未验证 提交 09778f46 编写于 作者: Q Qi Li 提交者: GitHub

[NPU] fix elementwise_mul to support broadcast, test=develop (#36258)

* [NPU] fix elementwise_mul to support broadcast, test=develop

* remove debug files, test=develop

* add axis support, test=develop
上级 b3f6eedb
......@@ -12,67 +12,127 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_ASCEND_CL
#include <memory>
#include <string>
#include "paddle/fluid/operators/elementwise/elementwise_mul_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_npu.h"
#include "paddle/fluid/operators/npu_op_runner.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using NPUDeviceContext = platform::NPUDeviceContext;
template <typename T>
static void ReduceDims(const framework::ExecutionContext& ctx,
const aclrtStream& stream, const int axis,
const framework::DDim& ddims,
const framework::DDim& brd_ddims, const Tensor& in,
Tensor* out) {
std::vector<int64_t> axes;
int64_t brd_size = brd_ddims.size();
int64_t org_size = ddims.size();
// int64_t diff = brd_dims.size() - dims.size();
for (int64_t i = 0; i < brd_size; ++i) {
if (i < axis || i >= org_size + axis) {
axes.push_back(i);
continue;
}
if (brd_ddims[i] > ddims[i - axis]) {
axes.push_back(i);
}
}
// LOG(INFO) << "axes = " << framework::make_ddim(axes).to_str();
out->mutable_data<T>(ctx.GetPlace());
const auto& runner = NpuOpRunner("ReduceSumD", {in}, {*out},
{{"axes", axes}, {"keep_dims", false}});
runner.Run(stream);
}
template <typename DeviceContext, typename T>
template <typename T>
class ElementwiseMulNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto& dev_ctx = ctx.template device_context<NPUDeviceContext>();
auto* x = ctx.Input<Tensor>("X");
auto* y = ctx.Input<Tensor>("Y");
auto* out = ctx.Output<Tensor>("Out");
out->mutable_data<T>(ctx.GetPlace());
int axis = ctx.Attr<int>("axis");
bool direct_compute = false;
auto x_dims = x->dims();
auto y_dims = y->dims();
axis = (axis == -1 ? std::abs(x_dims.size() - y_dims.size()) : axis);
if (x_dims.size() >= y_dims.size()) {
direct_compute = x_dims.size() == (y_dims.size() + axis);
} else {
direct_compute = y_dims.size() == (x_dims.size() + axis);
}
auto place = ctx.GetPlace();
out->mutable_data<T>(place);
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
auto stream = ctx.template device_context<NPUDeviceContext>().stream();
if (direct_compute) {
const auto& runner = NpuOpRunner("Mul", {*x, *y}, {*out}, {});
runner.Run(stream);
} else {
Tensor trans_x, trans_y;
NpuElementWiseOpBroadcast<T>(dev_ctx, x, y, axis, &trans_x, &trans_y);
const auto& runner = NpuOpRunner("Mul", {trans_x, trans_y}, {*out}, {});
runner.Run(stream);
}
}
};
template <typename DeviceContext, typename T>
template <typename T>
class ElementwiseMulGradNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto& dev_ctx = ctx.template device_context<NPUDeviceContext>();
auto* x = ctx.Input<Tensor>("X");
auto* y = ctx.Input<Tensor>("Y");
auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
int axis = ctx.Attr<int>("axis");
auto place = ctx.GetPlace();
axis = (axis == -1 ? std::abs(x->dims().size() - y->dims().size()) : axis);
auto stream = ctx.template device_context<NPUDeviceContext>().stream();
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
Tensor trans_x, trans_y;
NpuElementWiseOpBroadcast<T>(dev_ctx, x, y, axis, &trans_x, &trans_y);
if (dx) {
dx->mutable_data<T>(place);
const auto& runner_dx = NpuOpRunner("Mul", {*dout, *y}, {*dx}, {});
if (dx->dims() == dout->dims()) {
dx->mutable_data<T>(ctx.GetPlace());
const auto& runner_dx = NpuOpRunner("Mul", {*dout, trans_y}, {*dx}, {});
runner_dx.Run(stream);
} else {
Tensor dx_temp(x->type());
