Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
0454b777
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
0454b777
编写于
6月 09, 2022
作者:
C
cifar10
提交者:
GitHub
6月 09, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add mlu gather_nd kernel (#43344)
上级
06d999f6
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
432 addition
and
0 deletion
+432
-0
paddle/fluid/operators/gather_nd_op_mlu.cc
paddle/fluid/operators/gather_nd_op_mlu.cc
+123
-0
python/paddle/fluid/tests/unittests/mlu/test_gather_nd_op_mlu.py
...paddle/fluid/tests/unittests/mlu/test_gather_nd_op_mlu.py
+309
-0
未找到文件。
paddle/fluid/operators/gather_nd_op_mlu.cc
0 → 100644
浏览文件 @
0454b777
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
#include "paddle/fluid/platform/device_context.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
class
GatherNdMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
index
=
ctx
.
Input
<
Tensor
>
(
"Index"
);
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
place
=
ctx
.
GetPlace
();
out
->
template
mutable_data
<
T
>(
place
);
if
(
x
->
numel
()
==
0
)
return
;
if
(
index
->
numel
()
==
0
)
{
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
MLUDeviceContext
>();
framework
::
TensorCopy
(
*
x
,
place
,
dev_ctx
,
out
);
return
;
}
const
auto
&
index_type
=
framework
::
TransToProtoVarType
(
index
->
dtype
());
bool
index_type_match
=
index_type
==
framework
::
proto
::
VarType
::
INT32
||
index_type
==
framework
::
proto
::
VarType
::
INT64
;
PADDLE_ENFORCE_EQ
(
index_type_match
,
true
,
platform
::
errors
::
InvalidArgument
(
"Index holds the wrong type, it holds [%s],"
"but desires to be [%s] or [%s]"
,
paddle
::
framework
::
DataTypeToString
(
index_type
),
paddle
::
framework
::
DataTypeToString
(
framework
::
proto
::
VarType
::
INT32
),
paddle
::
framework
::
DataTypeToString
(
framework
::
proto
::
VarType
::
INT64
)));
MLUCnnlTensorDesc
x_desc
(
*
x
);
MLUCnnlTensorDesc
index_desc
(
*
index
);
MLUCnnlTensorDesc
out_desc
(
*
out
);
MLUCnnl
::
GatherNd
(
ctx
,
x_desc
.
get
(),
GetBasePtr
(
x
),
index_desc
.
get
(),
GetBasePtr
(
index
),
out_desc
.
get
(),
GetBasePtr
(
out
));
}
};
template
<
typename
T
>
class
GatherNdGradMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
index
=
ctx
.
Input
<
Tensor
>
(
"Index"
);
auto
*
dout
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
if
(
dx
->
numel
()
==
0
)
return
;
if
(
index
->
numel
()
==
0
)
{
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
MLUDeviceContext
>();
framework
::
TensorCopy
(
*
dout
,
ctx
.
GetPlace
(),
dev_ctx
,
dx
);
return
;
}
framework
::
Tensor
tmp_tensor
(
index
->
type
());
framework
::
Tensor
tmp_tensor2
(
dout
->
type
());
const
auto
index_dims
=
index
->
dims
();
if
(
index_dims
.
size
()
==
1
)
{
tmp_tensor
.
ShareDataWith
(
*
index
);
std
::
vector
<
int64_t
>
new_dim
=
{
1
,
index_dims
[
0
]};
tmp_tensor
.
Resize
(
phi
::
make_ddim
(
new_dim
));
index
=
&
tmp_tensor
;
tmp_tensor2
.
ShareDataWith
(
*
dout
);
std
::
vector
<
int64_t
>
new_dim2
{
1
};
for
(
int
i
=
index
->
numel
();
i
<
x
->
dims
().
size
();
i
++
)
{
new_dim2
.
push_back
(
x
->
dims
()[
i
]);
}
tmp_tensor2
.
Resize
(
phi
::
make_ddim
(
new_dim2
));
dout
=
&
tmp_tensor2
;
}
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
MLUCnnlTensorDesc
dx_desc
(
*
dx
);
auto
value
=
static_cast
<
T
>
(
0
);
MLUCnnl
::
Fill
(
ctx
,
CNNL_POINTER_MODE_HOST
,
&
value
,
dx_desc
.
get
(),
GetBasePtr
(
dx
));
MLUCnnlTensorDesc
index_desc
(
*
index
);
MLUCnnlTensorDesc
dout_desc
(
*
dout
);
const
cnnlScatterNdMode_t
mode
=
CNNL_SCATTERND_ADD
;
MLUCnnl
::
ScatterNd
(
ctx
,
mode
,
index_desc
.
get
(),
GetBasePtr
(
index
),
dout_desc
.
get
(),
GetBasePtr
(
dout
),
dx_desc
.
get
(),
GetBasePtr
(
dx
),
dx_desc
.
get
(),
GetBasePtr
(
dx
));
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_MLU_KERNEL
(
gather_nd
,
ops
::
GatherNdMLUKernel
<
float
>
,
ops
::
GatherNdMLUKernel
<
paddle
::
platform
::
float16
>
);
REGISTER_OP_MLU_KERNEL
(
gather_nd_grad
,
ops
::
GatherNdGradMLUKernel
<
paddle
::
platform
::
float16
>
,
ops
::
GatherNdGradMLUKernel
<
float
>
);
python/paddle/fluid/tests/unittests/mlu/test_gather_nd_op_mlu.py
0 → 100644
浏览文件 @
0454b777
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
sys
sys
.
path
.
append
(
'..'
