From 0127e92d50860e4341b0f8a2fd19ca84bf2c2d9b Mon Sep 17 00:00:00 2001 From: heliqi Date: Fri, 10 Dec 2021 11:08:22 +0800 Subject: [PATCH] add fc_elementwise_layernorm_fuse_pass (#37771) * add fc_elementwise_layernorm_fuse_pass * fix name conflictn * rebuild CI * fix Ran Programs=0 bug --- paddle/fluid/framework/ir/CMakeLists.txt | 2 +- .../ir/fc_elementwise_layernorm_fuse_pass.cc | 7 + .../unittests/ir/inference/auto_scan_test.py | 34 +++-- ...ive_pool2d_convert_global_pass_autoscan.py | 2 +- ...test_fc_elementwise_layernorm_fuse_pass.py | 135 ++++++++++++++++++ tools/parallel_UT_rule.py | 4 +- 6 files changed, 167 insertions(+), 17 deletions(-) create mode 100644 python/paddle/fluid/tests/unittests/ir/inference/test_fc_elementwise_layernorm_fuse_pass.py diff --git a/paddle/fluid/framework/ir/CMakeLists.txt b/paddle/fluid/framework/ir/CMakeLists.txt index b98a228868..08055cd9a5 100644 --- a/paddle/fluid/framework/ir/CMakeLists.txt +++ b/paddle/fluid/framework/ir/CMakeLists.txt @@ -156,7 +156,7 @@ cc_test(test_seqpool_cvm_concat_fuse_pass SRCS seqpool_cvm_concat_fuse_pass_test cc_test(test_repeated_fc_relu_fuse_pass_cc SRCS repeated_fc_relu_fuse_pass_tester.cc DEPS repeated_fc_relu_fuse_pass framework_proto) cc_test(test_is_test_pass SRCS is_test_pass_tester.cc DEPS is_test_pass) cc_test(test_simplify_with_basic_ops_pass SRCS simplify_with_basic_ops_pass_tester.cc DEPS simplify_with_basic_ops_pass) -cc_test(test_fc_elementwise_layernorm_fuse_pass SRCS fc_elementwise_layernorm_fuse_pass_tester.cc DEPS fc_elementwise_layernorm_fuse_pass) +cc_test(test_fc_elementwise_layernorm_fuse_pass_cc SRCS fc_elementwise_layernorm_fuse_pass_tester.cc DEPS fc_elementwise_layernorm_fuse_pass) cc_test(test_skip_layernorm_fuse_pass SRCS skip_layernorm_fuse_pass_tester.cc DEPS skip_layernorm_fuse_pass) cc_test(test_multihead_matmul_fuse_pass SRCS multihead_matmul_fuse_pass_tester.cc DEPS multihead_matmul_fuse_pass) cc_test(test_conv_bn_fuse_pass_cc SRCS conv_bn_fuse_pass_tester.cc DEPS conv_bn_fuse_pass) diff --git a/paddle/fluid/framework/ir/fc_elementwise_layernorm_fuse_pass.cc b/paddle/fluid/framework/ir/fc_elementwise_layernorm_fuse_pass.cc index d3cf3319ad..0bf30c29f3 100644 --- a/paddle/fluid/framework/ir/fc_elementwise_layernorm_fuse_pass.cc +++ b/paddle/fluid/framework/ir/fc_elementwise_layernorm_fuse_pass.cc @@ -17,6 +17,7 @@ limitations under the License. */ #include #include "paddle/fluid/framework/ir/graph_pattern_detector.h" +#include "paddle/fluid/framework/op_version_registry.h" namespace paddle { namespace framework { @@ -338,3 +339,9 @@ void FCElementwiseLayerNormFusePass::ApplyImpl(ir::Graph *graph) const { REGISTER_PASS(fc_elementwise_layernorm_fuse_pass, paddle::framework::ir::FCElementwiseLayerNormFusePass); +REGISTER_PASS_CAPABILITY(fc_elementwise_layernorm_fuse_pass) + .AddCombination( + paddle::framework::compatible::OpVersionComparatorCombination() + .EQ("fc", 0) + .LE("elementwise_add", 1) + .EQ("layer_norm", 0)); diff --git a/python/paddle/fluid/tests/unittests/ir/inference/auto_scan_test.py b/python/paddle/fluid/tests/unittests/ir/inference/auto_scan_test.py index 33754fac12..c05ad30da2 100644 --- a/python/paddle/fluid/tests/unittests/ir/inference/auto_scan_test.py +++ b/python/paddle/fluid/tests/unittests/ir/inference/auto_scan_test.py @@ -322,14 +322,14 @@ class PassAutoScanTest(AutoScanTest): "Expected operator list after fusion is {}, but now it's {}".format( op_list_after_fusion, after_op_list), ) - def run_and_statis( - self, - quant=False, - max_examples=100, - reproduce=None, - min_success_num=25, - max_duration=180, - passes=None, ): + def