提交 02175555 编写于 作者: Y Yan Xu 提交者: chengduo

polish parallel dygraph code (#17164)

* add var grad hook test=develop
上级 d7df4e5e
......@@ -150,9 +150,9 @@ class Autograd {
const std::vector<VarBase*>& ingrads = it->second;
for (size_t i = 0; i < ingrads.size(); ++i) {
if (!ingrads[i]) continue;
if (ready_op->input_vars_[it->first][i]->IsStopGradient()) {
continue;
}
auto p = ready_op->input_vars_[it->first][i];
if (p->IsStopGradient()) continue;
OpBase* pre_op = ready_op->pre_ops_[it->first][i];
if (!pre_op) continue;
......@@ -415,15 +415,11 @@ void OpBase::InvokeBackwardHooks() {
}
}
void OpBase::RegisterBackwardHooks(const py::object& callable, bool front) {
void OpBase::RegisterBackwardHooks(const py::object& callable) {
VLOG(3) << "Register backward hooks " << trace_id_;
// TODO(minqiyang): check the callable format
if (front) {
backward_hooks_.insert(backward_hooks_.begin(), callable);
} else {
backward_hooks_.push_back(callable);
}
}
void VarBase::RunBackward(const detail::BackwardStrategy& bck_stratedy) {
......
......@@ -310,7 +310,7 @@ class PYBIND11_HIDDEN OpBase {
return grad_op_descs_[index]->Type();
}
void RegisterBackwardHooks(const py::object& callable, bool front = false);
void RegisterBackwardHooks(const py::object& callable);
void InvokeBackwardHooks();
......
......@@ -39,6 +39,7 @@ class AllReduceOpKernel : public framework::OpKernel<T> {
auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
auto in = ctx.Input<framework::Tensor>("X");
auto out = ctx.Output<framework::Tensor>("Out");
int dtype = platform::ToNCCLDataType(in->type());
int64_t numel = in->numel();
auto* sendbuff = in->data<void>();
......@@ -66,12 +67,10 @@ class AllReduceOpKernel : public framework::OpKernel<T> {
red_type = ncclMin;
break;
}
VLOG(0) << "call allreduce with type: " << reduce_type;
PADDLE_ENFORCE(platform::dynload::ncclAllReduce(
sendbuff, recvbuff, numel, static_cast<ncclDataType_t>(dtype), red_type,
comm, stream));
if (ctx.Attr<bool>("sync_mode")) {
VLOG(0) << "sync allreduce...";
cudaError_t e_sync = cudaStreamSynchronize(stream);
if (e_sync != 0) {
LOG(FATAL) << "cudaStreamSynchronize " << cudaGetErrorString(e_sync);
......
......@@ -252,11 +252,9 @@ PYBIND11_MODULE(core, m) {
py::class_<imperative::OpBase, PyOpBase>(m, "OpBase", R"DOC()DOC")
.def(py::init<const std::string &>())
.def("register_backward_hooks",
[](imperative::OpBase &self, const py::object &callable,
bool front = false) {
self.RegisterBackwardHooks(callable, front);
},
py::arg("callable"), py::arg("front") = false)
[](imperative::OpBase &self, const py::object &callable) {
self.RegisterBackwardHooks(callable);
})
.def_property("_trace_id",
[](const imperative::OpBase &self) {
pybind11::gil_scoped_release release;
......
