self.outputs = {'Out': output_data, 'OutScale': scale} + self.dtype = dtype self.check_output() + def test_fake_quantize_abs_max(self): + self._fake_quantize_abs_max(np.float32, (124, 240), np.random.random) -class TestFakeChannelWiseQuantizeOp(OpTest): - def setUp(self): - self.set_dtype() - self.set_arg() - assert self.quant_axis in [0, 1], "quant_axis should be 0 or 1." + def test_fake_quantize_abs_max_float16(self): + self._fake_quantize_abs_max(np.float16, (124, 240), np.random.random) - self.op_type = "fake_channel_wise_quantize_abs_max" - self.attrs = {'bit_length': 8, 'quant_axis': self.quant_axis} + def test_fake_quantize_abs_max_underflow(self): + self._fake_quantize_abs_max(np.float32, (10, 10), np.zeros) - scales = [] - outputs = self.inputs['X'].copy() - bnt = (1 << (self.attrs['bit_length'] - 1)) - 1 - if self.quant_axis == 0: - for i in range(self.inputs['X'].shape[0]): - scale_v = np.max(np.abs(self.inputs['X'][i])).astype(self.dtype) - scales.append(scale_v) - outputs[i] = round_c( - self.dtype(bnt) * (self.dtype(1.0) / scale_v) * outputs[i]) - elif self.quant_axis == 1: - for i in range(self.inputs['X'].shape[1]): - scale_v = np.max(np.abs(self.inputs['X'][:, i])).astype( - self.dtype) - scales.append(scale_v) - outputs[:, i] = round_c( - self.dtype(bnt) * (self.dtype(1.0) / scale_v) * - outputs[:, i]) - - self.outputs = { - 'Out': outputs, - 'OutScale': np.array(scales).astype(self.dtype), - } + def test_fake_quantize_abs_max_underflow2(self): + self._fake_quantize_abs_max(np.float32, (10, 10), + lambda shape: np.full(shape, 1e-40)) - def set_arg(self): - self.quant_axis = 0 - self.inputs = { - 'X': np.random.random((20, 15, 6, 6)).astype(self.dtype), - } - def set_dtype(self): - self.dtype = np.float32 +class TestFakeChannelWiseQuantizeAbsMaxOp(OpTest): + def setUp(self): + self.op_type = 'fake_channel_wise_quantize_abs_max' + self.attrs = {'bit_length': 8} - def test_check_output(self): + def _fake_channel_wise_quantize_abs_max(self, dtype, input_shape, + quant_axis, distribution): + assert quant_axis in [0, 1], 'quant_axis should be 0 or 1.' + input_data = distribution(input_shape).astype(dtype) + compute_type = get_compute_type(dtype) + bnt = (1 << (self.attrs['bit_length'] - 1)) - 1 + compute_axis = tuple( + i for i in range(len(input_shape)) if i != quant_axis) + scale_broadcast = np.amax(input_data, axis=compute_axis, keepdims=True) + output_data = round_c(bnt * input_data.astype(compute_type) / + scale_broadcast) + if quant_axis == 1: + scale_broadcast = np.transpose(scale_broadcast, + (1, ) + compute_axis) + scale = scale_broadcast.reshape(input_shape[quant_axis], -1)[:, 0] + self.inputs = {'X': input_data} + self.outputs = {'Out': output_data, 'OutScale': scale} + self.dtype = dtype + self.attrs['quant_axis'] = quant_axis self.check_output() - -class TestFakeChannelWiseQuantizeOpFloat16(TestFakeChannelWiseQuantizeOp): - def set_dtype(self): - self.dtype = np.float16 - - -class TestFakeChannelWiseQuantizeOp1(TestFakeChannelWiseQuantizeOp): - def set_quant_axis(self): - self.quant_axis = 1 - self.inputs = { - 'X': np.random.random((15, 20, 5, 5)).astype(self.dtype), - } - - -class TestFakeChannelWiseQuantizeOp1Float16(TestFakeChannelWiseQuantizeOp1): - def set_dtype(self): - self.dtype = np.float16 - - -class TestFakeChannelWiseQuantizeOp2(TestFakeChannelWiseQuantizeOp): - def set_quant_axis(self): - self.quant_axis = 0 - self.inputs = {'X': np.random.random((30, 15)).astype(self.dtype), } - - -class TestFakeChannelWiseQuantizeOp3(TestFakeChannelWiseQuantizeOp): - def set_quant_axis(self): - self.quant_axis = 1 - self.inputs = {'X': np.random.random((30, 15)).astype(self.dtype), } + def test_fake_channel_wise_quantize_abs_max(self): + dtype_options = [np.float32, np.float16] + input_shape_quant_axis_options = [[(20, 15, 6, 6), 0], + [(15, 20, 5, 5), 1], [(30, 15), 0], + [(30, 15), 1]] + for dtype, input_shape_quant_axis in itertools.product( + dtype_options, input_shape_quant_axis_options): + input_shape, quant_axis = input_shape_quant_axis + with self.subTest( + dtype=dtype, input_shape=input_shape, + quant_axis=quant_axis): + self._fake_channel_wise_quantize_abs_max( + dtype, input_shape, quant_axis, np.random.random) class TestFakeQuantizeRangeAbsMaxOp(OpTest): def setUp(self): - self.set_dtype() - self.op_type = "fake_quantize_range_abs_max" - self.attrs = { - 'bit_length': int(5), - 'window_size': int(1), - 'is_test': False - } - x = (np.random.random((8, 16, 7, 7)) - 0.5) * 10 - x = x.astype(self.dtype) + self.op_type = 'fake_quantize_range_abs_max' + self.attrs = {'bit_length': 5, 'window_size': 1} + + def _fake_quantize_range_abs_max(self, + dtype, + input_shape, + distribution, + is_test=False): + input_data = distribution(input_shape).astype(dtype) + compute_type = get_compute_type(dtype) + bnt = (1 << (self.attrs['bit_length'] - 1)) - 1 + in_scale = np.zeros(1).astype(dtype) + out_scale = np.zeros(self.attrs['window_size']).astype(dtype) + out_scale[0] = np.max(np.abs(input_data)) + if is_test: + out_scale[0] = in_scale[0] = out_scale[0] - 1.0 + clip_data = np.clip(input_data, -in_scale, in_scale) + else: + clip_data = input_data + output_data = round_c( + clip_data.astype(compute_type) / out_scale[0] * bnt) self.inputs = { - 'X': x, - 'Iter': np.zeros(1).astype("int64"), - 'InScale': np.zeros(1).astype(self.dtype) + 'X': input_data, + 'Iter': np.zeros(1).astype(np.int64), + 'InScale': in_scale } - scale = np.max(np.abs(self.inputs['X'])).astype(self.dtype) - - out_scales = np.zeros(self.attrs['window_size']).astype(self.dtype) - out_scales[0] = scale self.outputs = { - 'Out': round_c( - self.dtype((1 << (self.attrs['bit_length'] - 1)) - 1) * - (self.dtype(1.0) / scale) * self.inputs['X']), - 'OutScale': scale, - 'OutScales': out_scales, + 'Out': output_data, + 'OutScale': out_scale[0], + 'OutScales': out_scale } - - def set_dtype(self): - self.dtype = np.float32 - - def test_check_output(self): + self.dtype = dtype + self.attrs['is_test'] = is_test self.check_output() - -class TestFakeQuantizeRangeAbsMaxOpFloat16(TestFakeQuantizeRangeAbsMaxOp): - def set_dtype(self): - self.dtype = np.float16 + def test_fake_quantize_range_abs_max(self): + dtype_options = [np.float32, np.float16] + is_test_options = [False, True] + for dtype, is_test in itertools.product(dtype_options, is_test_options): + self.attrs['bit_length'] = 8 if is_test else 5 + with self.subTest(dtype=dtype, is_test=is_test): + self._fake_quantize_range_abs_max( + dtype, (8, 16, 7, 7), + lambda shape: (np.random.random(shape) - 0.5) * 10, + is_test=is_test) class TestMovingAverageAbsMaxScaleOp(OpTest): def setUp(self): - self.op_type = "moving_average_abs_max_scale" + self.op_type = 'moving_average_abs_max_scale' self.attrs = {'moving_rate': float(0.9), 'is_test': False} - accum = np.zeros(1).astype("float32") - accum[0] = 1 - state = np.zeros(1).astype("float32") - state[0] = 1 - x = np.random.random((8, 16, 7, 7)).astype("float32") - self.inputs = { - 'X': x, - 'InAccum': accum, - 'InState': state, - } - out = x - out_accum = np.zeros(1).astype("float32") - out_state = np.zeros(1).astype("float32") - out_scale = np.zeros(1).astype("float32") - out_accum[0] = self.attrs['moving_rate'] * accum[0] + np.max( - np.abs(self.inputs['X'])).astype("float32") - out_state[0] = self.attrs['moving_rate'] * state[0] + 1 + def _moving_average_abs_max_scale(self, dtype, input_shape, distribution): + input_data = distribution(input_shape).astype(dtype) + in_accum = np.ones(1).astype(dtype) + in_state = np.ones(1).astype(dtype) + out_accum = self.attrs['moving_rate'] * in_accum[0] + np.max( + np.abs(input_data)) + out_state = self.attrs['moving_rate'] * in_state[0] + 1.0 out_scale = out_accum / out_state + self.inputs = { + 'X': input_data, + 'InAccum': in_accum, + 'InState': in_state + } self.outputs = { - 'Out': out, + 'Out': input_data, 'OutAccum': out_accum, 'OutState': out_state, - 'OutScale': out_scale, + 'OutScale': out_scale } - - def test_check_output(self): + self.dtype = dtype self.check_output() + def test_moving_average_abs_max(self): + self._moving_average_abs_max_scale(np.float32, (8, 16, 7, 7), + np.random.random) -class TestFakeQuantizeRangeAbsMaxOp2(OpTest): - def setUp(self): - self.set_dtype() - self.op_type = "fake_quantize_range_abs_max" - self.attrs = { - 'bit_length': int(8), - 'window_size': int(1), - 'is_test': True - } - x = (np.random.random((8, 16, 7, 7)) - 0.5) * 10 - x = x.astype(self.dtype) - scale = np.array([np.max(np.abs(x)).astype(self.dtype) - 1.0]) - out_scales = np.zeros(self.attrs['window_size']).astype(self.dtype) - out_scales[0] = scale.astype(self.dtype) - self.inputs = { - 'X': x, - 'Iter': np.zeros(1).astype("int64"), - 'InScale': scale.astype(self.dtype) - } - xs = np.clip(x, -scale, scale).astype(self.dtype) - qs = round_c( - self.dtype( - self.dtype((1 << (self.attrs['bit_length'] - 1)) - 1) * ( - self.dtype(1.0) / scale) * xs)) - self.outputs = { - 'Out': qs, - 'OutScale': scale.astype(self.dtype), - 'OutScales': out_scales, - } - - def set_dtype(self): - self.dtype = np.float32 - - def test_check_output(self): - self.check_output(no_check_set=set(['OutScale', 'OutScales'])) - - -class TestFakeQuantizeRangeAbsMaxOp2Float16(TestFakeQuantizeRangeAbsMaxOp2): - def set_dtype(self): - self.dtype = np.float16 - -class TestMovingOpBase(OpTest): +class TestFakeQuantizeMovingAverageAbsMaxOp(OpTest): def setUp(self): - self.set_dtype() - self.init_type() - self.attrs = { - 'bit_length': int(5), - 'moving_rate': float(0.9), - 'is_test': False - } - accum = np.zeros(1).astype(self.dtype) - accum[0] = 1 - state = np.zeros(1).astype(self.dtype) - state[0] = self.dtype(1.0) - scale = np.zeros(1).astype(self.dtype) - scale[0] = 0.001 + self.op_type = 'fake_quantize_moving_average_abs_max' + self.attrs = {'bit_length': 5, 'moving_rate': 0.9, 'is_test': False} + + def _fake_quantize_moving_average_abs_max(self, + dtype, + input_shape, + distribution, + dequantize=False, + with_gradient=False): + input_data = distribution(input_shape).astype(dtype) + compute_type = get_compute_type(dtype) + bnt = (1 << (self.attrs['bit_length'] - 1)) - 1 + in_accum = np.ones(1).astype(dtype) + in_state = np.ones(1).astype(dtype) + in_scale = np.array([0.001]).astype(dtype) + out_accum = np.zeros(1).astype(dtype) + out_state = np.zeros(1).astype(dtype) + out_scale = np.zeros(1).astype(dtype) + out_accum[0] = self.attrs['moving_rate'] * in_accum[0] + np.max( + np.abs(input_data)) + out_state[0] = self.attrs['moving_rate'] * in_state[0] + 1.0 + out_scale = out_accum / out_state + round_data = round_c(input_data.astype(compute_type) / out_scale * bnt) + if dequantize: + output_data = (round_data * out_scale / bnt).astype(dtype) + self.op_type = 'fake_quantize_dequantize_moving_average_abs_max' + else: + output_data = round_data.astype(dtype) self.inputs = { - 'X': np.random.random((8, 16, 7, 7)).astype(self.dtype), - 'InScale': scale, - 'InAccum': accum, - 'InState': state, + 'X': input_data, + 'InScale': in_scale, + 'InAccum': in_accum, + 'InState': in_state } - - out_accum = np.zeros(1).astype(self.dtype) - out_state = np.zeros(1).astype(self.dtype) - out_scale = np.zeros(1).astype(self.dtype) - out_accum[0] = self.dtype(self.attrs['moving_rate']) * self.dtype(accum[ - 0]) + np.max(np.abs(self.inputs['X'])).astype(self.dtype) - out_state[0] = self.dtype(self.attrs['moving_rate']) * self.dtype(state[ - 0]) + self.dtype(1.0) - out_scale = self.dtype(self.dtype(out_accum) / self.dtype(out_state)) - out_data = self.calc_output(out_scale) self.outputs = { - 'Out': out_data, + 'Out': output_data, 'OutAccum': out_accum, 'OutState': out_state, - 'OutScale': out_scale, + 'OutScale': out_scale } - - def set_dtype(self): - self.dtype = np.float32 - - def init_type(self): - self.op_type = "fake_quantize_moving_average_abs_max" - - def calc_output(self, out_scale): - return round_c(self.inputs['X'] / out_scale * ( - (1 << (self.attrs['bit_length'] - 1)) - 1)) - - def test_check_output(self): + self.dtype = dtype self.check_output() + if with_gradient: + gradient = [ + np.ones(input_data.shape) / np.product(input_data.shape) + ] + self.check_grad(['X'], 'Out', user_defined_grads=gradient) + def test_fake_quantize_moving_average_abs_max(self): + self._fake_quantize_moving_average_abs_max(np.float32, (8, 16, 7, 7), + np.random.random) -class TestMovingOpBaseFloat16(TestMovingOpBase): - def set_dtype(self): - self.dtype = np.float16 - - def test_check_output(self): - self.check_output(atol=1e-2) + def test_fake_quantize_moving_average_abs_max_float16(self): + self._fake_quantize_moving_average_abs_max(np.float16, (8, 16, 7, 7), + np.random.random) + def test_fake_quantize_dequantize_moving_average_abs_max(self): + self._fake_quantize_moving_average_abs_max( + np.float32, (8, 16, 7, 7), + np.random.random, + dequantize=True, + with_gradient=True) -class TestFakeQuantDequantMovingOp(TestMovingOpBase): - def init_type(self): - self.op_type = "fake_quantize_dequantize_moving_average_abs_max" - def calc_output(self, out_scale): - range_v = (1 << (self.attrs['bit_length'] - 1)) - 1 - return np.round(self.inputs['X'] / out_scale * - range_v) * out_scale / range_v - - def test_check_grad(self): - x = self.inputs["X"] - gradient = [np.ones(x.shape) / np.product(x.shape)] - self.check_grad(["X"], "Out", user_defined_grads=gradient) - - -class TestFakeQuantDequantAbsOp(OpTest): +class TestFakeQuantizeDequantizeAbsMaxOp(OpTest): def setUp(self): - self.op_type = "fake_quantize_dequantize_abs_max" + self.op_type = 'fake_quantize_dequantize_abs_max' self.attrs = {'bit_length': 8} - self.inputs = {'X': np.random.random((124, 240)).astype("float32"), } - scale = np.max(np.abs(self.inputs['X'])).astype("float32") - out_data = self.calc_output(scale) + + def _fake_quantize_dequantize_abs_max(self, dtype, input_shape, + distribution): + input_data = distribution(input_shape).astype(dtype) + scale = np.max(np.abs(input_data)).astype(dtype) + bnt = (1 << (self.attrs['bit_length'] - 1)) - 1 + output_data = round_c(input_data / scale * bnt) * scale / bnt + self.inputs = {'X': input_data} self.outputs = { - 'Out': out_data, - 'OutScale': np.array(scale).astype("float32"), + 'Out': output_data, + 'OutScale': np.array(scale).astype(dtype) } - - def calc_output(self, scale): - range_v = (1 << (self.attrs['bit_length'] - 1)) - 1 - return np.round(self.inputs['X'] / scale * range_v) * scale / range_v - - def test_check_output(self): + self.dtype = dtype self.check_output() + gradient = [np.ones(input_data.shape) / np.product(input_data.shape)] + self.check_grad(['X'], 'Out', user_defined_grads=gradient) - def test_check_grad(self): - x = self.inputs["X"] - gradient = [np.ones(x.shape) / np.product(x.shape)] - self.check_grad(["X"], "Out", user_defined_grads=gradient) + def test_fake_quantize_dequantize_abs_max(self): + self._fake_quantize_dequantize_abs_max(np.float32, (124, 240), + np.random.random) -class