提交 00efc4cc 编写于 作者: Y Yancey1989

Merge branch 'develop' of github.com:PaddlePaddle/Paddle into overlap_send_op

......@@ -25,7 +25,6 @@ message(STATUS "CXX compiler: ${CMAKE_CXX_COMPILER}, version: "
message(STATUS "C compiler: ${CMAKE_C_COMPILER}, version: "
"${CMAKE_C_COMPILER_ID} ${CMAKE_C_COMPILER_VERSION}")
find_package(Sphinx)
if(NOT CMAKE_CROSSCOMPILING)
find_package(CUDA QUIET)
endif(NOT CMAKE_CROSSCOMPILING)
......@@ -226,5 +225,7 @@ if(WITH_PYTHON)
endif()
if(WITH_DOC)
find_package(Sphinx REQUIRED)
find_python_module(recommonmark REQUIRED)
add_subdirectory(doc)
endif()
......@@ -19,8 +19,9 @@
----------------
PaddlePaddle需要使用Docker环境完成编译,这样可以免去单独安装编译依赖的步骤,可选的不同编译环境Docker镜像
可以在 `这里 <https://hub.docker.com/r/paddlepaddle/paddle_manylinux_devel/tags/>`_ 找到。或者
参考下述可选步骤,从源码中构建用于编译PaddlePaddle的Docker镜像。
可以在 `这里 <https://hub.docker.com/r/paddlepaddle/paddle_manylinux_devel/tags/>`_ 找到,您也可以
在 `这里 <https://github.com/PaddlePaddle/Paddle/tree/develop/tools/manylinux1/>`_ 找到 paddle_manylinux_devel
镜像的编译以及使用方法。或者参考下述可选步骤,从源码中构建用于编译PaddlePaddle的Docker镜像。
如果您选择不使用Docker镜像,则需要在本机安装下面章节列出的 `编译依赖`_ 之后才能开始编译的步骤。
......
......@@ -22,6 +22,8 @@ How To Build
You need to use Docker to build PaddlePaddle
to avoid installing dependencies by yourself. We have several pre-built
Docker images `here <https://hub.docker.com/r/paddlepaddle/paddle_manylinux_devel/tags/>`_ ,
you can also find how to build and use paddle_manylinux_devel Docker image from
`here <https://github.com/PaddlePaddle/Paddle/tree/develop/tools/manylinux1/>`_
Or you can build your own image from source as the optional step below:
.. code-block:: bash
......
......@@ -192,6 +192,10 @@ class ExecutionContext {
return op_.Attr<T>(name);
}
bool HasInput(const std::string& name) const { return op_.HasInputs(name); }
bool HasOutput(const std::string& name) const { return op_.HasOutputs(name); }
size_t InputSize(const std::string& name) const {
return op_.Inputs(name).size();
}
......
......@@ -58,7 +58,8 @@ ParallelExecutor::ParallelExecutor(
const std::unordered_set<std::string> &bcast_vars,
const ProgramDesc &main_program, const std::string &loss_var_name,
Scope *scope, const std::vector<Scope *> &local_scopes, bool allow_op_delay,
bool use_default_grad_scale, bool balance_parameter_opt_between_cards)
bool use_default_grad_scale, bool balance_parameter_opt_between_cards,
size_t num_trainers, size_t trainer_id)
: member_(new ParallelExecutorPrivate(places)) {
member_->global_scope_ = scope;
......@@ -80,7 +81,13 @@ ParallelExecutor::ParallelExecutor(
// Bcast Parameters to all GPUs
#ifdef PADDLE_WITH_CUDA
member_->nccl_ctxs_.reset(new platform::NCCLContextMap(member_->places_));
auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME);
ncclUniqueId *nccl_id = nullptr;
if (nccl_id_var != nullptr) {
nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
}
member_->nccl_ctxs_.reset(new platform::NCCLContextMap(
member_->places_, nccl_id, num_trainers, trainer_id));
#endif
if (platform::is_gpu_place(places[0]) && member_->local_scopes_.size() != 1 &&
local_scopes.empty()) { // Is CUDA
......