......@@ -13,12 +13,14 @@
# limitations under the License.
import os
import six
import numpy as np
from .. import core
from . import layers
from .. import framework
from ..layers import collective
from . import to_variable
__all__ = ["prepare_context"]
......@@ -75,31 +77,33 @@ class Env(object):
class DataParallel(layers.Layer):
def __init__(self, layers):
def __init__(self, layers, strategy):
super(DataParallel,
self).__init__(layers.full_name() + "_data_parallel")
self._layers = layers
def build_once(self, *inputs, **kwargs):
#TODO(Yancey1989): broadcast all the paramters
pass
self._strategy = strategy
def forward(self, *inputs, **kwargs):
def _collective_hook(iop):
op = framework._dygraph_tracer()._ops[iop._trace_id]
for k, v in six.iteritems(op.inputs):
for ivar in v:
g = ivar._grad_ivar()
if g:
return self._layers(*inputs, **kwargs)
def scale_loss(self, loss):
if self._strategy.nranks < 2:
return loss
loss_scale = to_variable(
np.array([self._strategy.nranks]).astype("float32"))
loss_scale.stop_gradient = True
loss = loss / loss_scale
return loss
def apply_collective_grads(self):
if self._strategy.nranks < 2:
return
for param in self._layers.parameters():
if param.trainable and param._ivar._grad_ivar():
g_var = framework.Variable(
block=self._helper.main_program.current_block(),
name=ivar._grad_name(),
name=param._ivar._grad_name(),
stop_gradient=True,
ivar=g)
ivar=param._ivar._grad_ivar())
collective._allreduce(g_var, g_var, sync_mode=True)
outs = self._layers(*inputs, **kwargs)
for _, op in six.iteritems(framework._dygraph_tracer()._ops):
# hook collective ops
op.iop.register_backward_hooks(_collective_hook, front=True)
return outs
......@@ -101,11 +101,13 @@ class MNIST(fluid.dygraph.Layer):
loc=0.0, scale=scale)),
act="softmax")
def forward(self, inputs):
def forward(self, inputs, label):
x = self._simple_img_conv_pool_1(inputs)
x = self._simple_img_conv_pool_2(x)
x = self._fc(x)
return x
cost = self._fc(x)
loss = fluid.layers.cross_entropy(cost, label)
avg_loss = fluid.layers.mean(loss)
return avg_loss
class TestMnist(TestParallelDyGraphRunnerBase):
......@@ -113,7 +115,7 @@ class TestMnist(TestParallelDyGraphRunnerBase):
model = MNIST("mnist")
train_reader = paddle.batch(
paddle.dataset.mnist.train(), batch_size=2, drop_last=True)
opt = SGDOptimizer(learning_rate=1e-3)
opt = fluid.optimizer.SGD(learning_rate=1e-3)
return model, train_reader, opt
def run_one_loop(self, model, opt, data):
......@@ -126,9 +128,8 @@ class TestMnist(TestParallelDyGraphRunnerBase):
label = to_variable(y_data)
label.stop_gradient = True
cost = model(img)
loss = fluid.layers.cross_entropy(cost, label)
avg_loss = fluid.layers.mean(loss)
avg_loss = model(img, label)
return avg_loss
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import os
import contextlib
import unittest
import numpy as np
import six
import pickle
import sys
import paddle
import paddle.fluid as fluid
import paddle.fluid.dygraph as dygraph
from paddle.fluid import core
from paddle.fluid.optimizer import SGDOptimizer
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, FC, BatchNorm
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.layer_helper import LayerHelper
from test_dist_base import runtime_main, TestParallelDyGraphRunnerBase
class ConvBNLayer(fluid.dygraph.Layer):
def __init__(self,
name_scope,
num_channels,
num_filters,
filter_size,
stride=1,
groups=1,
act=None):
super(ConvBNLayer, self).__init__(name_scope)
self._conv = Conv2D(
self.full_name(),
num_channels=num_channels,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
bias_attr=None)
self._batch_norm = BatchNorm(
self.full_name(), num_filters, act=act, momentum=0.1)
def forward(self, inputs):
y = self._conv(inputs)
y = self._batch_norm(y)
return y
class SqueezeExcitation(fluid.dygraph.Layer):
def __init__(self, name_scope, num_channels, reduction_ratio):
super(SqueezeExcitation, self).__init__(name_scope)
self._pool = Pool2D(
self.full_name(), pool_size=0, pool_type='avg', global_pooling=True)
self._squeeze = FC(
self.full_name(),
size=num_channels // reduction_ratio,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(value=0.05)),
act='relu')
self._excitation = FC(
self.full_name(),
size=num_channels,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(value=0.05)),
act='sigmoid')
def forward(self, input):
y = self._pool(input)
y = self._squeeze(y)
y = self._excitation(y)
y = fluid.layers.elementwise_mul(x=input, y=y, axis=0)
return y
class BottleneckBlock(fluid.dygraph.Layer):
def __init__(self,
name_scope,
num_channels,
num_filters,
stride,
cardinality,
reduction_ratio,
shortcut=True):
super(BottleneckBlock, self).__init__(name_scope)
self.conv0 = ConvBNLayer(
self.full_name(),
num_channels=num_channels,
num_filters=num_filters,