)
import
numpy
as
np
from
op_test
import
OpTest
import
paddle.fluid
as
fluid
import
paddle
paddle
.
enable_static
()
def
gather_nd_grad
(
x
,
index
):
# for TestGatherNdOpWithLowIndex
dout_shape
=
index
.
shape
[:
-
1
]
+
x
.
shape
[
index
.
shape
[
-
1
]:]
numel
=
1
for
i
in
dout_shape
:
numel
=
numel
*
i
dout
=
np
.
full
(
dout_shape
,
1.
/
numel
)
dx
=
np
.
full_like
(
x
,
0
)
index
=
tuple
(
index
.
reshape
(
-
1
,
index
.
shape
[
-
1
]).
T
)
np
.
add
.
at
(
dx
,
index
,
dout
)
return
dx
def
test_class1
(
op_type
,
typename
):
class
TestGatherNdOpWithEmptyIndex
(
OpTest
):
# Index has empty element, which means copy entire tensor
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"gather_nd"
self
.
python_api
=
paddle
.
gather_nd
xnp
=
np
.
random
.
random
((
5
,
20
)).
astype
(
typename
)
self
.
inputs
=
{
'X'
:
xnp
,
'Index'
:
np
.
array
([[],
[]]).
astype
(
"int32"
)
}
self
.
outputs
=
{
'Out'
:
np
.
vstack
((
xnp
[
np
.
newaxis
,
:],
xnp
[
np
.
newaxis
,
:]))
}
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
if
typename
==
"float16"
:
self
.
__class__
.
no_need_check_grad
=
True
else
:
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
],
'Out'
)
cls_name
=
"{0}_{1}_1"
.
format
(
op_type
,
typename
)
TestGatherNdOpWithEmptyIndex
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestGatherNdOpWithEmptyIndex
def
test_class2
(
op_type
,
typename
):
class
TestGatherNdOpWithIndex1
(
OpTest
):
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"gather_nd"
self
.
python_api
=
paddle
.
gather_nd
xnp
=
np
.
random
.
random
((
5
,
20
)).
astype
(
typename
)
self
.
inputs
=
{
'X'
:
xnp
,
'Index'
:
np
.
array
([
1
]).
astype
(
"int32"
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
"X"
][
self
.
inputs
[
"Index"
]]}
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
if
typename
==
"float16"
:
self
.
__class__
.
no_need_check_grad
=
True
else
:
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
],
'Out'
)
cls_name
=
"{0}_{1}_2"
.
format
(
op_type
,
typename
)
TestGatherNdOpWithIndex1
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestGatherNdOpWithIndex1
def
test_class3
(
op_type
,
typename
):
class
TestGatherNdOpWithLowIndex
(
OpTest
):
#Index has low rank, X has high rank
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"gather_nd"
self
.
python_api
=
paddle
.
gather_nd
xnp
=
np
.
random
.
uniform
(
0
,
100
,
(
10
,
10
)).
astype
(
typename
)
index
=
np
.
array
([[
1
],
[
2
]]).
astype
(
"int64"
)
self
.
inputs
=
{
'X'
:
xnp
,
'Index'
:
index
}
self
.
outputs
=
{
'Out'
:
xnp
[
tuple
(
index
.
T
)]}
self
.
x_grad
=
gather_nd_grad
(
xnp
,
index
)
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
if
typename
==
"float16"
:
self
.
__class__
.
no_need_check_grad
=
True
else
:
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
],
'Out'
,
user_defined_grads
=
[
self
.
x_grad
])
cls_name
=
"{0}_{1}_3"
.
format
(
op_type
,
typename
)
TestGatherNdOpWithLowIndex
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestGatherNdOpWithLowIndex
def
test_class4
(
op_type
,
typename
):
class
TestGatherNdOpIndex1
(
OpTest
):
#Index has low rank, X has high rank
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"gather_nd"
self
.
python_api
=
paddle
.
gather_nd
xnp
=
np
.
random
.
uniform
(
0
,
100
,
(
10
,
10
)).
astype
(
typename
)
index
=
np
.
array
([
1
,
2
]).
astype
(
"int32"
)
self
.
inputs
=
{
'X'
:
xnp
,
'Index'
:
index
}
self
.
outputs
=
{
'Out'
:
xnp
[
tuple
(
index
.
T
)]}
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
if
typename
==
"float16"
:
self
.
