未验证 提交 032da731 编写于 作者: S Siming Dai 提交者: GitHub

Support 0D for paddle.sort/argsort (#49501)

* support 0D for paddle.sort/argsort

* support 0D tensor for paddle.sort/argsort in xpu

* fix bug

* fix grad and add value assertion
上级 fcd6d675
......@@ -220,10 +220,11 @@ void ArgsortInferMeta(const MetaTensor& input,
MetaTensor* indices) {
auto in_dims = input.dims();
auto num_dims = in_dims.size();
PADDLE_ENFORCE_GE(
axis,
if (num_dims > 0) {
PADDLE_ENFORCE_GE(axis,
-num_dims,
phi::errors::InvalidArgument("'axis'(%d) must be greater than or equal to"
phi::errors::InvalidArgument(
"'axis'(%d) must be greater than or equal to"
" -num_dims(%d).",
axis,
-num_dims));
......@@ -232,6 +233,13 @@ void ArgsortInferMeta(const MetaTensor& input,
num_dims,
phi::errors::InvalidArgument(
"'axis'(%d) must be less than num_dims(%d).", axis, num_dims));
} else { // 0-dim tensor
PADDLE_ENFORCE_EQ(
axis == 0 || axis == -1,
1,
phi::errors::InvalidArgument(
"'axis'(%d) must be 0 or -1 if input tensor is 0-dim.", axis));
}
output->share_dims(input);
output->set_dtype(input.dtype());
......
......@@ -58,6 +58,7 @@ void ArgsortGradKernel(const Context& dev_ctx,
bool descending,
DenseTensor* in_grad) {
auto in_dims = indices.dims();
auto rank = input.dims().size();
axis = (axis < 0) ? (in_dims.size() + axis) : axis;
dev_ctx.template Alloc<T>(in_grad);
auto dxt = EigenVector<T>::Flatten(*in_grad);
......@@ -65,6 +66,11 @@ void ArgsortGradKernel(const Context& dev_ctx,
dxt.device(place) = dxt.constant(static_cast<T>(0));
if (out_grad.numel() == 0) return;
if (rank == 0) {
phi::Copy<Context>(dev_ctx, out_grad, dev_ctx.GetPlace(), false, in_grad);
return;
}
// Do full assign
if (axis == -1 || axis + 1 == in_dims.size()) {
const int64_t input_height =
......
......@@ -18,6 +18,7 @@
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/transpose_kernel.h"
namespace phi {
......@@ -75,9 +76,18 @@ void ArgsortKernel(const Context& dev_ctx,
DenseTensor* output,
DenseTensor* indices) {
auto in_dims = input.dims();
auto rank = in_dims.size();
axis = (axis < 0) ? (in_dims.size() + axis) : axis;
T* out_data = dev_ctx.template Alloc<T>(output);
// For 0D Tensor
if (rank == 0) {
phi::Copy<Context>(dev_ctx, input, dev_ctx.GetPlace(), false, output);
dev_ctx.template Alloc<int64_t>(indices);
phi::funcs::set_constant(dev_ctx, indices, 0);
return;
}
// Do full sort
if (axis == -1 || axis + 1 == in_dims.size()) {
const int64_t input_height =
......
......@@ -28,6 +28,7 @@ namespace cub = hipcub;
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/primitive/functor_primitives.h"
#include "paddle/phi/kernels/transpose_kernel.h"
......@@ -141,11 +142,18 @@ void ArgsortGradKernel(const Context& dev_ctx,
bool descending,
DenseTensor* in_grad) {
dev_ctx.template Alloc<T>(in_grad);
phi::funcs::set_constant(dev_ctx, in_grad, 0.0);
if (out_grad.numel() == 0) return;
auto in_dims = in_grad->dims();
auto rank = in_dims.size();
axis = (axis < 0) ? (in_dims.size() + axis) : axis;
int64_t size = in_grad->numel();
if (rank == 0) {
phi::Copy<Context>(dev_ctx, out_grad, dev_ctx.GetPlace(), false, in_grad);
return;
}
// Parallel acceleration when the input size is equal to the length of the
// ‘axis’ dimension.
// Compared to 'special case for full sort' below, the gradient calculation