......@@ -41,7 +41,8 @@ class ParallelExecutor {
const std::string& loss_var_name, Scope* scope,
const std::vector<Scope*>& local_scopes,
bool allow_op_delay, bool use_default_grad_scale,
bool balance_parameter_opt_between_cards);
bool balance_parameter_opt_between_cards,
size_t num_trainers = 1, size_t trainer_id = 0);
~ParallelExecutor();
......
cc_library(dot SRCS dot.cc)
cc_library(analysis SRCS dot.cc node.cc node.h)
cc_test(test_node SRCS node_tester.cc DEPS analysis)
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
namespace paddle {
namespace inference {
namespace analysis {
enum class Device { CPU, GPU };
} // namespace analysis
} // namespace inference
} // namespace paddle
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/analysis/dot.h"
#include <gtest/gtest.h>
#include <memory>
#include "paddle/fluid/inference/analysis/data_flow_graph.h"
namespace paddle {
namespace inference {
namespace analysis {
class DotTester : public ::testing::Test {
protected:
void SetUp() override {
std::vector<Dot::Attr> attrs({{"title", "hello"}});
dot.reset(new Dot(attrs));
dot->AddNode("a", {Dot::Attr{"shape", "box"}, Dot::Attr("color", "blue")});
dot->AddNode("b", {});
dot->AddNode("c", {});
dot->AddEdge("a", "b", {});
dot->AddEdge("b", "c", {});
dot->AddEdge("a", "c", {});
}
std::unique_ptr<Dot> dot;
};
TEST_F(DotTester, Build) {
auto codes = dot->Build();
// Output the DOT language code, the generated codes are too long to compare
// the string.
//
// The output is
//
// digraph G {
// title="hello"
// node_1
// node_2
// node_0[label="a" shape="box" color="blue"]
// node_0->node_1
// node_1->node_2
// node_0->node_2
// } // end G
LOG(INFO) << '\n' << codes;
}
} // namespace analysis
} // namespace inference
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
namespace inference {
namespace analysis {
template <typename IteratorT>
class iterator_range {
IteratorT begin_, end_;
public:
template <typename Container>
explicit iterator_range(Container &&c) : begin_(c.begin()), end_(c.end()) {}
iterator_range(const IteratorT &begin, const IteratorT &end)
: begin_(begin), end_(end) {}
const IteratorT &begin() const { return begin_; }
const IteratorT &end() const { return end_; }
};
/*
* An registry helper class, with its records keeps the order they registers.
*/
template <typename T>
class OrderedRegistry {
public:
T *Register(const std::string &name, T *x) {
PADDLE_ENFORCE(!dic_.count(name));
dic_[name] = data_.size();
data_.emplace_back(std::unique_ptr<T>(x));
return data_.back().get();
}
T *Lookup(const std::string &name) {
auto it = dic_.find(name);
if (it == dic_.end()) return nullptr;
return data_[it->second].get();
}
protected:
std::unordered_map<std::string, int> dic_;
std::vector<std::unique_ptr<T>> data_;
};
} // namespace analysis
} // namespace inference
} // namespace paddle
#define PADDLE_DISALLOW_COPY_AND_ASSIGN(type__) \
\
type__(const type__ &) = delete; \
\
void operator=(const type__ &) = delete;
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/analysis/node.h"
#include "glog/logging.h"
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
namespace inference {
namespace analysis {
std::vector<Dot::Attr> Value::dot_attrs() const {
return std::vector<Dot::Attr>({Dot::Attr("style", "filled,rounded"),
Dot::Attr("shape", "box"),
Dot::Attr("fillcolor", "red")});
}
std::vector<Dot::Attr> Function::dot_attrs() const {
return std::vector<Dot::Attr>({Dot::Attr("style", "filled,rounded"),
Dot::Attr("shape", "diamond"),
Dot::Attr("fillcolor", "yellow")});
}
Node *NodeMap::Create(Node::Type type) {
switch (type) {
case Node::Type::kFunction:
nodes_.emplace_back(new Function);
break;
case Node::Type::kValue:
nodes_.emplace_back(new Value);
break;
default:
PADDLE_THROW("Not supported node type.");
}
nodes_.back()->id_ = size() - 1;
return nodes_.back().get();
}
Node *NodeMap::GetMutable(size_t id) {
PADDLE_ENFORCE_GT(size(), id);
return nodes_[id].get();
}
const Node &NodeMap::Get(size_t id) const {
PADDLE_ENFORCE_GT(size(), id);
return *nodes_[id].get();
}
void NodeMap::Delete(size_t id) {
PADDLE_ENFORCE_LT(id, size());
nodes_[id]->SetDeleted();
}
} // namespace analysis
} // namespace inference
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
/*
* This file defines the Node class and its subclasses. A Node is the basis
* analysis element in a computation graph.
* There are basically two kinds of nodes, the function node and value node.
*/
#pragma once
#include <limits>
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/inference/analysis/device.h"
#include "paddle/fluid/inference/analysis/dot.h"
#include "paddle/fluid/inference/analysis/helper.h"
namespace paddle {
namespace inference {
namespace analysis {
class NodeMap;
/*
* Node Representation.