run_and_statis(self, + quant=False, + max_examples=100, + reproduce=None, + min_success_num=25, + max_duration=180, + passes=None, + use_gpu_run_baseline=False): if os.getenv('HYPOTHESIS_TEST_PROFILE', 'ci') == "dev": max_examples *= 10 min_success_num *= 10 @@ -354,7 +354,10 @@ class PassAutoScanTest(AutoScanTest): return self.sample_program_config(draw) def run_test(prog_config): - return self.run_test(quant=quant, prog_configs=[prog_config]) + return self.run_test( + quant=quant, + prog_configs=[prog_config], + use_gpu_run_baseline=use_gpu_run_baseline) generator = st.composite(program_generator) loop_func = given(generator())(run_test) @@ -371,8 +374,8 @@ class PassAutoScanTest(AutoScanTest): logging.info("Number of Ran Programs: {}".format(self.num_ran_programs)) logging.info("Number of Ignore Tests: {}".format(self.num_ignore_tests)) successful_ran_programs = int(self.num_ran_programs - - self.num_ignore_tests / - self.num_predictor_kinds) + self.num_ignore_tests / max( + self.num_predictor_kinds, 1)) logging.info( "Number of successfully ran programs approximately equal to {}". format(successful_ran_programs)) @@ -391,7 +394,10 @@ class PassAutoScanTest(AutoScanTest): format(max_duration)) assert False - def run_test(self, quant=False, prog_configs=None): + def run_test(self, + quant=False, + prog_configs=None, + use_gpu_run_baseline=False): status = True for prog_config in prog_configs: @@ -413,7 +419,9 @@ class PassAutoScanTest(AutoScanTest): results: List[Dict[str, np.ndarray]] = [] # baseline: cpu no ir_optim run - base_config = self.create_inference_config(ir_optim=False) + + base_config = self.create_inference_config( + ir_optim=False, use_gpu=use_gpu_run_baseline) logging.info('RUN program_config: ' + str(prog_config)) results.append( self.run_test_config(model, params, prog_config, base_config, diff --git a/python/paddle/fluid/tests/unittests/ir/inference/test_adaptive_pool2d_convert_global_pass_autoscan.py b/python/paddle/fluid/tests/unittests/ir/inference/test_adaptive_pool2d_convert_global_pass_autoscan.py index 8cb6af1dcf..96c2a17520 100644 --- a/python/paddle/fluid/tests/unittests/ir/inference/test_adaptive_pool2d_convert_global_pass_autoscan.py +++ b/python/paddle/fluid/tests/unittests/ir/inference/test_adaptive_pool2d_convert_global_pass_autoscan.py @@ -109,7 +109,7 @@ class TestAdaptivePool2dConvertGlobalPass(PassAutoScanTest): def test(self): self.run_and_statis( quant=False, - max_examples=100, + max_examples=300, passes=["adaptive_pool2d_convert_global_pass"], min_success_num=40) diff --git a/python/paddle/fluid/tests/unittests/ir/inference/test_fc_elementwise_layernorm_fuse_pass.py b/python/paddle/fluid/tests/unittests/ir/inference/test_fc_elementwise_layernorm_fuse_pass.py new file mode 100644 index 0000000000..2ccb9de5d5 --- /dev/null +++ b/python/paddle/fluid/tests/unittests/ir/inference/test_fc_elementwise_layernorm_fuse_pass.py @@ -0,0 +1,135 @@ +# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from auto_scan_test import PassAutoScanTest, IgnoreReasons +from program_config import TensorConfig, ProgramConfig, OpConfig +import numpy as np +import paddle.inference as paddle_infer +from functools import partial +from typing import Optional, List, Callable, Dict, Any, Set +import unittest + +import hypothesis +from hypothesis import given, settings, seed, example, assume, reproduce_failure +import hypothesis.strategies as st + + +class TestFCElementwiseLayerNormFusePass(PassAutoScanTest): + """ + x_var w(persistable) bias_var(persistable) + \ | / + fc + | + fc_out_var bias_var(persistable) + \ / + elementwise_add bias_var(persistable) scale_var(persistable) + \ | / + layer_norm + / | \ + Y mean_var variance_var + """ + + def sample_predictor_configs(self, program_config): + # for gpu + config = self.create_inference_config(use_gpu=True) + yield config, ["fused_fc_elementwise_layernorm"], (1e-5, 1e-5) + + def sample_program_config(self, draw): + # 1. Generate shape of input:X of fc + x_shape = draw( + st.lists( + st.integers( + min_value=1, max_value=8), min_size=2, max_size=5)) + x_shape = [2, 1] + x_rank = len(x_shape) + # 2. Generate attr:in_num_col_dims of fc + in_num_col_dims = draw(st.integers(min_value=1, max_value=x_rank - 1)) + # 3. Generate legal shape of input:W/bias of fc + w_shape = draw( + st.lists( + st.integers( + min_value=1, max_value=8), min_size=2, max_size=2)) + w_shape[0] = int(np.prod(x_shape[in_num_col_dims:])) + w_shape = [1, 2] + fc_bias_shape = [w_shape[1], ] + if draw(st.booleans()): + fc_bias_shape.insert(0, 1) + fc_bias_shape = [2, ] + fc_out_shape = x_shape[:in_num_col_dims] + w_shape[1:] + # 4. Generate legal attr:axis/shape of elementwise_add + add_bias_shape = fc_out_shape[:] + axis = draw(st.integers(min_value=-1, max_value=0)) + # 5. Generate legal shape of layer_norm + begin_norm_axis = draw( + st.integers( + min_value=1, max_value=len(fc_out_shape) - 1)) + layer_norm_shape = [int(np.prod(fc_out_shape[begin_norm_axis:]))] + epsilon = 1e-5 + + fc_op = OpConfig( + "fc", + inputs={"Input": ["fc_x"], + "W": ["fc_w"], + "Bias": ["fc_bias"]}, + outputs={"Out": ["fc_out"]}, + in_num_col_dims=in_num_col_dims, + padding_weights=False, + activation_type="", + use_quantizer=False, + use_mkldnn=False, ) + add_op = OpConfig( + "elementwise_add", + inputs={"X": ["fc_out"], + "Y": ["add_bias"]}, + outputs={"Out": ["add_out"]}, + axis=axis, ) + layer_norm_op = OpConfig( + "layer_norm", + inputs={ + "X": ["add_out"], + "Scale": ["scale"], + "Bias": ["layer_norm_bias"] + }, + outputs={ + "Y": ["layer_norm_out"], + "Mean": ["layer_norm_mean"], + "Variance": ["layer_norm_var"] + }, + begin_norm_axis=begin_norm_axis, + epsilon=epsilon) + + ops = [fc_op, add_op, layer_norm_op] + program_config = ProgramConfig( + ops=ops, + weights={ + "fc_w": TensorConfig(shape=w_shape), + "fc_bias": TensorConfig(shape=fc_bias_shape), + "add_bias": TensorConfig(shape=add_bias_shape), + "scale": TensorConfig(shape=layer_norm_shape), + "layer_norm_bias": TensorConfig(shape=layer_norm_shape), + }, + inputs={"fc_x": TensorConfig(shape=x_shape), }, + outputs=ops[-1].outputs["Y"], ) + return program_config + + def test(self): + self.run_and_statis( + quant=False, + max_examples=300, + passes=["fc_elementwise_layernorm_fuse_pass"], + use_gpu_run_baseline=True) + + +if __name__ == "__main__": + unittest.main() diff --git a/tools/parallel_UT_rule.py b/tools/parallel_UT_rule.py index 79a742c314..46b415e24d 100644 --- a/tools/parallel_UT_rule.py +++ b/tools/parallel_UT_rule.py @@ -202,7 +202,7 @@ HIGH_PARALLEL_JOB_NEW = [ 'test_fleet_runtime', 'test_rnn_cudnn_params_packing', 'test_mkldnn_placement_pass', - 'test_fc_elementwise_layernorm_fuse_pass', + 'test_fc_elementwise_layernorm_fuse_pass_cc', 'program_desc_test', 'test_simplify_with_basic_ops_pass', 'test_dygraph_mode_of_unittest', @@ -1417,7 +1417,7 @@ CPU_PARALLEL_JOB = [ 'test_fc_mkldnn_op', 'test_fc_lstm_fuse_pass', 'test_fc_gru_fuse_pass', - 'test_fc_elementwise_layernorm_fuse_pass', + 'test_fc_elementwise_layernorm_fuse_pass_cc', 'test_fc_bf16_mkldnn_op', 'test_executor_feed_non_tensor', 'test_executor_check_feed', -- GitLab