......
......@@ -30,6 +30,7 @@ namespace cub = hipcub;
#include "paddle/phi/backends/gpu/gpu_info.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/primitive/functor_primitives.h"
#include "paddle/phi/kernels/transpose_kernel.h"
......@@ -396,6 +397,7 @@ void ArgsortKernel(const Context &dev_ctx,
DenseTensor *output,
DenseTensor *indices) {
auto in_dims = input.dims();
auto rank = in_dims.size();
axis = (axis < 0) ? (in_dims.size() + axis) : axis;
const T *in_data = input.data<T>();
......@@ -403,6 +405,12 @@ void ArgsortKernel(const Context &dev_ctx,
T *out_data = dev_ctx.template Alloc<T>(output);
int64_t *ids_data = dev_ctx.template Alloc<int64_t>(indices);
if (rank == 0) {
phi::Copy<Context>(dev_ctx, input, dev_ctx.GetPlace(), false, output);
phi::funcs::set_constant(dev_ctx, indices, 0);
return;
}
// Use thrust for parallel acceleration when the input size is equal to the
// length of the ‘axis’ dimension.
// Compared to the following 'Special case for full sort', ascending sort is
......
......@@ -29,6 +29,7 @@ void ArgsortGradKernel(const Context& dev_ctx,
bool descending,
DenseTensor* in_grad) {
auto in_dims = indices.dims();
auto rank = in_dims.size();
axis = (axis < 0) ? (in_dims.size() + axis) : axis;
dev_ctx.template Alloc<T>(in_grad);
......@@ -40,6 +41,11 @@ void ArgsortGradKernel(const Context& dev_ctx,
if (out_grad.numel() == 0) return;
if (rank == 0) {
phi::Copy<Context>(dev_ctx, out_grad, dev_ctx.GetPlace(), false, in_grad);
return;
}
bool is_need_transpose = true;
if (axis == -1 || axis + 1 == in_dims.size()) {
is_need_transpose = false;
......
......@@ -17,6 +17,7 @@
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/backends/xpu/xpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/math_function.h"
namespace phi {
......@@ -171,6 +172,7 @@ void ArgsortKernel(const Context& dev_ctx,
DenseTensor* output,
DenseTensor* indices) {
auto in_dims = input.dims();
auto rank = in_dims.size();
axis = (axis < 0) ? (in_dims.size() + axis) : axis;
int n = in_dims[axis];
......@@ -178,6 +180,12 @@ void ArgsortKernel(const Context& dev_ctx,
auto output_data = dev_ctx.template Alloc<T>(output);
auto indices_data = dev_ctx.template Alloc<int64_t>(indices);
if (rank == 0) {
phi::Copy<Context>(dev_ctx, input, dev_ctx.GetPlace(), false, output);
phi::funcs::set_constant(dev_ctx, indices, 0);
return;
}
int len_before = phi::product(phi::slice_ddim(in_dims, 0, axis));
int len_after =
phi::product(phi::slice_ddim(in_dims, axis + 1, in_dims.size()));
......
......@@ -855,6 +855,50 @@ class TestSundryAPI(unittest.TestCase):
self.assertEqual(out.shape, [])
self.assertEqual(out.grad.shape, [])
def test_sort(self):
x1 = paddle.rand([])
x2 = paddle.rand([])
x1.stop_gradient = False
x2.stop_gradient = False
out1 = paddle.sort(x1, axis=-1)
out2 = paddle.sort(x2, axis=0)
out1.backward()
out2.backward()
self.assertEqual(out1.shape, [])
self.assertEqual(out2.shape, [])
self.assertEqual(out1.numpy(), x1.numpy())
self.assertEqual(out2.numpy(), x2.numpy())
self.assertEqual(out1.grad.shape, [])
self.assertEqual(out2.grad.shape, [])
self.assertEqual(x1.grad.shape, [])
self.assertEqual(x2.grad.shape, [])
self.assertEqual(x1.grad.numpy(), 1)
self.assertEqual(x2.grad.numpy(), 1)
def test_argsort(self):