TestChannelWiseFakeQuantDequantOp(OpTest): +class TestChannelWiseFakeQuantizeDequantizeAbsMaxOp(OpTest): def setUp(self): - self.set_arg() - assert self.quant_axis in [0, 1], "quant_axis should be 0 or 1." - - self.op_type = "fake_channel_wise_quantize_dequantize_abs_max" - self.attrs = {'bit_length': 8, 'quant_axis': self.quant_axis} - - scales = [] - outputs = self.inputs['X'].copy() - range_v = (1 << (self.attrs['bit_length'] - 1)) - 1 - if self.quant_axis == 0: - for i in range(self.inputs['X'].shape[0]): - scale_v = np.max(np.abs(self.inputs['X'][i])).astype("float32") - scales.append(scale_v) - outputs[i] = np.round(outputs[i] * range_v / - scale_v) * scale_v / range_v - elif self.quant_axis == 1: - for i in range(self.inputs['X'].shape[1]): - scale_v = np.max(np.abs(self.inputs['X'][:, i])).astype( - "float32") - scales.append(scale_v) - outputs[:, i] = np.round(outputs[:, i] * range_v / - scale_v) * scale_v / range_v - - self.outputs = { - 'Out': outputs, - 'OutScale': np.array(scales).astype("float32"), - } - - def set_arg(self): - self.quant_axis = 0 - self.inputs = { - 'X': np.random.random((3, 4, 64, 64)).astype("float32"), - } + self.op_type = 'fake_channel_wise_quantize_dequantize_abs_max' + self.attrs = {'bit_length': 8} - def test_check_output(self): + def _fake_channel_wise_quantize_dequantize_abs_max( + self, dtype, input_shape, quant_axis, distribution): + assert quant_axis in [0, 1], 'quant_axis should be 0 or 1.' + input_data = distribution(input_shape).astype(dtype) + compute_type = get_compute_type(dtype) + bnt = (1 << (self.attrs['bit_length'] - 1)) - 1 + output_data = input_data.copy().astype(compute_type) + compute_axis = tuple( + i for i in range(len(input_shape)) if i != quant_axis) + scale_broadcast = np.amax(input_data, axis=compute_axis, keepdims=True) + output_data = round_c(bnt * output_data / + scale_broadcast) * scale_broadcast / bnt + if quant_axis == 1: + scale_broadcast = np.transpose(scale_broadcast, + (1, ) + compute_axis) + scale = scale_broadcast.reshape(input_shape[quant_axis], -1)[:, 0] + self.inputs = {'X': input_data} + self.outputs = {'Out': output_data, 'OutScale': scale} + self.dtype = dtype + self.attrs['quant_axis'] = quant_axis self.check_output() + gradient = [np.ones(input_data.shape) / np.product(input_data.shape)] + self.check_grad(['X'], 'Out', user_defined_grads=gradient) - def test_check_grad(self): - x = self.inputs["X"] - gradient = [np.ones(x.shape) / np.product(x.shape)] - self.check_grad(["X"], "Out", user_defined_grads=gradient) - - -class TestChannelWiseFakeQuantDequantOp1(TestChannelWiseFakeQuantDequantOp): - def set_arg(self): - self.quant_axis = 1 - self.inputs = { - 'X': np.random.random((15, 20, 5, 5)).astype("float32"), - } - - -class TestChannelWiseFakeQuantDequantOp2(TestChannelWiseFakeQuantDequantOp): - def set_arg(self): - self.quant_axis = 0 - self.inputs = {'X': np.random.random((30, 15)).astype("float32"), } - - -class TestChannelWiseFakeQuantDequantOp3(TestChannelWiseFakeQuantDequantOp): - def set_arg(self): - self.quant_axis = 1 - self.inputs = {'X': np.random.random((30, 15)).astype("float32"), } + def test_channel_wise_fake_quant_dequant_abs_max(self): + input_shape_quant_axis_options = [[(3, 4, 64, 64), 0], [( + 15, 20, 5, 5), 1], [(30, 15), 0], [(30, 15), 1]] + for input_shape, quant_axis in input_shape_quant_axis_options: + with self.subTest(input_shape=input_shape, quant_axis=quant_axis): + self._fake_channel_wise_quantize_dequantize_abs_max( + np.float32, input_shape, quant_axis, np.random.random) def quantize_max_abs(x, max_range): @@ -589,5 +462,5 @@ class TestquantizeOpTrain(TestquantizeOp): self.check_output() -if __name__ == "__main__": +if __name__ == '__main__': unittest.main() -- GitLab