dx_temp.Resize(trans_x.dims());
dx_temp.mutable_data<T>(ctx.GetPlace());
const auto& runner_dx =
NpuOpRunner("Mul", {*dout, trans_y}, {dx_temp}, {});
runner_dx.Run(stream);
ReduceDims<T>(ctx, stream, axis, dx->dims(), trans_x.dims(), dx_temp,
dx);
}
}
if (dy) {
dy->mutable_data<T>(place);
const auto& runner_dy = NpuOpRunner("Mul", {*x, *dout}, {*dy}, {});
if (dy->dims() == dout->dims()) {
dy->mutable_data<T>(ctx.GetPlace());
const auto& runner_dy = NpuOpRunner("Mul", {trans_x, *dout}, {*dy}, {});
runner_dy.Run(stream);
} else {
Tensor dy_temp(y->type());
dy_temp.Resize(trans_y.dims());
dy_temp.mutable_data<T>(ctx.GetPlace());
const auto& runner_dy =
NpuOpRunner("Mul", {trans_x, *dout}, {dy_temp}, {});
runner_dy.Run(stream);
ReduceDims<T>(ctx, stream, axis, dy->dims(), trans_y.dims(), dy_temp,
dy);
}
}
}
};
......@@ -82,15 +142,9 @@ class ElementwiseMulGradNPUKernel : public framework::OpKernel<T> {
namespace ops = paddle::operators;
REGISTER_OP_NPU_KERNEL(
elementwise_mul,
ops::ElementwiseMulNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::ElementwiseMulNPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);
REGISTER_OP_NPU_KERNEL(elementwise_mul, ops::ElementwiseMulNPUKernel<float>,
ops::ElementwiseMulNPUKernel<paddle::platform::float16>);
REGISTER_OP_NPU_KERNEL(
elementwise_mul_grad,
ops::ElementwiseMulGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::ElementwiseMulGradNPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);
#endif
elementwise_mul_grad, ops::ElementwiseMulGradNPUKernel<float>,
ops::ElementwiseMulGradNPUKernel<paddle::platform::float16>);
......@@ -18,147 +18,203 @@ import numpy as np
import unittest
import sys
sys.path.append("..")
from op_test import OpTest
from op_test import OpTest, skip_check_grad_ci
import paddle
import paddle.fluid as fluid
paddle.enable_static()
SEED = 2021
class TestElementwiseMul(OpTest):
class ElementwiseMulOp(OpTest):
def set_npu(self):
self.__class__.use_npu = True
self.place = paddle.NPUPlace(0)
def setUp(self):
self.set_npu()
self.op_type = "elementwise_mul"
self.place = paddle.NPUPlace(0)
self.dtype = np.float32
self.axis = -1
self.init_dtype()
np.random.seed(SEED)
x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
y = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
out = np.multiply(x, y)
self.init_input_output()
self.init_axis()
self.inputs = {
'X': OpTest.np_dtype_to_fluid_dtype(x),
'Y': OpTest.np_dtype_to_fluid_dtype(y)
'X': OpTest.np_dtype_to_fluid_dtype(self.x),
'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
}
self.attrs = {}
self.outputs = {'Out': out}
self.outputs = {'Out': self.out}
self.attrs = {'axis': self.axis}
def set_npu(self):
self.__class__.use_npu = True
def test_check_output(self):
self.check_output_with_place(self.place)
def test_check_grad_normal(self):
self.check_grad_with_place(self.place, ['X', 'Y'], 'Out')
def test_check_grad_ingore_x(self):
self.check_grad_with_place(
self.place, ['Y'], 'Out', no_grad_set=set("X"))
def test_check_grad_ingore_y(self):
self.check_grad_with_place(
self.place, ['X'], 'Out', no_grad_set=set('Y'))
def init_input_output(self):
self.x = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype)
self.y = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype)
self.out = np.multiply(self.x, self.y)
def init_dtype(self):
self.dtype = np.float32
pass
def test_check_output(self):
self.check_output_with_place(self.place)
def init_axis(self):
pass
# TODO(ascendrc): Mul grad test
# def test_check_grad(self):
# if self.dtype == np.float16:
# return
# self.check_grad(['X'], 'Out')
#
@skip_check_grad_ci(
reason="[skip shape check] Use y_shape(1) to test broadcast.")
