From 0a95a44b9a70e16601e5bee9133db58695abd16c Mon Sep 17 00:00:00 2001 From: Kexin Zhao Date: Sat, 17 Mar 2018 17:00:01 -0700 Subject: [PATCH] add python batch norm inference test --- paddle/fluid/operators/batch_norm_op.cu.cc | 4 +- .../tests/unittests/test_batch_norm_op.py | 69 ++++++++++++++++++- 2 files changed, 70 insertions(+), 3 deletions(-) diff --git a/paddle/fluid/operators/batch_norm_op.cu.cc b/paddle/fluid/operators/batch_norm_op.cu.cc index 949497f48c..f4919398eb 100644 --- a/paddle/fluid/operators/batch_norm_op.cu.cc +++ b/paddle/fluid/operators/batch_norm_op.cu.cc @@ -125,8 +125,8 @@ class BatchNormKernel auto &dev_ctx = ctx.template device_context(); math::SetConstant functor; - functor(dev_ctx, saved_mean, 0); - functor(dev_ctx, saved_variance, 0); + functor(dev_ctx, saved_mean, static_cast(0)); + functor(dev_ctx, saved_variance, static_cast(0)); auto handle = dev_ctx.cudnn_handle(); diff --git a/python/paddle/fluid/tests/unittests/test_batch_norm_op.py b/python/paddle/fluid/tests/unittests/test_batch_norm_op.py index 80e6fa6df3..d5a57bdd73 100644 --- a/python/paddle/fluid/tests/unittests/test_batch_norm_op.py +++ b/python/paddle/fluid/tests/unittests/test_batch_norm_op.py @@ -31,6 +31,37 @@ def get_backward_op(scope, op, no_grad_set): return backward_op +def _reference_testing(x, scale, offset, mean, var, epsilon, data_format): + x_shape = x.shape + if len(x_shape) == 2: + if data_format == "NCHW": + x = np.reshape(x, (x.shape[0], x.shape[1], 1, 1)) + else: + x = np.reshape(x, (x.shape[0], 1, 1, x.shape[1])) + + if data_format == "NCHW": + n, c, h, w = x.shape + mean_tile = np.reshape(mean, (1, c, 1, 1)) + mean_tile = np.tile(mean_tile, (n, 1, h, w)) + var_tile = np.reshape(var, (1, c, 1, 1)) + var_tile = np.tile(var_tile, (n, 1, h, w)) + normalized = (x - mean_tile) / np.sqrt(var_tile + epsilon) + scale_tile = np.reshape(scale, (1, c, 1, 1)) + scale_tile = np.tile(scale_tile, (n, 1, h, w)) + offset_tile = np.reshape(offset, (1, c, 1, 1)) + offset_tile = np.reshape(offset_tile, (1, c, 1, 1)) + y = normalized * scale_tile + offset_tile + elif data_format == "NHWC": + normalized = (x - mean) / np.sqrt(var + epsilon) + y = normalized * scale + offset + else: + raise ValueError("Unknown data order.") + + if len(x_shape) == 2: + y = np.reshape(y, x_shape) + return y + + def _reference_training(x, scale, offset, epsilon, data_format): x_shape = x.shape if len(x_shape) == 2: @@ -155,7 +186,43 @@ def set_output_grad(scope, outputs, place, feed_dict=None): __set_tensor__(output, data) -class TestBatchNormOp(OpTest): +class TestBatchNormOpInference(OpTest): + def setUp(self): + self.dtype = np.float32 + + def test_python(self): + data_format = "NHWC" + epsilon = 0.00001 + + n, h, w, c = 2, 3, 4, 5 + x_shape = [n, h, w, c] + scale_shape = [c] + + x_val = np.random.random_sample(x_shape).astype(self.dtype) + scale_val = np.random.random_sample(scale_shape).astype(self.dtype) + bias_val = np.random.random_sample(scale_shape).astype(self.dtype) + + mean = np.zeros(scale_shape).astype(self.dtype) + variance = np.ones(scale_shape).astype(self.dtype) + + # run forward + y_out = _reference_testing(x_val, scale_val, bias_val, mean, variance, + epsilon, "NHWC") + + # running N, C, H, W case + # should produce the same results + x_shape2 = [n, c, h, w] + x_val2 = np.transpose(x_val, (0, 3, 1, 2)) + y_out2 = _reference_testing(x_val2, scale_val, bias_val, mean, variance, + epsilon, "NCHW") + + # transfer (N, C, H, W) back to (N, H, W, C) + y_out2_trans = np.transpose(y_out2, (0, 2, 3, 1)) + self.__assert_close(y_out, y_out2_trans, "inference output") + print 'python: NHWC, NCHW, inference checking passed' + + +class TestBatchNormOpTraining(OpTest): def __assert_close(self, tensor, np_array, msg, atol=1e-4): self.assertTrue(np.allclose(np.array(tensor), np_array, atol=atol), msg) -- GitLab