x1 = paddle.rand([])
x2 = paddle.rand([])
x1.stop_gradient = False
x2.stop_gradient = False
out1 = paddle.argsort(x1, axis=-1)
out2 = paddle.argsort(x2, axis=0)
out1.backward()
out2.backward()
self.assertEqual(out1.shape, [])
self.assertEqual(out2.shape, [])
self.assertEqual(out1.numpy(), 0)
self.assertEqual(out2.numpy(), 0)
self.assertEqual(out1.grad.shape, [])
self.assertEqual(out2.grad.shape, [])
self.assertEqual(x1.grad.shape, [])
self.assertEqual(x2.grad.shape, [])
self.assertEqual(x1.grad.numpy(), 0)
self.assertEqual(x2.grad.numpy(), 0)
class TestSundryAPIStatic(unittest.TestCase):
def setUp(self):
......@@ -1182,6 +1226,42 @@ class TestSundryAPIStatic(unittest.TestCase):
self.assertEqual(res1.shape, ())
self.assertEqual(res2.shape, ())
@prog_scope()
def test_sort(self):
x1 = paddle.rand([])
x1.stop_gradient = False
out1 = paddle.sort(x1, axis=-1)
paddle.static.append_backward(out1)
x2 = paddle.rand([])
x2.stop_gradient = False
out2 = paddle.sort(x2, axis=0)
paddle.static.append_backward(out2)
prog = paddle.static.default_main_program()
res = self.exe.run(prog, fetch_list=[out1, out2])
self.assertEqual(res[0].shape, ())
self.assertEqual(res[1].shape, ())
@prog_scope()
def test_argsort(self):
x1 = paddle.rand([])
x1.stop_gradient = False
out1 = paddle.argsort(x1, axis=-1)
paddle.static.append_backward(out1)
x2 = paddle.rand([])
x2.stop_gradient = False
out2 = paddle.argsort(x2, axis=0)
paddle.static.append_backward(out2)
prog = paddle.static.default_main_program()
res = self.exe.run(prog, fetch_list=[out1, out2])
self.assertEqual(res[0].shape, ())
self.assertEqual(res[1].shape, ())
# Use to test API whose zero-dim input tensors don't have grad and not need to test backward in OpTest.
class TestNoBackwardAPI(unittest.TestCase):
......
......@@ -646,6 +646,50 @@ class TestSundryAPI(unittest.TestCase):
out = paddle.reshape_(x, new_shape)
self.assertEqual(out.shape, [1, 1])
def test_sort(self):
x1 = paddle.rand([])
x2 = paddle.rand([])
x1.stop_gradient = False
x2.stop_gradient = False
out1 = paddle.sort(x1, axis=-1)
out2 = paddle.sort(x2, axis=0)
out1.backward()
out2.backward()
self.assertEqual(out1.shape, [])
self.assertEqual(out2.shape, [])
self.assertEqual(out1.numpy(), x1.numpy())
self.assertEqual(out2.numpy(), x2.numpy())
self.assertEqual(out1.grad.shape, [])
self.assertEqual(out2.grad.shape, [])
self.assertEqual(x1.grad.shape, [])
self.assertEqual(x2.grad.shape, [])
self.assertEqual(x1.grad.numpy(), 1)
self.assertEqual(x2.grad.numpy(), 1)
def test_argsort(self):
x1 = paddle.rand([])
x2 = paddle.rand([])
x1.stop_gradient = False
x2.stop_gradient = False
out1 = paddle.argsort(x1, axis=-1)
out2 = paddle.argsort(x2, axis=0)
out1.backward()
out2.backward()
self.assertEqual(out1.shape, [])
self.assertEqual(out2.shape, [])
self.assertEqual(out1.numpy(), 0)
self.assertEqual(out2.numpy(), 0)
self.assertEqual(out1.grad.shape, [])
self.assertEqual(out2.grad.shape, [])
self.assertEqual(x1.grad.shape, [])
self.assertEqual(x2.grad.shape, [])
self.assertEqual(x1.grad.numpy(), 0)
self.assertEqual(x2.grad.numpy(), 0)
# Use to test API whose zero-dim input tensors don't have grad and not need to test backward in OpTest.
class TestNoBackwardAPI(unittest.TestCase):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册