*
* This is a very important class for analysis. It is the base class of all
* nodes computed by a program that may be used as operands to other nodes.
* Node is the super class of other important classes such as Function and
* Value, some nodes can have a name.
*/
class Node {
public:
// Node type. NOTE the new node types should add here.
enum class Type { kNone = -1, kFunction, kValue, kFunctionBlock };
Node() = default;
struct Attr;
// Cast to a subclass type, Function for example.
template <typename Subclass>
Subclass &As() {
return *dynamic_cast<Subclass *>(this);
}
// Formatted representation of this Node.
virtual std::string repr() const {
return name() + "(" + std::to_string(id()) + ")";
}
// DOT node representation. One Node type can customize its own node
// representation.
virtual std::vector<Dot::Attr> dot_attrs() const {
return std::vector<Dot::Attr>({Dot::Attr("style", "filled")});
}
// Get an additional attribute and convert it to T data type. NOTE this will
// silently create a new attribute if not exists.
Attr &attr(const std::string &name) { return attrs_[name]; }
int id() const { return id_; }
bool deleted() const { return deleted_; }
void SetDeleted() { deleted_ = true; }
void SetName(const std::string &name) { name_ = name; }
const std::string &name() const { return name_; }
void SetType(Type type) { type_ = type; }
Type type() const { return type_; }
void *extra_info() const { return extra_info_; }
void SetExtraInfo(void *extra_info) { extra_info_ = extra_info; }
// Input links.
std::vector<Node *> inlinks;
// Output links.
std::vector<Node *> outlinks;
// A helper class to maintain the status from Pass.
// TODO(superjomn) add a checker here to ensure the T is primary.
struct Attr {
// NOTE T should be a primary type or a struct combined by several primary
// types.
// NOTE the STL containers should not use here.
// Some usages
// Attr attr;
// T data;
// attr.data.assign((char*)data, sizeof(data));
bool &Bool() { return As<bool>(); }
float &Float() { return As<float>(); }
int32_t &Int32() { return As<int32_t>(); }
int64_t &Int64() { return As<int64_t>(); }
private:
template <typename T>
T &As() {
// init storage in the first usage.
if (data_.empty()) {
VLOG(4) << "resize data to " << sizeof(T);
type_hash_ = typeid(T).hash_code();
data_.resize(sizeof(T));
}
PADDLE_ENFORCE(type_hash_ == typeid(T).hash_code(), "type not matched");
PADDLE_ENFORCE_EQ(data_.size(), sizeof(T), "Node attr type recast error");
return *reinterpret_cast<T *>(&data_[0]);
}
private:
std::string data_;
size_t type_hash_{std::numeric_limits<size_t>::max()};
};
virtual ~Node() {}
friend class NodeMap;
PADDLE_DISALLOW_COPY_AND_ASSIGN(Node);
protected:
// The id number not the name is a node's unique identifier in the computation
// graph.
int id_{-1};
std::string name_;
Type type_{Type::kNone};
// Mark this node is deleted by some pass.
bool deleted_{false};
void *extra_info_;
mutable std::unordered_map<std::string, Attr> attrs_;
};
class Function;
/*
* Value represents a value node, it has some attributes including dims, data
* type and so on.
*/
class Value : public Node {
public:
enum class DataType { kInt32, kInt64, kFloat32, kFloat64 };
using Dims = std::vector<int>;
void SetDataType(DataType data_type) { data_type_ = data_type; }
DataType data_type() const { return data_type_; }
void SetDims(const Dims &dims) { dims_ = dims; }
const Dims &dims() const { return dims_; }
Device device() const { return device_; }
void SetDevice(Device device) { device_ = device; }
std::vector<Dot::Attr> dot_attrs() const override;
PADDLE_DISALLOW_COPY_AND_ASSIGN(Value);
protected:
Value() { SetType(Node::Type::kValue); }
friend class NodeMap;
private:
DataType data_type_;
Dims dims_;
Device device_;
};
/*
* Function represents any kind of executable concepts that takes several Values
* as input, and outputs several Values.
*/
class Function : public Node {
public:
std::vector<Dot::Attr> dot_attrs() const override;
// Get the operator's type from Desc.
const std::string &func_type() const { return func_type_; }
// Set the operator's type.
void SetFuncType(const std::string &func_type) { func_type_ = func_type; }
PADDLE_DISALLOW_COPY_AND_ASSIGN(Function);
protected:
std::string func_type_;
Function() { SetType(Node::Type::kFunction); }
friend class NodeMap;
};
/*
* FunctionBlock is a Node that contains a sub-graph multiple Node.
