From 01f606b4f1ca3e184a59111084ed460ee0798a5a Mon Sep 17 00:00:00 2001 From: Xiaoxu Chen Date: Sun, 30 Jan 2022 23:52:58 +0800 Subject: [PATCH] add multinomial probability distribution (#38820) * add multinomial probability distribution * fix categorical sample bug when logits less than zero * fix categorical sample can't pass hypothesis test and entropy shape error bug --- python/paddle/distribution/__init__.py | 4 +- python/paddle/distribution/beta.py | 47 +++-- python/paddle/distribution/categorical.py | 82 ++++---- python/paddle/distribution/dirichlet.py | 50 +++-- python/paddle/distribution/distribution.py | 28 ++- .../paddle/distribution/exponential_family.py | 2 + python/paddle/distribution/kl.py | 22 ++- python/paddle/distribution/multinomial.py | 184 ++++++++++++++++++ .../test_distribution_categorical.py | 2 +- .../test_distribution_multinomial.py | 139 +++++++++++++ .../test_distribution_multinomial_static.py | 168 ++++++++++++++++ 11 files changed, 644 insertions(+), 84 deletions(-) create mode 100644 python/paddle/distribution/multinomial.py create mode 100644 python/paddle/fluid/tests/unittests/distribution/test_distribution_multinomial.py create mode 100644 python/paddle/fluid/tests/unittests/distribution/test_distribution_multinomial_static.py diff --git a/python/paddle/distribution/__init__.py b/python/paddle/distribution/__init__.py index 6bc9048a1d..334b0d4a3a 100644 --- a/python/paddle/distribution/__init__.py +++ b/python/paddle/distribution/__init__.py @@ -18,6 +18,7 @@ from .dirichlet import Dirichlet from .distribution import Distribution from .exponential_family import ExponentialFamily from .kl import kl_divergence, register_kl +from .multinomial import Multinomial from .normal import Normal from .uniform import Uniform @@ -27,8 +28,9 @@ __all__ = [ # noqa 'Dirichlet', 'Distribution', 'ExponentialFamily', + 'Multinomial', 'Normal', 'Uniform', 'kl_divergence', - 'register_kl' + 'register_kl', ] diff --git a/python/paddle/distribution/beta.py b/python/paddle/distribution/beta.py index 057dff2866..82f3dced10 100644 --- a/python/paddle/distribution/beta.py +++ b/python/paddle/distribution/beta.py @@ -21,7 +21,14 @@ from .exponential_family import ExponentialFamily class Beta(ExponentialFamily): r""" - Beta distribution parameterized by alpha and beta + Beta distribution parameterized by alpha and beta. + + In probability theory and statistics, the beta distribution is a family of + continuous probability distributions defined on the interval [0, 1] + parameterized by two positive shape parameters, denoted by alpha and beta, + that appear as exponents of the random variable and control the shape of + the distribution. The generalization to multiple variables is called a + Dirichlet distribution. The probability density function (pdf) is @@ -37,8 +44,14 @@ class Beta(ExponentialFamily): Args: - alpha (float|Tensor): alpha parameter of beta distribution, positive(>0). - beta (float|Tensor): beta parameter of beta distribution, positive(>0). + alpha (float|Tensor): Alpha parameter. It supports broadcast semantics. + The value of alpha must be positive. When the parameter is a tensor, + it represents multiple independent distribution with + a batch_shape(refer to ``Distribution`` ). + beta (float|Tensor): Beta parameter. It supports broadcast semantics. + The value of beta must be positive(>0). When the parameter is tensor, + it represent multiple independent distribution with + a batch_shape(refer to ``Distribution`` ). Examples: @@ -86,56 +99,56 @@ class Beta(ExponentialFamily): @property def mean(self): - """mean of beta distribution. + """Mean of beta distribution. """ return self.alpha / (self.alpha + self.beta) @property def variance(self): - """variance of beat distribution + """Variance of beat distribution """ sum = self.alpha + self.beta return self.alpha * self.beta / (sum.pow(2) * (sum + 1)) def prob(self, value): - """probability density funciotn evaluated at value + """Probability density funciotn evaluated at value Args: - value (Tensor): value to be evaluated. + value (Tensor): Value to be evaluated. Returns: - Tensor: probability. + Tensor: Probability. """ return paddle.exp(self.log_prob(value)) def log_prob(self, value): - """log probability density funciton evaluated at value + """Log probability density funciton evaluated at value Args: - value (Tensor): value to be evaluated + value (Tensor): Value to be evaluated Returns: - Tensor: log probability. + Tensor: Log probability. """ return self._dirichlet.log_prob(paddle.stack([value, 1.0 - value], -1)) def sample(self, shape=()): - """sample from beta distribution with sample shape. + """Sample from beta distribution with sample shape. Args: - shape (Sequence[int], optional): sample shape. + shape (Sequence[int], optional): Sample shape. Returns: - sampled data with shape `sample_shape` + `batch_shape` + `event_shape`. + Sampled data with shape `sample_shape` + `batch_shape` + `event_shape`. """ shape = shape if isinstance(shape, tuple) else tuple(shape) - return paddle.squeeze(self._dirichlet.sample(shape)[..., 0]) + return paddle.squeeze(self._dirichlet.sample(shape)[..., 0], axis=-1) def entropy(self): - """entropy of dirichlet distribution + """Entropy of dirichlet distribution Returns: - Tensor: entropy. + Tensor: Entropy. """ return self._dirichlet.entropy() diff --git a/python/paddle/distribution/categorical.py b/python/paddle/distribution/categorical.py index 151e060e29..8cce6a54a3 100644 --- a/python/paddle/distribution/categorical.py +++ b/python/paddle/distribution/categorical.py @@ -1,11 +1,11 @@ # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. -# +# # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at -# +# # http://www.apache.org/licenses/LICENSE-2.0 -# +# # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. @@ -16,6 +16,7 @@ import math import warnings import numpy as np +import paddle from paddle import _C_ops from ..fluid import core @@ -123,7 +124,7 @@ class Categorical(Distribution): Returns: Tensor: A tensor with prepended dimensions shape. - + Examples: .. code-block:: python @@ -153,14 +154,22 @@ class Categorical(Distribution): logits_shape = list(self.logits.shape) if len(logits_shape) > 1: sample_shape = shape + logits_shape[:-1] - logits = nn.reshape(self.logits, - [np.prod(logits_shape[:-1]), logits_shape[-1]]) + logits = paddle.reshape( + self.logits, [np.prod(logits_shape[:-1]), logits_shape[-1]]) else: sample_shape = shape logits = self.logits - sample_index = multinomial(logits, num_samples, True) - return nn.reshape(sample_index, sample_shape, name=name) + sample_index = multinomial( + self._logits_to_probs(logits), num_samples, True) + + # multinomial sample shape is (logits.shape[:-1], num_samples), need to + # tanspose to (num_samples, logits.shape[:-1]) + permute = list(range(sample_index.dim())) + permute.insert(0, permute.pop(-1)) + sample_index = sample_index.transpose(permute) + + return paddle.reshape(sample_index, sample_shape, name=name) def kl_divergence(self, other): """The KL-divergence between two Categorical distributions. @@ -170,7 +179,7 @@ class Categorical(Distribution): Returns: Tensor: kl-divergence between two Categorical distributions. - + Examples: .. code-block:: python @@ -200,19 +209,20 @@ class Categorical(Distribution): if not in_dygraph_mode(): check_type(other, 'other', Categorical, 'kl_divergence') - logits = self.logits - nn.reduce_max(self.logits, dim=-1, keep_dim=True) - other_logits = other.logits - nn.reduce_max( - other.logits, dim=-1, keep_dim=True) + logits = self.logits - \ + paddle.max(self.logits, axis=-1, keepdim=True) + other_logits = other.logits - paddle.max( + other.logits, axis=-1, keepdim=True) e_logits = ops.exp(logits) other_e_logits = ops.exp(other_logits) - z = nn.reduce_sum(e_logits, dim=-1, keep_dim=True) - other_z = nn.reduce_sum(other_e_logits, dim=-1, keep_dim=True) + z = paddle.sum(e_logits, axis=-1, keepdim=True) + other_z = paddle.sum(other_e_logits, axis=-1, keepdim=True) prob = e_logits / z - kl = nn.reduce_sum( - prob * (logits - nn.log(z) - other_logits + nn.log(other_z)), - dim=-1, - keep_dim=True, - name=name) + kl = paddle.sum(prob * ( + logits - paddle.log(z) - other_logits + paddle.log(other_z)), + axis=-1, + keepdim=True, + name=name) return kl @@ -221,7 +231,7 @@ class Categorical(Distribution): Returns: Tensor: Shannon entropy of Categorical distribution. The data type is float32. - + Examples: .. code-block:: python @@ -241,14 +251,14 @@ class Categorical(Distribution): """ name = self.name + '_entropy' - logits = self.logits - nn.reduce_max(self.logits, dim=-1, keep_dim=True) + logits = self.logits - \ + paddle.max(self.logits, axis=-1, keepdim=True) e_logits = ops.exp(logits) - z = nn.reduce_sum(e_logits, dim=-1, keep_dim=True) + z = paddle.sum(e_logits, axis=-1, keepdim=True) prob = e_logits / z - neg_entropy = nn.reduce_sum( - prob * (logits - nn.log(z)), dim=-1, keep_dim=True) - entropy = nn.scale(neg_entropy, scale=-1.0, name=name) + neg_entropy = paddle.sum(prob * (logits - paddle.log(z)), axis=-1) + entropy = paddle.scale(neg_entropy, scale=-1.0, name=name) return entropy def probs(self, value): @@ -266,7 +276,7 @@ class Categorical(Distribution): Returns: Tensor: probability according to the category index. - + Examples: .. code-block:: python @@ -288,33 +298,33 @@ class Categorical(Distribution): """ name = self.name + '_probs' - dist_sum = nn.reduce_sum(self.logits, dim=-1, keep_dim=True) + dist_sum = paddle.sum(self.logits, axis=-1, keepdim=True) prob = self.logits / dist_sum shape = list(prob.shape) value_shape = list(value.shape) if len(shape) == 1: num_value_in_one_dist = np.prod(value_shape) - index_value = nn.reshape(value, [num_value_in_one_dist, 1]) + index_value = paddle.reshape(value, [num_value_in_one_dist, 1]) index = index_value else: num_dist = np.prod(shape[:-1]) num_value_in_one_dist = value_shape[-1] - prob = nn.reshape(prob, [num_dist, shape[-1]]) + prob = paddle.reshape(prob, [num_dist, shape[-1]]) if len(value_shape) == 1: value = nn.expand(value, [num_dist]) value_shape = shape[:-1] + value_shape - index_value = nn.reshape(value, [num_dist, -1, 1]) + index_value = paddle.reshape(value, [num_dist, -1, 1]) if shape[:-1] != value_shape[:-1]: raise ValueError( "shape of value {} must match shape of logits {}".format( str(value_shape[:-1]), str(shape[:-1]))) - index_prefix = nn.unsqueeze( + index_prefix = paddle.unsqueeze( arange( - num_dist, dtype=index_value.dtype), axes=-1) + num_dist, dtype=index_value.dtype), axis=-1) index_prefix = nn.expand(index_prefix, [1, num_value_in_one_dist]) - index_prefix = nn.unsqueeze(index_prefix, axes=-1) + index_prefix = paddle.unsqueeze(index_prefix, axis=-1) if index_value.dtype != index_prefix.dtype: tensor.cast(index_prefix, dtype=index_value.dtype) @@ -322,7 +332,7 @@ class Categorical(Distribution): # value is the category index to search for the corresponding probability. select_prob = gather_nd(prob, index) - return nn.reshape(select_prob, value_shape, name=name) + return paddle.reshape(select_prob, value_shape, name=name) def log_prob(self, value): """Log probabilities of the given category. Refer to ``probs`` method. @@ -332,7 +342,7 @@ class Categorical(Distribution): Returns: Tensor: Log probability. - + Examples: .. code-block:: python @@ -354,4 +364,4 @@ class Categorical(Distribution): """ name = self.name + '_log_prob' - return nn.log(self.probs(value), name=name) + return paddle.log(self.probs(value), name=name) diff --git a/python/paddle/distribution/dirichlet.py b/python/paddle/distribution/dirichlet.py index 2ef38a5a52..99f2e3b5a5 100644 --- a/python/paddle/distribution/dirichlet.py +++ b/python/paddle/distribution/dirichlet.py @@ -22,23 +22,37 @@ from .exponential_family import ExponentialFamily class Dirichlet(ExponentialFamily): r""" - Dirichlet distribution with parameter concentration + Dirichlet distribution with parameter "concentration". The Dirichlet distribution is defined over the `(k-1)-simplex` using a positive, lenght-k vector concentration(`k > 1`). The Dirichlet is identically the Beta distribution when `k = 2`. + For independent and identically distributed continuous random variable + :math:`\boldsymbol X \in R_k` , and support + :math:`\boldsymbol X \in (0,1), ||\boldsymbol X|| = 1` , The probability density function (pdf) is .. math:: + + f(\boldsymbol X; \boldsymbol \alpha) = \frac{1}{B(\boldsymbol \alpha)} \prod_{i=1}^{k}x_i^{\alpha_i-1} - f(x_1,...,x_k; \alpha_1,...,\alpha_k) = \frac{1}{B(\alpha)} \prod_{i=1}^{k}x_i^{\alpha_i-1} + where :math:`\boldsymbol \alpha = {\alpha_1,...,\alpha_k}, k \ge 2` is + parameter, the normalizing constant is the multivariate beta function. - The normalizing constant is the multivariate beta function. + .. math:: + + B(\boldsymbol \alpha) = \frac{\prod_{i=1}^{k} \Gamma(\alpha_i)}{\Gamma(\alpha_0)} + + :math:`\alpha_0=\sum_{i=1}^{k} \alpha_i` is the sum of parameters, + :math:`\Gamma(\alpha)` is gamma function. Args: - concentration (Tensor): concentration parameter of dirichlet - distribution + concentration (Tensor): "Concentration" parameter of dirichlet + distribution, also called :math:`\alpha`. When it's over one + dimension, the last axis denotes the parameter of distribution, + ``event_shape=concentration.shape[-1:]`` , axes other than last are + condsider batch dimensions with ``batch_shape=concentration.shape[:-1]`` . Examples: @@ -68,59 +82,59 @@ class Dirichlet(ExponentialFamily): @property def mean(self): - """mean of Dirichelt distribution. + """Mean of Dirichelt distribution. Returns: - mean value of distribution. + Mean value of distribution. """ return self.concentration / self.concentration.sum(-1, keepdim=True) @property def variance(self): - """variance of Dirichlet distribution. + """Variance of Dirichlet distribution. Returns: - variance value of distribution. + Variance value of distribution. """ concentration0 = self.concentration.sum(-1, keepdim=True) return (self.concentration * (concentration0 - self.concentration)) / ( concentration0.pow(2) * (concentration0 + 1)) def sample(self, shape=()): - """sample from dirichlet distribution. + """Sample from dirichlet distribution. Args: - shape (Sequence[int], optional): sample shape. Defaults to empty tuple. + shape (Sequence[int], optional): Sample shape. Defaults to empty tuple. """ shape = shape if isinstance(shape, tuple) else tuple(shape) return _dirichlet(self.concentration.expand(self._extend_shape(shape))) def prob(self, value): - """Probability density function(pdf) evaluated at value. + """Probability density function(PDF) evaluated at value. Args: - value (Tensor): value to be evaluated. + value (Tensor): Value to be evaluated. Returns: - pdf evaluated at value. + PDF evaluated at value. """ return paddle.exp(self.log_prob(value)) def log_prob(self, value): - """log of probability densitiy function. + """Log of probability densitiy function. Args: - value (Tensor): value to be evaluated. + value (Tensor): Value to be evaluated. """ return ((paddle.log(value) * (self.concentration - 1.0) ).sum(-1) + paddle.lgamma(self.concentration.sum(-1)) - paddle.lgamma(self.concentration).sum(-1)) def entropy(self): - """entropy of Dirichlet distribution. + """Entropy of Dirichlet distribution. Returns: - entropy of distribution. + Entropy of distribution. """ concentration0 = self.concentration.sum(-1) k = self.concentration.shape[-1] diff --git a/python/paddle/distribution/distribution.py b/python/paddle/distribution/distribution.py index 9ba35cc4d3..53de525498 100644 --- a/python/paddle/distribution/distribution.py +++ b/python/paddle/distribution/distribution.py @@ -25,6 +25,7 @@ import math import warnings import numpy as np +import paddle from paddle import _C_ops from ..fluid import core @@ -102,7 +103,13 @@ class Distribution(object): raise NotImplementedError def probs(self, value): - """Probability density/mass function.""" + """Probability density/mass function. + + .. note:: + + This method will be deprecated in the future, please use `prob` + instead. + """ raise NotImplementedError def _extend_shape(self, sample_shape): @@ -212,3 +219,22 @@ class Distribution(object): ) return tensor.cast(value, dtype=param.dtype) return value + + def _probs_to_logits(self, probs, is_binary=False): + r""" + Converts probabilities into logits. For the binary, probs denotes the + probability of occurrence of the event indexed by `1`. For the + multi-dimensional, values of last axis denote the probabilities of + occurrence of each of the events. + """ + return (paddle.log(probs) - paddle.log1p(-probs)) \ + if is_binary else paddle.log(probs) + + def _logits_to_probs(self, logits, is_binary=False): + r""" + Converts logits into probabilities. For the binary, each value denotes + log odds, whereas for the multi-dimensional case, the values along the + last dimension denote the log probabilities of the events. + """ + return paddle.nn.functional.sigmoid(logits) \ + if is_binary else paddle.nn.functional.softmax(logits, axis=-1) diff --git a/python/paddle/distribution/exponential_family.py b/python/paddle/distribution/exponential_family.py index 0ce743efe8..cea8c5970d 100644 --- a/python/paddle/distribution/exponential_family.py +++ b/python/paddle/distribution/exponential_family.py @@ -33,6 +33,8 @@ class ExponentialFamily(Distribution): where :math:`\theta` denotes the natural parameters, :math:`t(x)` denotes the sufficient statistic, :math:`F(\theta)` is the log normalizer function for a given family and :math:`k(x)` is the carrier measure. + + Distribution belongs to exponential family referring to https://en.wikipedia.org/wiki/Exponential_family """ @property diff --git a/python/paddle/distribution/kl.py b/python/paddle/distribution/kl.py index ff6a8cde45..50a76abce5 100644 --- a/python/paddle/distribution/kl.py +++ b/python/paddle/distribution/kl.py @@ -43,10 +43,7 @@ def kl_divergence(p, q): q (Distribution): ``Distribution`` object. Returns: - Tensor: batchwise KL-divergence between distribution p and q. - - Raises: - NotImplementedError: can't find register function for KL(p||Q). + Tensor: Batchwise KL-divergence between distribution p and q. Examples: @@ -68,9 +65,15 @@ def kl_divergence(p, q): def register_kl(cls_p, cls_q): """Decorator for register a KL divergence implemention function. + The ``kl_divergence(p, q)`` function will search concrete implemention + functions registered by ``register_kl``, according to multi-dispatch pattern. + If an implemention function is found, it will return the result, otherwise, + it will raise ``NotImplementError`` exception. Users can register + implemention funciton by the decorator. + Args: - cls_p(Distribution): subclass derived from ``Distribution``. - cls_q(Distribution): subclass derived from ``Distribution``. + cls_p(Distribution): Subclass derived from ``Distribution``. + cls_q(Distribution): Subclass derived from ``Distribution``. Examples: .. code-block:: python @@ -93,7 +96,7 @@ def register_kl(cls_p, cls_q): def _dispatch(cls_p, cls_q): - """multiple dispatch into concrete implement function""" + """Multiple dispatch into concrete implement function""" # find all matched super class pair of p and q matchs = [(super_p, super_q) for super_p, super_q in _REGISTER_TABLE @@ -167,8 +170,7 @@ def _kl_uniform_uniform(p, q): @register_kl(ExponentialFamily, ExponentialFamily) def _kl_expfamily_expfamily(p, q): - """compute kl-divergence using `Bregman divergences` - https://www.lix.polytechnique.fr/~nielsen/EntropyEF-ICIP2010.pdf + """Compute kl-divergence using `Bregman divergences `_ """ if not type(p) == type(q): raise NotImplementedError @@ -205,5 +207,5 @@ def _kl_expfamily_expfamily(p, q): def _sum_rightmost(value, n): - """sum value along rightmost n dim""" + """Sum elements along rightmost n dim""" return value.sum(list(range(-n, 0))) if n > 0 else value diff --git a/python/paddle/distribution/multinomial.py b/python/paddle/distribution/multinomial.py new file mode 100644 index 0000000000..c4110040fd --- /dev/null +++ b/python/paddle/distribution/multinomial.py @@ -0,0 +1,184 @@ +# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import collections + +import paddle +from paddle.distribution import categorical, distribution + + +class Multinomial(distribution.Distribution): + r""" + Multinomial distribution parameterized by :attr:`total_count` and + :attr:`probs`. + + In probability theory, the multinomial distribution is a generalization of + the binomial distribution, it models the probability of counts for each side + of a k-sided die rolled n times. When k is 2 and n is 1, the multinomial is + the bernoulli distribution, when k is 2 and n is grater than 1, it is the + binomial distribution, when k is grater than 2 and n is 1, it is the + categorical distribution. + + The probability mass function (PMF) for multinomial is + + .. math:: + + f(x_1, ..., x_k; n, p_1,...,p_k) = \frac{n!}{x_1!...x_k!}p_1^{x_1}...p_k^{x_k} + + where, :math:`n` is number of trials, k is the number of categories, + :math:`p_i` denote probability of a trial falling into each category, + :math:`{\textstyle \sum_{i=1}^{k}p_i=1}, p_i \ge 0`, and :math:`x_i` denote + count of each category. + + Args: + total_count (int): Number of trials. + probs (Tensor): Probability of a trial falling into each category. Last + axis of probs indexes over categories, other axes index over batches. + Probs value should between [0, 1], and sum to 1 along last axis. If + the value over 1, it will be normalized to sum to 1 along the last + axis. + + Examples: + + .. code-block:: python + + import paddle + + multinomial = paddle.distribution.Multinomial(10, paddle.to_tensor([0.2, 0.3, 0.5])) + print(multinomial.sample((2, 3))) + # Tensor(shape=[2, 3, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True, + # [[[1., 4., 5.], + # [0., 2., 8.], + # [2., 4., 4.]], + + # [[1., 6., 3.], + # [3., 3., 4.], + # [3., 4., 3.]]]) + """ + + def __init__(self, total_count, probs): + if not isinstance(total_count, int) or total_count < 1: + raise ValueError( + 'input parameter total_count must be int type and grater than zero.' + ) + + if probs.dim() < 1: + raise ValueError( + 'probs parameter shoule not be none and over one dimension') + + self.probs = probs / probs.sum(-1, keepdim=True) + self.total_count = total_count + self._categorical = categorical.Categorical( + logits=self._probs_to_logits(probs)) + + super(Multinomial, self).