Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
05ece848
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
05ece848
编写于
10月 20, 2017
作者:
F
fengjiayi
提交者:
GitHub
10月 20, 2017
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Trainable conv net of MNIST (#4960)
* Init file * Update * Update * Complete conv net of MNIST
上级
07ea9ade
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
98 addition
and
3 deletion
+98
-3
python/paddle/v2/framework/nets.py
python/paddle/v2/framework/nets.py
+6
-3
python/paddle/v2/framework/tests/test_recognize_digits_conv.py
...n/paddle/v2/framework/tests/test_recognize_digits_conv.py
+92
-0
未找到文件。
python/paddle/v2/framework/nets.py
浏览文件 @
05ece848
...
...
@@ -7,18 +7,21 @@ def simple_img_conv_pool(input,
pool_size
,
pool_stride
,
act
,
program
=
None
):
program
=
None
,
init_program
=
None
):
conv_out
=
layers
.
conv2d
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
act
=
act
,
program
=
program
)
program
=
program
,
init_program
=
init_program
)
pool_out
=
layers
.
pool2d
(
input
=
conv_out
,
pool_size
=
pool_size
,
pool_type
=
'max'
,
pool_stride
=
pool_stride
,
program
=
program
)
program
=
program
,
init_program
=
init_program
)
return
pool_out
python/paddle/v2/framework/tests/test_recognize_digits_conv.py
0 → 100644
浏览文件 @
05ece848
import
paddle.v2
as
paddle
import
paddle.v2.framework.layers
as
layers
import
paddle.v2.framework.nets
as
nets
import
paddle.v2.framework.core
as
core
import
paddle.v2.framework.optimizer
as
optimizer
from
paddle.v2.framework.framework
import
Program
,
g_program
from
paddle.v2.framework.executor
import
Executor
import
numpy
as
np
init_program
=
Program
()
program
=
Program
()
images
=
layers
.
data
(
name
=
'pixel'
,
shape
=
[
1
,
28
,
28
],
data_type
=
'float32'
,
program
=
program
,
init_program
=
init_program
)
label
=
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
data_type
=
'int32'
,
program
=
program
,
init_program
=
init_program
)
conv_pool_1
=
nets
.
simple_img_conv_pool
(
input
=
images
,
filter_size
=
5
,
num_filters
=
20
,
pool_size
=
2
,
pool_stride
=
2
,
act
=
"relu"
,
program
=
program
,
init_program
=
init_program
)
conv_pool_2
=
nets
.
simple_img_conv_pool
(
input
=
conv_pool_1
,
filter_size
=
5
,
num_filters
=
50
,
pool_size
=
2
,
pool_stride
=
2
,
act
=
"relu"
,
program
=
program
,
init_program
=
init_program
)
predict
=
layers
.
fc
(
input
=
conv_pool_2
,
size
=
10
,
act
=
"softmax"
,
program
=
program
,
init_program
=
init_program
)
cost
=
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
,
program
=
program
,
init_program
=
init_program
)
avg_cost
=
layers
.
mean
(
x
=
cost
,
program
=
program
)
sgd_optimizer
=
optimizer
.
SGDOptimizer
(
learning_rate
=
0.001
)
opts
=
sgd_optimizer
.
minimize
(
avg_cost
)
BATCH_SIZE
=
50
PASS_NUM
=
1
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
mnist
.
train
(),
buf_size
=
500
),
batch_size
=
BATCH_SIZE
)
place
=
core
.
CPUPlace
()
exe
=
Executor
(
place
)
exe
.
run
(
init_program
,
feed
=
{},
fetch_list
=
[])
for
pass_id
in
range
(
PASS_NUM
):
count
=
0
for
data
in
train_reader
():
img_data
=
np
.
array
(
map
(
lambda
x
:
x
[
0
].
reshape
([
1
,
28
,
28
]),
data
)).
astype
(
"float32"
)
y_data
=
np
.
array
(
map
(
lambda
x
:
x
[
1
],
data
)).
astype
(
"int32"
)
y_data
=
y_data
.
reshape
([
BATCH_SIZE
,
1
])
tensor_img
=
core
.
LoDTensor
()
tensor_y
=
core
.
LoDTensor
()
tensor_img
.
set
(
img_data
,
place
)
tensor_y
.
set
(
y_data
,
place
)
outs
=
exe
.
run
(
program
,
feed
=
{
"pixel"
:
tensor_img
,
"label"
:
tensor_y
},
fetch_list
=
[
avg_cost
])
loss
=
np
.
array
(
outs
[
0
])
if
loss
<
10.0
:
exit
(
0
)
# if avg cost less than 10.0, we think our code is good.
exit
(
1
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录