*/
struct FunctionBlock : public Node {
std::string repr() const override { return "block-" + std::to_string(id()); }
std::vector<Node *> subgraph;
};
class NodeMap {
public:
// Create a new node with type.
Node *Create(Node::Type type);
// Get a node by its id.
Node *GetMutable(size_t id);
const Node &Get(size_t id) const;
void Delete(size_t id);
const std::vector<std::unique_ptr<Node>> &nodes() { return nodes_; }
size_t size() const { return nodes_.size(); }
private:
std::vector<std::unique_ptr<Node>> nodes_;
std::unordered_map<std::string, Node *> map_;
};
} // namespace analysis
} // namespace inference
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/analysis/node.h"
#include <gtest/gtest.h>
namespace paddle {
namespace inference {
namespace analysis {
TEST(Node, Attr) {
// Node is an abstract class, use Value instead for they share the same Attr
// logic.
NodeMap nodes;
auto* node = nodes.Create(Node::Type::kValue);
node->attr("v0").Int32() = 2008;
ASSERT_EQ(node->attr("v0").Int32(), 2008);
}
} // namespace analysis
} // namespace inference
} // namespace paddle
......@@ -15,7 +15,6 @@ limitations under the License. */
#pragma once
#include <string>
#include "paddle/fluid/framework/framework.pb.h"
namespace paddle {
......@@ -60,8 +59,8 @@ class EngineBase {
struct Buffer {
void* buffer{nullptr}; // buffer should be allocated only once.
int max_size; // buffer allocated space.
int size; // data size.
size_t max_size; // buffer allocated space.
size_t size; // data size.
DeviceType device{DeviceType::UNK}; // tells which device this buffer is on.
};
......
nv_library(tensorrt_engine SRCS engine.cc DEPS framework_proto)
nv_test(test_tensorrt SRCS test_tensorrt.cc DEPS dynload_cuda device_context dynamic_loader)
nv_test(test_tensorrt_engine SRCS test_engine.cc DEPS dynload_cuda tensorrt_engine)
add_subdirectory(convert)
nv_test(test_op_converter SRCS test_op_converter.cc mul_op.cc conv2d_op.cc DEPS ${FLUID_CORE_MODULES})
nv_test(test_trt_activation_op SRCS test_activation_op.cc activation_op.cc
nv_test(test_trt_activation_op SRCS test_activation_op.cc activation_op.cc io_converter.cc
DEPS ${FLUID_CORE_MODULES} activation_op tensorrt_engine)
nv_test(test_io_converter SRCS test_io_converter.cc io_converter.cc DEPS dynload_cuda dynamic_loader lod_tensor)
......@@ -21,15 +21,18 @@ namespace tensorrt {
class ReluOpConverter : public OpConverter {
public:
ReluOpConverter() {}
void operator()(const framework::OpDesc& op) override {
void operator()(const framework::proto::OpDesc& op) override {
// Here the two nullptr looks strange, that's because the
// framework::OpDesc's constructor is strange.
framework::OpDesc op_desc(op, nullptr, nullptr);
LOG(INFO) << "convert a fluid relu op to tensorrt activation layer whose "
"type is Relu";
const nvinfer1::ITensor* input_tensor =
engine_->GetITensor(op.Input("X")[0]);
engine_->GetITensor(op_desc.Input("X")[0]);
nvinfer1::IActivationLayer* layer = TRT_ENGINE_ADD_LAYER(
engine_, Activation, *const_cast<nvinfer1::ITensor*>(input_tensor),
nvinfer1::ActivationType::kRELU);
engine_->SetITensor(op.Output("Out")[0], layer->getOutput(0));
engine_->SetITensor(op_desc.Output("Out")[0], layer->getOutput(0));
}
};
......
......@@ -21,7 +21,7 @@ namespace tensorrt {
class Conv2dOpConverter : public OpConverter {
public:
Conv2dOpConverter() {}
void operator()(const framework::OpDesc& op) override {
void operator()(const framework::proto::OpDesc& op) override {
LOG(INFO)
<< "convert a fluid conv2d op to tensorrt conv layer without bias";
}
......