class TestElementwiseMulOp_scalar(ElementwiseMulOp):
def setUp(self):
self.set_npu()
self.op_type = "elementwise_mul"
self.inputs = {
'X': np.random.rand(10, 3, 4).astype(np.float32),
'Y': np.random.rand(1).astype(np.float32)
}
self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']}
class TestElementwiseMulFp16(OpTest):
class TestElementwiseMulOp_Vector(ElementwiseMulOp):
def setUp(self):
self.set_npu()
self.op_type = "elementwise_mul"
self.place = paddle.NPUPlace(0)
self.inputs = {
'X': np.random.random((100, )).astype("float32"),
'Y': np.random.random((100, )).astype("float32")
}
self.outputs = {'Out': np.multiply(self.inputs['X'], self.inputs['Y'])}
self.init_dtype()
np.random.seed(SEED)
x = np.random.uniform(1, 2, [3, 4]).astype(self.dtype)
y = np.random.uniform(1, 2, [3, 4]).astype(self.dtype)
out = np.multiply(x, y)
class TestElementwiseMulOp_broadcast_0(ElementwiseMulOp):
def init_input_output(self):
self.x = np.random.rand(100, 2, 3).astype(self.dtype)
self.y = np.random.rand(100).astype(self.dtype)
self.out = self.x * self.y.reshape(100, 1, 1)
def init_axis(self):
self.axis = 0
class TestElementwiseMulOp_broadcast_1(ElementwiseMulOp):
def setUp(self):
self.set_npu()
self.op_type = "elementwise_mul"
self.inputs = {
'X': OpTest.np_dtype_to_fluid_dtype(x),
'Y': OpTest.np_dtype_to_fluid_dtype(y)
'X': np.random.rand(2, 100, 3).astype(np.float32),
'Y': np.random.rand(100).astype(np.float32)
}
self.attrs = {'axis': 1}
self.outputs = {
'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 100, 1)
}
class TestElementwiseMulOp_broadcast_2(ElementwiseMulOp):
def setUp(self):
self.set_npu()
self.op_type = "elementwise_mul"
self.inputs = {
'X': np.random.rand(2, 3, 100).astype(np.float32),
'Y': np.random.rand(100).astype(np.float32)
}
self.outputs = {
'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 1, 100)
}
self.attrs = {}
self.outputs = {'Out': out}
def set_npu(self):
self.__class__.use_npu = True
self.__class__.no_need_check_grad = True
class TestElementwiseMulOp_broadcast_3(ElementwiseMulOp):
def setUp(self):
self.set_npu()
self.op_type = "elementwise_mul"
self.inputs = {
'X': np.random.rand(2, 10, 12, 3).astype(np.float32),
'Y': np.random.rand(10, 12).astype(np.float32)
}
self.attrs = {'axis': 1}
self.outputs = {
'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 10, 12, 1)
}
class TestElementwiseMulOp_broadcast_4(ElementwiseMulOp):
def setUp(self):
self.set_npu()
self.op_type = "elementwise_mul"
self.inputs = {
'X': np.random.rand(10, 2, 11).astype(np.float32),
'Y': np.random.rand(10, 1, 11).astype(np.float32)
}
self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']}
class TestElementwiseMulOp_broadcast_5(ElementwiseMulOp):
def setUp(self):
self.set_npu()
self.op_type = "elementwise_mul"
self.inputs = {
'X': np.random.rand(10, 4, 2, 3).astype(np.float32),
'Y': np.random.rand(10, 4, 1, 3).astype(np.float32)
}
self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']}
@unittest.skipIf(not paddle.is_compiled_with_npu(),
"paddle is not compiled with NPU")
class TestElementwiseMulOpFp16(ElementwiseMulOp):
def init_dtype(self):