filter_size=1)
self.conv1 = ConvBNLayer(
self.full_name(),
num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
stride=stride,
groups=cardinality)
self.conv2 = ConvBNLayer(
self.full_name(),
num_channels=num_filters,
num_filters=num_filters * 4,
filter_size=1,
act='relu')
self.scale = SqueezeExcitation(
self.full_name(),
num_channels=num_filters * 4,
reduction_ratio=reduction_ratio)
if not shortcut:
self.short = ConvBNLayer(
self.full_name(),
num_channels=num_channels,
num_filters=num_filters * 4,
filter_size=1,
stride=stride)
self.shortcut = shortcut
self._num_channels_out = num_filters * 4
def forward(self, inputs):
y = self.conv0(inputs)
conv1 = self.conv1(y)
conv2 = self.conv2(conv1)
scale = self.scale(conv2)
if self.shortcut:
short = inputs
else:
short = self.short(inputs)
y = fluid.layers.elementwise_add(x=short, y=scale)
layer_helper = LayerHelper(self.full_name(), act='relu')
y = layer_helper.append_activation(y)
return y
class SeResNeXt(fluid.dygraph.Layer):
def __init__(self, name_scope, layers=50, class_dim=102):
super(SeResNeXt, self).__init__(name_scope)
self.layers = layers
supported_layers = [50, 101, 152]
assert layers in supported_layers, \
"supported layers are {} but input layer is {}".format(supported_layers, layers)
if layers == 50:
cardinality = 32
reduction_ratio = 16
depth = [3, 4, 6, 3]
num_filters = [128, 256, 512, 1024]
self.conv0 = ConvBNLayer(
self.full_name(),
num_channels=3,
num_filters=64,
filter_size=7,
stride=2,
act='relu')
self.pool = Pool2D(
self.full_name(),
pool_size=3,
pool_stride=2,
pool_padding=1,
pool_type='max')
elif layers == 101:
cardinality = 32
reduction_ratio = 16
depth = [3, 4, 23, 3]
num_filters = [128, 256, 512, 1024]
self.conv0 = ConvBNLayer(
self.full_name(),
num_channels=3,
num_filters=3,
filter_size=7,
stride=2,
act='relu')
self.pool = Pool2D(
self.full_name(),
pool_size=3,
pool_stride=2,
pool_padding=1,
pool_type='max')
elif layers == 152:
cardinality = 64
reduction_ratio = 16
depth = [3, 8, 36, 3]
num_filters = [128, 256, 512, 1024]
self.conv0 = ConvBNLayer(
self.full_name(),
num_channels=3,
num_filters=3,
filter_size=7,
stride=2,
act='relu')
self.conv1 = ConvBNLayer(
self.full_name(),
num_channels=64,
num_filters=3,
filter_size=7,
stride=2,
act='relu')
self.conv2 = ConvBNLayer(
self.full_name(),
num_channels=64,
num_filters=3,
filter_size=7,
stride=2,
act='relu')
self.pool = Pool2D(
self.full_name(),
pool_size=3,
pool_stride=2,
pool_padding=1,
pool_type='max')
self.bottleneck_block_list = []
num_channels = 64
for block in range(len(depth)):
shortcut = False
for i in range(depth[block]):
bottleneck_block = self.add_sublayer(
'bb_%d_%d' % (block, i),
BottleneckBlock(
self.full_name(),
num_channels=num_channels,
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
cardinality=cardinality,
reduction_ratio=reduction_ratio,
shortcut=shortcut))
num_channels = bottleneck_block._num_channels_out
self.bottleneck_block_list.append(bottleneck_block)
shortcut = True
self.pool2d_avg = Pool2D(
self.full_name(), pool_size=7, pool_type='avg', global_pooling=True)
import math
stdv = 1.0 / math.sqrt(2048 * 1.0)
self.fc = FC(self.full_name(),
size=class_dim,
act='softmax',
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv)))
def forward(self, inputs, label):
if self.layers == 50 or self.layers == 101:
y = self.conv0(inputs)
y = self.pool(y)
elif self.layers == 152:
y = self.conv0(inputs)
y = self.conv1(inputs)
y = self.conv2(inputs)
y = self.pool(y)
for bottleneck_block in self.bottleneck_block_list:
y = bottleneck_block(y)
y = self.pool2d_avg(y)
y = fluid.layers.dropout(y, dropout_prob=0.2, seed=1)
cost = self.fc(y)
loss = fluid.layers.cross_entropy(cost, label)
avg_loss = fluid.layers.mean(loss)
return avg_loss
class TestSeResNeXt(TestParallelDyGraphRunnerBase):
def get_model(self):
model = SeResNeXt("se-resnext")
train_reader = paddle.batch(
paddle.dataset.flowers.test(use_xmap=False),
batch_size=2,
drop_last=True)
opt = fluid.optimizer.SGD(learning_rate=1e-3)
return model, train_reader, opt
def run_one_loop(self, model, opt, data):
bs = len(data)
dy_x_data = np.array([x[0].reshape(3, 224, 224)
for x in data]).astype('float32')
y_data = np.array([x[1] for x in data]).astype('int64').reshape(bs, 1)
img = to_variable(dy_x_data)
label = to_variable(y_data)
label.stop_gradient = True
loss = model(img, label)
return loss
if __name__ == "__main__":
runtime_main(TestSeResNeXt)
......@@ -31,7 +31,7 @@ import paddle.fluid.dygraph as dygraph
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph.parallel import DataParallel
RUN_STEP = 10
RUN_STEP = 5
DEFAULT_BATCH_SIZE = 2
......@@ -200,6 +200,7 @@ class TestParallelDyGraphRunnerBase(object):
"train_one_loop should be implemented by the child classes.")