......@@ -23,26 +23,42 @@ namespace tensorrt {
using platform::is_gpu_place;
using platform::is_cpu_place;
class DefaultInputConverter : public EngineInputConverter {
class DefaultIOConverter : public EngineIOConverter {
public:
DefaultInputConverter() {}
DefaultIOConverter() {}
// NOTE out is GPU memory.
virtual void operator()(const LoDTensor& in, void* out,
size_t max_size) override {
PADDLE_ENFORCE(out != nullptr);
PADDLE_ENFORCE_LE(in.memory_size(), max_size);
PADDLE_ENFORCE(stream_ != nullptr);
const auto& place = in.place();
size_t size = in.memory_size();
PADDLE_ENFORCE_LE(size, max_size);
if (is_cpu_place(place)) {
PADDLE_ENFORCE(stream_ != nullptr);
PADDLE_ENFORCE_EQ(0,
cudaMemcpyAsync(out, in.data<float>(), in.memory_size(),
PADDLE_ENFORCE_EQ(0, cudaMemcpyAsync(out, in.data<float>(), size,
cudaMemcpyHostToDevice, *stream_));
} else if (is_gpu_place(place)) {
PADDLE_ENFORCE_EQ(0,
cudaMemcpyAsync(out, in.data<float>(), in.memory_size(),
cudaMemcpyHostToHost, *stream_));
PADDLE_ENFORCE_EQ(0, cudaMemcpyAsync(out, in.data<float>(), size,
cudaMemcpyDeviceToDevice, *stream_));
} else {
PADDLE_THROW("Unknown device for converter");
}
cudaStreamSynchronize(*stream_);
}
// NOTE in is GPU memory.
virtual void operator()(const void* in, LoDTensor* out,
size_t max_size) override {
PADDLE_ENFORCE(in != nullptr);
PADDLE_ENFORCE(stream_ != nullptr);
const auto& place = out->place();
size_t size = out->memory_size();
PADDLE_ENFORCE_LE(size, max_size);
if (is_cpu_place(place)) {
PADDLE_ENFORCE_EQ(0, cudaMemcpyAsync(out->data<float>(), in, size,
cudaMemcpyDeviceToHost, *stream_));
} else if (is_gpu_place(place)) {
PADDLE_ENFORCE_EQ(0, cudaMemcpyAsync(out->data<float>(), in, size,
cudaMemcpyDeviceToDevice, *stream_));
} else {
PADDLE_THROW("Unknown device for converter");
}
......@@ -50,7 +66,8 @@ class DefaultInputConverter : public EngineInputConverter {
}
};
REGISTER_TENSORRT_INPUT_CONVERTER(default, DefaultInputConverter);
// fluid LodTensor <-> tensorrt ITensor
REGISTER_TENSORRT_IO_CONVERTER(default, DefaultIOConverter);
} // namespace tensorrt
} // namespace inference
......
......@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once
#include <string>
#include <unordered_map>
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/inference/utils/singleton.h"
......@@ -25,43 +26,57 @@ namespace tensorrt {
using framework::LoDTensor;
/*
* Convert Input from Fluid to an Engine.
* TensorRT's ITensor follows row major, NCHW. Fluid is also row major, so in
* most cases just need to copy the data.
* Convert Input from Fluid to TensorRT Engine.
* Convert Output from TensorRT Engine to Fluid.
*
* Note that TensorRT's ITensor follows row major, NCHW. Fluid is also row
* major,
* so in the default case just need to copy the data.
*/
class EngineInputConverter {
class EngineIOConverter {
public:
EngineInputConverter() {}
EngineIOConverter() {}
virtual void operator()(const LoDTensor& in, void* out, size_t max_size) {}
virtual void operator()(const void* in, LoDTensor* out, size_t max_size) {}
void SetStream(cudaStream_t* stream) { stream_ = stream; }
static void Run(const std::string& in_op_type, const LoDTensor& in, void* out,
size_t max_size, cudaStream_t* stream) {
static void ConvertInput(const std::string& op_type, const LoDTensor& in,
void* out, size_t max_size, cudaStream_t* stream) {
PADDLE_ENFORCE(stream != nullptr);
auto* converter = Registry<EngineInputConverter>::Lookup(
in_op_type, "default" /* default_type */);
auto* converter = Registry<EngineIOConverter>::Lookup(
op_type, "default" /* default_type */);
PADDLE_ENFORCE_NOT_NULL(converter);
converter->SetStream(stream);
(*converter)(in, out, max_size);
}
virtual ~EngineInputConverter() {}
static void ConvertOutput(const std::string& op_type, const void* in,
LoDTensor* out, size_t max_size,
cudaStream_t* stream) {
PADDLE_ENFORCE(stream != nullptr);
auto* converter = Registry<EngineIOConverter>::Lookup(
op_type, "default" /* default_type */);
PADDLE_ENFORCE_NOT_NULL(converter);
converter->SetStream(stream);
(*converter)(in, out, max_size);
}
virtual ~EngineIOConverter() {}
protected:
cudaStream_t* stream_{nullptr};
};
#define REGISTER_TENSORRT_IO_CONVERTER(op_type__, Converter__) \
struct trt_io_##op_type__##_converter { \
trt_io_##op_type__##_converter() { \
Registry<EngineIOConverter>::Register<Converter__>(#op_type__); \
} \
}; \
trt_io_##op_type__##_converter trt_io_##op_type__##_converter__;
} // namespace tensorrt
} // namespace inference
} // namespace paddle
#define REGISTER_TENSORRT_INPUT_CONVERTER(in_op_type__, Converter__) \
struct trt_input_##in_op_type__##_converter { \
trt_input_##in_op_type__##_converter() { \
::paddle::inference::Registry<EngineInputConverter>::Register< \
Converter__>(#in_op_type__); \
} \
}; \
trt_input_##in_op_type__##_converter trt_input_##in_op_type__##_converter__;
......@@ -21,7 +21,7 @@ namespace tensorrt {
class MulOpConverter : public OpConverter {
public:
MulOpConverter() {}
void operator()(const framework::OpDesc& op) override {
void operator()(const framework::proto::OpDesc& op) override {
LOG(INFO) << "convert a fluid mul op to tensorrt fc layer without bias";
}
};
......