__class__
.
no_need_check_grad
=
True
else
:
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
],
'Out'
)
cls_name
=
"{0}_{1}_4"
.
format
(
op_type
,
typename
)
TestGatherNdOpIndex1
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestGatherNdOpIndex1
def
test_class5
(
op_type
,
typename
):
class
TestGatherNdOpWithSameIndexAsX
(
OpTest
):
#Index has same rank as X's rank
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"gather_nd"
self
.
python_api
=
paddle
.
gather_nd
xnp
=
np
.
random
.
uniform
(
0
,
100
,
(
10
,
10
)).
astype
(
typename
)
index
=
np
.
array
([[
1
,
1
],
[
2
,
1
]]).
astype
(
"int64"
)
self
.
inputs
=
{
'X'
:
xnp
,
'Index'
:
index
}
self
.
outputs
=
{
'Out'
:
xnp
[
tuple
(
index
.
T
)]}
#[25, 22]
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
if
typename
==
"float16"
:
self
.
__class__
.
no_need_check_grad
=
True
else
:
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
],
'Out'
)
cls_name
=
"{0}_{1}_5"
.
format
(
op_type
,
typename
)
TestGatherNdOpWithSameIndexAsX
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestGatherNdOpWithSameIndexAsX
def
test_class6
(
op_type
,
typename
):
class
TestGatherNdOpWithHighRankSame
(
OpTest
):
#Both Index and X have high rank, and Rank(Index) = Rank(X)
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"gather_nd"
self
.
python_api
=
paddle
.
gather_nd
shape
=
(
5
,
2
,
3
,
1
,
10
)
xnp
=
np
.
random
.
rand
(
*
shape
).
astype
(
typename
)
index
=
np
.
vstack
([
np
.
random
.
randint
(
0
,
s
,
size
=
2
)
for
s
in
shape
]).
T
self
.
inputs
=
{
'X'
:
xnp
,
'Index'
:
index
.
astype
(
"int32"
)}
self
.
outputs
=
{
'Out'
:
xnp
[
tuple
(
index
.
T
)]}
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
if
typename
==
"float16"
:
self
.
__class__
.
no_need_check_grad
=
True
else
:
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
],
'Out'
)
cls_name
=
"{0}_{1}_6"
.
format
(
op_type
,
typename
)
TestGatherNdOpWithHighRankSame
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestGatherNdOpWithHighRankSame
def
test_class7
(
op_type
,
typename
):
class
TestGatherNdOpWithHighRankDiff
(
OpTest
):
#Both Index and X have high rank, and Rank(Index) < Rank(X)
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"gather_nd"
self
.
python_api
=
paddle
.
gather_nd
shape
=
(
2
,
3
,
4
,
1
,
10
)
xnp
=
np
.
random
.
rand
(
*
shape
).
astype
(
typename
)
index
=
np
.
vstack
(
[
np
.
random
.
randint
(
0
,
s
,
size
=
200
)
for
s
in
shape
]).
T
index_re
=
index
.
reshape
([
20
,
5
,
2
,
5
])
self
.
inputs
=
{
'X'
:
xnp
,
'Index'
:
index_re
.
astype
(
"int32"
)}
self
.
outputs
=
{
'Out'
:
xnp
[
tuple
(
index
.
T
)].
reshape
([
20
,
5
,
2
])}
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
if
typename
==
"float16"
:
self
.
__class__
.
no_need_check_grad
=
True
else
:
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
],
'Out'
)
cls_name
=
"{0}_{1}_7"
.
format
(
op_type
,
typename
)
TestGatherNdOpWithHighRankDiff
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestGatherNdOpWithHighRankDiff
#Test Python API
class
TestGatherNdAPI2
(
unittest
.
TestCase
):
def
test_imperative
(
self
):
paddle
.
disable_static
()
input_1
=
np
.
array
([[
1
,
2
],
[
3
,
4
],
[
5
,
6
]]).
astype
(
"float32"
)
index_1
=
np
.
array
([[
1
]]).
astype
(
"int32"
)
input
=
fluid
.
dygraph
.
to_variable
(
input_1
)
index
=
fluid
.
dygraph
.
to_variable
(
index_1
)
output
=
paddle
.
fluid
.
layers
.
gather
(
input
,
index
)
output_np
=
output
.
numpy
()
expected_output
=
np
.
array
([
3
,
4
])
self
.
assertTrue
(
np
.
allclose
(
output_np
,
expected_output
))
paddle
.
enable_static
()
for
_typename
in
{
'float16'
,
'float32'
}:
test_class1
(
'gather_nd'
,
_typename
)
test_class2
(
'gather_nd'
,
_typename
)
test_class3
(
'gather_nd'
,
_typename
)
test_class4
(
'gather_nd'
,
_typename
)
test_class5
(
'gather_nd'
,
_typename
)
test_class6
(
'gather_nd'
,
_typename
)
test_class7
(
'gather_nd'
,
_typename
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录