def run_trainer(self, args):
seed = 90
device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
place = fluid.CUDAPlace(device_id)
......@@ -217,32 +218,35 @@ class TestParallelDyGraphRunnerBase(object):
with fluid.dygraph.guard(place):
fluid.default_startup_program().random_seed = seed
fluid.default_main_program().random_seed = seed
np.random.seed(seed)
import random
random.seed = seed
model, train_reader, opt = self.get_model()
nranks = len(args.endpoints.split(",")) if args.endpoints else 1
if args.update_method == "nccl2":
sys.stderr.write("")
model = dygraph.parallel.DataParallel(model)
strategy = dygraph.parallel.ParallelStrategy()
strategy.nranks = nranks
strategy.local_rank = args.trainer_id
strategy.trainer_endpoints = args.endpoints.split(",")
strategy.current_endpoint = args.current_endpoint
dygraph.parallel.prepare_context(strategy)
model = dygraph.parallel.DataParallel(model, strategy)
out_losses = []
for step_id, data in enumerate(train_reader()):
data = _get_data(data)
if step_id == RUN_STEP:
break
loss = self.run_one_loop(model, opt, data)
out_losses.append(loss.numpy())
# FIXME(Yancey1989): scale the loss inplace
loss.stop_gradient = True
loss_scale = to_variable(np.array([nranks]).astype("float32"))
loss = loss / loss_scale
if args.update_method == "nccl2":
loss = model.scale_loss(loss)
out_losses.append(loss.numpy())
loss.backward()
if args.update_method == "nccl2":
model.apply_collective_grads()
opt.minimize(loss)
model.clear_gradients()
......@@ -663,9 +667,6 @@ class TestDistBase(unittest.TestCase):
local_loss = local_losses[step_id]
tr0_loss = tr0_losses[step_id]
tr1_loss = tr1_losses[step_id]
dist_loss = (np.array([tr0_loss]) + np.array([tr1_loss]))
if not self._dygraph:
# Parallel DyGraph already scaled the loss in training
dist_loss = dist_loss / 2
dist_loss = (np.array([tr0_loss]) + np.array([tr1_loss])) / 2
print("=======", local_loss, ":", dist_loss[0], "=======")
self.assertAlmostEqual(local_loss, dist_loss[0], delta=delta)
......@@ -15,6 +15,7 @@
from __future__ import print_function
import unittest
from test_dist_base import TestDistBase
import paddle.fluid as fluid
class TestParallelDygraphMnist(TestDistBase):
......@@ -24,8 +25,8 @@ class TestParallelDygraphMnist(TestDistBase):
self._dygraph = True
def test_mnist(self):
self.check_with_place(
"parallel_dygraph_mnist.py", delta=1e-5, check_error_log=True)
if fluid.core.is_compiled_with_cuda():
self.check_with_place("parallel_dygraph_mnist.py", delta=1e-5)
if __name__ == "__main__":
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
from test_dist_base import TestDistBase
import paddle.fluid as fluid
class TestParallelDygraphSeResNeXt(TestDistBase):
def _setup_config(self):
self._sync_mode = False
self._nccl2_mode = True
self._dygraph = True
def test_se_resnext(self):
# TODO(Yancey1989): BN and Dropout is related with batchsize, so the delta is the 1,
# try to remove the BN and Dropout in the network and using delta = 1e-5
if fluid.core.is_compiled_with_cuda():
self.check_with_place("parallel_dygraph_se_resnext.py", delta=1)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册