......@@ -31,10 +31,10 @@ namespace tensorrt {
class OpConverter {
public:
OpConverter() {}
virtual void operator()(const framework::OpDesc& op) {}
virtual void operator()(const framework::proto::OpDesc& op) {}
void Run(const framework::OpDesc& op, TensorRTEngine* engine) {
std::string type = op.Type();
void Run(const framework::proto::OpDesc& op, TensorRTEngine* engine) {
std::string type = op.type();
auto* it = Registry<OpConverter>::Lookup(type);
PADDLE_ENFORCE_NOT_NULL(it, "no OpConverter for optype [%s]", type);
it->SetEngine(engine);
......@@ -42,14 +42,16 @@ class OpConverter {
}
// convert fluid op to tensorrt layer
void ConvertOp(const framework::OpDesc& op, TensorRTEngine* engine) {
void ConvertOp(const framework::proto::OpDesc& op, TensorRTEngine* engine) {
OpConverter::Run(op, engine);
}
// convert fluid block to tensorrt network
void ConvertBlock(const framework::BlockDesc& block, TensorRTEngine* engine) {
for (auto op : block.AllOps()) {
OpConverter::Run(*op, engine);
void ConvertBlock(const framework::proto::BlockDesc& block,
TensorRTEngine* engine) {
for (size_t i = 0; i < block.ops_size(); i++) {
const auto& op = block.ops(i);
OpConverter::Run(op, engine);
}
}
......
......@@ -16,6 +16,7 @@ limitations under the License. */
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/inference/tensorrt/convert/io_converter.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/place.h"
......@@ -26,7 +27,7 @@ namespace paddle {
namespace inference {
namespace tensorrt {
void Compare(float input, float expect) {
void Compare(const std::string op_type, float input, float expect) {
framework::Scope scope;
platform::CUDAPlace place;
platform::CUDADeviceContext ctx(place);
......@@ -35,6 +36,7 @@ void Compare(float input, float expect) {
auto x_var = scope.Var("X");
auto x_tensor = x_var->GetMutable<framework::LoDTensor>();
x_tensor->Resize({1, 1});
x_tensor->mutable_data<float>(place);
std::vector<float> init;
init.push_back(input);
framework::TensorFromVector(init, ctx, x_tensor);
......@@ -45,14 +47,15 @@ void Compare(float input, float expect) {
out_tensor->mutable_data<float>(place);
framework::OpDesc op_desc;
op_desc.SetType("relu");
op_desc.SetType(op_type);
op_desc.SetInput("X", {"X"});
op_desc.SetOutput("Out", {"Out"});
auto relu_op = framework::OpRegistry::CreateOp(op_desc);
auto op = framework::OpRegistry::CreateOp(*op_desc.Proto());
// run fluid op
relu_op->Run(scope, place);
op->Run(scope, place);
// get fluid output
std::vector<float> out1;
framework::TensorToVector(*out_tensor, ctx, &out1);
......@@ -63,21 +66,28 @@ void Compare(float input, float expect) {
engine->InitNetwork();
engine->DeclareInput("X", nvinfer1::DataType::kFLOAT,
nvinfer1::DimsCHW{1, 1, 1});
// convert op
OpConverter op_converter;
op_converter.ConvertOp(op_desc, engine);
op_converter.ConvertOp(*op_desc.Proto(), engine);
engine->DeclareOutput("Out");
engine->FreezeNetwork();
engine->SetInputFromCPU("X", &input, 1 * sizeof(float));
// run tensorrt op
// convert LoDTensor to ITensor
size_t size = x_tensor->memory_size();
EngineIOConverter::ConvertInput(op_type, *x_tensor,
engine->buffer("X").buffer, size, &stream);
// run tensorrt Outp
engine->Execute(1);
float out2;
engine->GetOutputInCPU("Out", &out2, 1 * sizeof(float));
ASSERT_EQ(out1[0], out2);
// convert ITensor to LoDTensor
EngineIOConverter::ConvertOutput(op_type, engine->buffer("Out").buffer,
out_tensor, size, &stream);
// get tensorrt output
std::vector<float> out2;
framework::TensorToVector(*out_tensor, ctx, &out2);
// compare
ASSERT_EQ(out1[0], out2[0]);
ASSERT_EQ(out1[0], expect);
delete engine;
......@@ -85,8 +95,8 @@ void Compare(float input, float expect) {
}
TEST(OpConverter, ConvertRelu) {
Compare(1, 1); // relu(1) = 1
Compare(-5, 0); // relu(-5) = 0
Compare("relu", 1, 1); // relu(1) = 1
Compare("relu", -5, 0); // relu(-5) = 0
}
} // namespace tensorrt
......