self.dtype = np.float16
def test_check_output(self):
self.check_output_with_place(self.place, atol=1e-5)
class TestElementwiseMulNet(unittest.TestCase):
def _test(self, run_npu=True):
main_prog = paddle.static.Program()
startup_prog = paddle.static.Program()
main_prog.random_seed = SEED
startup_prog.random_seed = SEED
np.random.seed(SEED)
a_np = np.random.random(size=(32, 32)).astype('float32')
b_np = np.random.random(size=(32, 32)).astype('float32')
c_np = np.random.random(size=(32, 32)).astype('float32')
d_np = np.random.random(size=(32, 32)).astype('float32')
label_np = np.random.randint(2, size=(32, 1)).astype('int64')
with paddle.static.program_guard(main_prog, startup_prog):
a = paddle.static.data(name="a", shape=[32, 32], dtype='float32')
b = paddle.static.data(name="b", shape=[32, 32], dtype='float32')
c = paddle.static.data(name="c", shape=[32, 32], dtype='float32')
d = paddle.static.data(name="d", shape=[32, 32], dtype='float32')
label = paddle.static.data(
name="label", shape=[32, 1], dtype='int64')
e = paddle.multiply(a, b)
f = paddle.multiply(c, d)
f.stop_gradient = True
g = paddle.multiply(e, f)
fc_1 = fluid.layers.fc(input=g, size=128)
prediction = fluid.layers.fc(input=fc_1, size=2, act='softmax')
cost = fluid.layers.cross_entropy(input=prediction, label=label)
loss = fluid.layers.reduce_mean(cost)
sgd = fluid.optimizer.SGD(learning_rate=0.01)
sgd.minimize(loss)
if run_npu:
place = paddle.NPUPlace(0)
else:
place = paddle.CPUPlace()
exe = paddle.static.Executor(place)
exe.run(startup_prog)
print("Start run on {}".format(place))
for epoch in range(100):
pred_res, loss_res = exe.run(main_prog,
feed={
"a": a_np,
"b": b_np,
"c": c_np,
"d": d_np,
"label": label_np
},
fetch_list=[prediction, loss])
if epoch % 10 == 0:
print("Epoch {} | Prediction[0]: {}, Loss: {}".format(
epoch, pred_res[0], loss_res))
return pred_res, loss_res
def test_npu(self):
cpu_pred, cpu_loss = self._test(False)
npu_pred, npu_loss = self._test(True)
self.assertTrue(np.allclose(npu_pred, cpu_pred))
self.assertTrue(np.allclose(npu_loss, cpu_loss))
class TestElementwiseMulOp_commonuse_1(ElementwiseMulOp):
def setUp(self):
self.set_npu()
self.op_type = "elementwise_mul"
self.inputs = {
'X': np.random.rand(2, 3, 100).astype(np.float32),
'Y': np.random.rand(1, 1, 100).astype(np.float32)
}
self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']}
class TestElementwiseMulOp_commonuse_2(ElementwiseMulOp):
def setUp(self):
self.set_npu()
self.op_type = "elementwise_mul"
self.inputs = {
'X': np.random.rand(30, 3, 1, 5).astype(np.float32),
'Y': np.random.rand(30, 1, 4, 1).astype(np.float32)
}
self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']}
class TestElementwiseMulOp_xsize_lessthan_ysize(ElementwiseMulOp):
def setUp(self):
self.set_npu()
self.op_type = "elementwise_mul"
self.inputs = {
'X': np.random.rand(10, 10).astype(np.float32),
'Y': np.random.rand(2, 2, 10, 10).astype(np.float32)
}
self.attrs = {'axis': 2}
self.outputs = {
'Out': self.inputs['X'].reshape(1, 1, 10, 10) * self.inputs['Y']
}
if __name__ == '__main__':
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册