__init__(probs.shape[:-1], probs.shape[-1:]) + + @property + def mean(self): + """mean of multinomial distribuion. + + Returns: + Tensor: mean value. + """ + return self.probs * self.total_count + + @property + def variance(self): + """variance of multinomial distribution. + + Returns: + Tensor: variance value. + """ + return self.total_count * self.probs * (1 - self.probs) + + def prob(self, value): + """probability mass function evaluated at value. + + Args: + value (Tensor): value to be evaluated. + + Returns: + Tensor: probability of value. + """ + return paddle.exp(self.log_prob(value)) + + def log_prob(self, value): + """probability mass function evaluated at value + + Args: + value (Tensor): value to be evaluated. + + Returns: + Tensor: probability of value. + """ + if paddle.is_integer(value): + value = paddle.cast(value, self.probs.dtype) + + logits, value = paddle.broadcast_tensors( + [paddle.log(self.probs), value]) + logits[(value == 0) & (paddle.isinf(logits))] = 0 + + return (paddle.lgamma(value.sum(-1) + 1) - + paddle.lgamma(value + 1).sum(-1) + (value * logits).sum(-1)) + + def sample(self, shape=()): + """draw sample data from multinomial distribution + + Args: + sample_shape (tuple, optional): [description]. Defaults to (). + """ + if not isinstance(shape, collections.Iterable): + raise TypeError('sample shape must be Iterable object.') + + samples = self._categorical.sample([self.total_count, ] + list(shape)) + return paddle.nn.functional.one_hot( + samples, self.probs.shape[-1]).cast(self.probs.dtype).sum(0) + + def entropy(self): + """entropy of multinomial distribution + + Returns: + Tensor: entropy value + """ + n = paddle.full( + shape=[1], fill_value=self.total_count, dtype=self.probs.dtype) + support = paddle.arange( + self.total_count + 1, dtype=self.probs.dtype).reshape((-1, ) + ( + 1, ) * len(self.probs.shape))[1:] + + binomial_pmf = paddle.exp(self._binomial_logpmf(n, support)) + + return ((n * self._categorical.entropy() - paddle.lgamma(n + 1)) + ( + (binomial_pmf * paddle.lgamma(support + 1)).sum([0, -1]))) + + def _binomial_logpmf(self, count, value): + logits = self._probs_to_logits(self.probs, is_binary=True) + + factor_n = paddle.lgamma(count + 1) + factor_k = paddle.lgamma(value + 1) + factor_nmk = paddle.lgamma(count - value + 1) + + norm = (count * _clip_by_zero(logits) + count * + paddle.log1p(paddle.exp(-paddle.abs(logits))) - factor_n) + + return value * logits - factor_k - factor_nmk - norm + + +def _binomial_support(count, dtype): + return paddle.arange(count + 1, dtype=dtype) + + +def _clip_by_zero(x): + # like clip(x, min=0) but grad at 0 is 0.5 + return (x.clip(min=0) + x - x.clip(max=0)) / 2 diff --git a/python/paddle/fluid/tests/unittests/distribution/test_distribution_categorical.py b/python/paddle/fluid/tests/unittests/distribution/test_distribution_categorical.py index 5f3f5e2a93..d92ec52eda 100644 --- a/python/paddle/fluid/tests/unittests/distribution/test_distribution_categorical.py +++ b/python/paddle/fluid/tests/unittests/distribution/test_distribution_categorical.py @@ -33,7 +33,7 @@ class CategoricalNumpy(DistributionNumpy): e_logits = np.exp(logits) z = np.sum(e_logits, axis=-1, keepdims=True) prob = e_logits / z - return -1. * np.sum(prob * (logits - np.log(z)), axis=-1, keepdims=True) + return -1. * np.sum(prob * (logits - np.log(z)), axis=-1) def kl_divergence(self, other): logits = self.logits - np.max(self.logits, axis=-1, keepdims=True) diff --git a/python/paddle/fluid/tests/unittests/distribution/test_distribution_multinomial.py b/python/paddle/fluid/tests/unittests/distribution/test_distribution_multinomial.py new file mode 100644 index 0000000000..bff723dfa2 --- /dev/null +++ b/python/paddle/fluid/tests/unittests/distribution/test_distribution_multinomial.py @@ -0,0 +1,139 @@ +# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import unittest + +import numpy as np +import paddle +import scipy.stats + +import config + + +@config.place(config.DEVICES) +@config.parameterize((config.TEST_CASE_NAME, 'total_count', 'probs'), [ + ('one-dim', 10, config.xrand((3, ))), + ('multi-dim', 9, config.xrand((10, 20))), + ('prob-sum-one', 10, np.array([0.5, 0.2, 0.3])), + ('prob-sum-non-one', 10, np.array([2., 3., 5.])), +]) +class TestMultinomial(unittest.TestCase): + def setUp(self): + self._dist = paddle.distribution.Multinomial( + total_count=self.total_count, probs=paddle.to_tensor(self.probs)) + + def test_mean(self): + mean = self._dist.mean + self.assertEqual(mean.numpy().dtype, self.probs.dtype) + np.testing.assert_allclose( + mean, + self._np_mean(), + rtol=config.RTOL.get(str(self.probs.dtype)), + atol=config.ATOL.get(str(self.probs.dtype))) + + def test_variance(self): + var = self._dist.variance + self.assertEqual(var.numpy().dtype, self.probs.dtype) + np.testing.assert_allclose( + var, + self._np_variance(), + rtol=config.RTOL.get(str(self.probs.dtype)), + atol=config.ATOL.get(str(self.probs.dtype))) + + def test_entropy(self): + entropy = self._dist.entropy() + self.assertEqual(entropy.numpy().dtype, self.probs.dtype) + np.testing.assert_allclose( + entropy, + self._np_entropy(), + rtol=config.RTOL.get(str(self.probs.dtype)), + atol=config.ATOL.get(str(self.probs.dtype))) + + def test_sample(self): + sample_shape = () + samples = self._dist.sample(sample_shape) + self.assertEqual(samples.numpy().dtype, self.probs.dtype) + self.assertEqual( + tuple(samples.shape), + sample_shape + self._dist.batch_shape + self._dist.event_shape) + + sample_shape = (6, ) + samples = self._dist.sample(sample_shape) + self.assertEqual(samples.numpy().dtype, self.probs.dtype) + self.assertEqual( + tuple(samples.shape), + sample_shape + self._dist.batch_shape + self._dist.event_shape) + self.assertTrue( + np.all(samples.sum(-1).numpy() == self._dist.total_count)) + + sample_shape = (5000, ) + samples = self._dist.sample(sample_shape) + sample_mean = samples.mean(axis=0) + # Tolerance value 0.2 is empirical value which is consistent with + # TensorFlow + np.testing.assert_allclose( + sample_mean, self._dist.mean, atol=0, rtol=0.20) + + def _np_variance(self): + probs = self.probs / self.probs.sum(-1, keepdims=True) + return self.total_count * probs * (1 - probs) + + def _np_mean(self): + probs = self.probs / self.probs.sum(-1, keepdims=True) + return self.total_count * probs + + def _np_entropy(self): + probs = self.probs / self.probs.sum(-1, keepdims=True) + return scipy.stats.multinomial.entropy(self.total_count, probs) + + +@config.place(config.DEVICES) +@config.parameterize( + (config.TEST_CASE_NAME, 'total_count', 'probs', 'value'), + [ + ('value-float', 10, np.array([0.2, 0.3, 0.5]), np.array([2., 3., 5.])), + ('value-int', 10, np.array([0.2, 0.3, 0.5]), np.array([2, 3, 5])), + ('value-multi-dim', 10, np.array([[0.3, 0.7], [0.5, 0.5]]), + np.array([[4., 6], [8, 2]])), + # ('value-sum-non-n', 10, np.array([0.5, 0.2, 0.3]), np.array([4,5,2])), + ]) +class TestMultinomialPmf(unittest.TestCase): + def setUp(self): + self._dist = paddle.distribution.Multinomial( + total_count=self.total_count, probs=paddle.to_tensor(self.probs)) + + def test_prob(self): + np.testing.assert_allclose( + self._dist.prob(paddle.to_tensor(self.value)), + scipy.stats.multinomial.pmf(self.value, self.total_count, + self.probs), + rtol=config.RTOL.get(str(self.probs.dtype)), + atol=config.ATOL.get(str(self.probs.dtype))) + + +@config.place(config.DEVICES) +@config.parameterize((config.TEST_CASE_NAME, 'total_count', 'probs'), [ + ('total_count_le_one', 0, np.array([0.3, 0.7])), + ('total_count_float', np.array([0.3, 0.7])), + ('probs_zero_dim', np.array(0)), +]) +class TestMultinomialException(unittest.TestCase): + def TestInit(self): + with self.assertRaises(ValueError): + paddle.distribution.Multinomial(self.total_count, + paddle.to_tensor(self.probs)) + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/fluid/tests/unittests/distribution/test_distribution_multinomial_static.py b/python/paddle/fluid/tests/unittests/distribution/test_distribution_multinomial_static.py new file mode 100644 index 0000000000..2eb5b9769d --- /dev/null +++ b/python/paddle/fluid/tests/unittests/distribution/test_distribution_multinomial_static.py @@ -0,0 +1,168 @@ +# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import unittest + +import numpy as np +import paddle +import scipy.stats + +import config + +paddle.enable_static() + + +@config.place(config.DEVICES) +@config.parameterize((config.TEST_CASE_NAME, 'total_count', 'probs'), [ + ('one-dim', 5, config.xrand((3, ))), + ('multi-dim', 9, config.xrand((2, 3))), + ('prob-sum-one', 5, np.array([0.5, 0.2, 0.3])), + ('prob-sum-non-one', 5, np.array([2., 3., 5.])), +]) +class TestMultinomial(unittest.TestCase): + def setUp(self): + startup_program = paddle.static.Program() + main_program = paddle.static.Program() + executor = paddle.static.Executor(self.place) + with paddle.static.program_guard(main_program, startup_program): + probs = paddle.static.data('probs', self.probs.shape, + self.probs.dtype) + dist = paddle.distribution.Multinomial(self.total_count, probs) + mean = dist.mean + var = dist.variance + entropy = dist.entropy() + mini_samples = dist.sample(shape=(6, )) + large_samples = dist.sample(shape=(5000, )) + fetch_list = [mean, var, entropy, mini_samples, large_samples] + feed = {'probs': self.probs} + + executor.run(startup_program) + [ + self.mean, self.var, self.entropy, self.mini_samples, + self.large_samples + ] = executor.run(main_program, feed=feed, fetch_list=fetch_list) + + def test_mean(self): + self.assertEqual(str(self.mean.dtype).split('.')[-1], self.probs.dtype) + np.testing.assert_allclose( + self.mean, + self._np_mean(), + rtol=config.RTOL.get(str(self.probs.dtype)), + atol=config.ATOL.get(str(self.probs.dtype))) + + def test_variance(self): + self.assertEqual(str(self.var.dtype).split('.')[-1], self.probs.dtype) + np.testing.assert_allclose( + self.var, + self._np_variance(), + rtol=config.RTOL.get(str(self.probs.dtype)), + atol=config.ATOL.get(str(self.probs.dtype))) + + def test_entropy(self): + self.assertEqual( + str(self.entropy.dtype).split('.')[-1], self.probs.dtype) + np.testing.assert_allclose( + self.entropy, + self._np_entropy(), + rtol=config.RTOL.get(str(self.probs.dtype)), + atol=config.ATOL.get(str(self.probs.dtype))) + + def test_sample(self): + self.assertEqual( + str(self.mini_samples.dtype).split('.')[-1], self.probs.dtype) + self.assertTrue(np.all(self.mini_samples.sum(-1) == self.total_count)) + + sample_mean = self.large_samples.mean(axis=0) + np.testing.assert_allclose(sample_mean, self.mean, atol=0, rtol=0.20) + + def _np_variance(self): + probs = self.probs / self.probs.sum(-1, keepdims=True) + return self.total_count * probs * (1 - probs) + + def _np_mean(self): + probs = self.probs / self.probs.sum(-1, keepdims=True) + return self.total_count * probs + + def _np_entropy(self): + probs = self.probs / self.probs.sum(-1, keepdims=True) + return scipy.stats.multinomial.entropy(self.total_count, probs) + + +@config.place(config.DEVICES) +@config.parameterize( + (config.TEST_CASE_NAME, 'total_count', 'probs', 'value'), + [ + ('value-float', 5, np.array([0.2, 0.3, 0.5]), np.array([1., 1., 3.])), + ('value-int', 5, np.array([0.2, 0.3, 0.5]), np.array([2, 2, 1])), + ('value-multi-dim', 5, np.array([[0.3, 0.7], [0.5, 0.5]]), + np.array([[1., 4.], [2., 3.]])), + # ('value-sum-non-n', 10, np.array([0.5, 0.2, 0.3]), np.array([4,5,2])), + ]) +class TestMultinomialPmf(unittest.TestCase): + def setUp(self): + startup_program = paddle.static.Program() + main_program = paddle.static.Program() + executor = paddle.static.Executor(self.place) + + with paddle.static.program_guard(main_program, startup_program): + probs = paddle.static.data('probs', self.probs.shape, + self.probs.dtype) + value = paddle.static.data('value', self.value.shape, + self.value.dtype) + dist = paddle.distribution.Multinomial(self.total_count, probs) + pmf = dist.prob(value) + feed = {'probs': self.probs, 'value': self.value} + fetch_list = [pmf] + + executor.run(startup_program) + [self.pmf] = executor.run(main_program, + feed=feed, + fetch_list=fetch_list) + + def test_prob(self): + np.testing.assert_allclose( + self.pmf, + scipy.stats.multinomial.pmf(self.value, self.total_count, + self.probs), + rtol=config.RTOL.get(str(self.probs.dtype)), + atol=config.ATOL.get(str(self.probs.dtype))) + + +@config.place(config.DEVICES) +@config.parameterize((config.TEST_CASE_NAME, 'total_count', 'probs'), [ + ('total_count_le_one', 0, np.array([0.3, 0.7])), + ('total_count_float', np.array([0.3, 0.7])), + ('probs_zero_dim', np.array(0)), +]) +class TestMultinomialException(unittest.TestCase): + def setUp(self): + startup_program = paddle.static.Program() + self.main_program = paddle.static.Program() + self.executor = paddle.static.Executor(self.place) + + with paddle.static.program_guard(main_program, startup_program): + probs = paddle.static.data('probs', self.probs.shape, + self.probs.dtype) + dist = paddle.distribution.Multinomial(self.total_count, probs) + self.feed = {'probs': self.probs} + + executor.run(startup_program) + + def TestInit(self): + with self.assertRaises(ValueError): + self.executor.run(self.main_program, feed=self.feed, fetch=[]) + + +if __name__ == '__main__': + unittest.main() -- GitLab