......@@ -12,40 +12,63 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/inference/tensorrt/convert/io_converter.h"
#include <gtest/gtest.h>
namespace paddle {
namespace inference {
namespace tensorrt {
class EngineInputConverterTester : public ::testing::Test {
public:
void SetUp() override { tensor.Resize({10, 10}); }
void IOConverterTester(const platform::DeviceContext& ctx) {
cudaStream_t stream;
ASSERT_EQ(0, cudaStreamCreate(&stream));
framework::LoDTensor tensor;
};
// init fluid in_tensor
framework::LoDTensor in_tensor;
in_tensor.Resize({10, 10});
auto place = ctx.GetPlace();
in_tensor.mutable_data<float>(place);
std::vector<float> init;
for (int64_t i = 0; i < 10 * 10; ++i) {
init.push_back(i);
}
framework::TensorFromVector(init, ctx, &in_tensor);
TEST_F(EngineInputConverterTester, DefaultCPU) {
// init tensorrt buffer
void* buffer;
tensor.mutable_data<float>(platform::CPUPlace());
ASSERT_EQ(cudaMalloc(&buffer, tensor.memory_size()), 0);
size_t size = in_tensor.memory_size();
ASSERT_EQ(cudaMalloc(&buffer, size), 0);
cudaStream_t stream;
EngineInputConverter::Run("test", tensor, buffer, tensor.memory_size(),
&stream);
// convert fluid in_tensor to tensorrt buffer
EngineIOConverter::ConvertInput("test", in_tensor, buffer, size, &stream);
// convert tensorrt buffer to fluid out_tensor
framework::LoDTensor out_tensor;
out_tensor.Resize({10, 10});
out_tensor.mutable_data<float>(place);
EngineIOConverter::ConvertOutput("test", buffer, &out_tensor, size, &stream);
// compare in_tensor and out_tensor
std::vector<float> result;
framework::TensorToVector(out_tensor, ctx, &result);
EXPECT_EQ(init.size(), result.size());
for (size_t i = 0; i < init.size(); i++) {
EXPECT_EQ(init[i], result[i]);
}
cudaStreamDestroy(stream);
}
TEST_F(EngineInputConverterTester, DefaultGPU) {
void* buffer;
tensor.mutable_data<float>(platform::CUDAPlace());
ASSERT_EQ(cudaMalloc(&buffer, tensor.memory_size()), 0);
TEST(EngineIOConverterTester, DefaultCPU) {
platform::CPUPlace place;
platform::CPUDeviceContext ctx(place);
IOConverterTester(ctx);
}
cudaStream_t stream;
EngineInputConverter::Run("test", tensor, buffer, tensor.memory_size(),
&stream);
TEST(EngineIOConverterTester, DefaultGPU) {
platform::CUDAPlace place;
platform::CUDADeviceContext ctx(place);
IOConverterTester(ctx);
}
} // namespace tensorrt
......
......@@ -29,7 +29,7 @@ TEST(OpConverter, ConvertBlock) {
conv2d_op->SetType("conv2d");
OpConverter converter;
converter.ConvertBlock(*block, nullptr /*TensorRTEngine*/);
converter.ConvertBlock(*block->Proto(), nullptr /*TensorRTEngine*/);
}
} // namespace tensorrt
......
......@@ -16,7 +16,6 @@ limitations under the License. */
#include "gtest/gtest.h"
#include "paddle/fluid/inference/tests/test_helper.h"
DEFINE_string(data_set, "cifar10", "Data set to test");
DEFINE_string(dirname, "", "Directory of the inference model.");
DEFINE_string(fp16_dirname, "", "Directory of the float16 inference model.");
DEFINE_int32(batch_size, 1, "Batch size of input data");
......@@ -35,19 +34,19 @@ TEST(inference, image_classification) {
// 0. Call `paddle::framework::InitDevices()` initialize all the devices
// In unittests, this is done in paddle/testing/paddle_gtest_main.cc
const bool is_combined = false;
std::vector<std::vector<int64_t>> feed_target_shapes =
GetFeedTargetShapes(dirname, is_combined);
paddle::framework::LoDTensor input;
// Use normilized image pixels as input data,
// which should be in the range [0.0, 1.0].
if (FLAGS_data_set == "cifar10") {
SetupTensor<float>(&input, {FLAGS_batch_size, 3, 32, 32},
static_cast<float>(0), static_cast<float>(1));
} else if (FLAGS_data_set == "imagenet") {
SetupTensor<float>(&input, {FLAGS_batch_size, 3, 224, 224},
static_cast<float>(0), static_cast<float>(1));
} else {
LOG(FATAL) << "Only cifar10 or imagenet is supported.";
}
feed_target_shapes[0][0] = FLAGS_batch_size;
paddle::framework::DDim input_dims =
paddle::framework::make_ddim(feed_target_shapes[0]);
LOG(INFO) << input_dims;
SetupTensor<float>(&input, input_dims, static_cast<float>(0),
static_cast<float>(1));
std::vector<paddle::framework::LoDTensor*> cpu_feeds;
cpu_feeds.push_back(&input);
......@@ -60,7 +59,7 @@ TEST(inference, image_classification) {
LOG(INFO) << "--- CPU Runs: ---";
LOG(INFO) << "Batch size is " << FLAGS_batch_size;
TestInference<paddle::platform::CPUPlace, false, true>(
dirname, cpu_feeds, cpu_fetchs1, FLAGS_repeat);
dirname, cpu_feeds, cpu_fetchs1, FLAGS_repeat, is_combined);
LOG(INFO) << output1.dims();
}
......@@ -73,7 +72,7 @@ TEST(inference, image_classification) {
LOG(INFO) << "--- GPU Runs: ---";
LOG(INFO) << "Batch size is " << FLAGS_batch_size;
TestInference<paddle::platform::CUDAPlace, false, true>(
dirname, cpu_feeds, cpu_fetchs2, FLAGS_repeat);
dirname, cpu_feeds, cpu_fetchs2, FLAGS_repeat, is_combined);
LOG(INFO) << output2.dims();
if (!FLAGS_skip_cpu) {
......
......@@ -89,6 +89,50 @@ void CheckError(const paddle::framework::LoDTensor& output1,
EXPECT_EQ(count, 0U) << "There are " << count << " different elements.";
}
std::unique_ptr<paddle::framework::ProgramDesc> InitProgram(
paddle::framework::Executor* executor, paddle::framework::Scope* scope,
const std::string& dirname, const bool is_combined = false) {
std::unique_ptr<paddle::framework::ProgramDesc> inference_program;
if (is_combined) {
// All parameters are saved in a single file.
// Hard-coding the file names of program and parameters in unittest.
// The file names should be consistent with that used in Python API
// `fluid.io.save_inference_model`.
std::string prog_filename = "__model_combined__";
std::string param_filename = "__params_combined__";
inference_program =
paddle::inference::Load(executor, scope, dirname + "/" + prog_filename,
dirname + "/" + param_filename);
} else {
// Parameters are saved in separate files sited in the specified
// `dirname`.
inference_program = paddle::inference::Load(executor, scope, dirname);
}
return inference_program;
}
std::vector<std::vector<int64_t>> GetFeedTargetShapes(
const std::string& dirname, const bool is_combined = false) {
auto place = paddle::platform::CPUPlace();
auto executor = paddle::framework::Executor(place);
auto* scope = new paddle::framework::Scope();
auto inference_program = InitProgram(&executor, scope, dirname, is_combined);
auto& global_block = inference_program->Block(0);
const std::vector<std::string>& feed_target_names =
inference_program->GetFeedTargetNames();
std::vector<std::vector<int64_t>> feed_target_shapes;
for (size_t i = 0; i < feed_target_names.size(); ++i) {
auto* var = global_block.FindVar(feed_target_names[i]);
std::vector<int64_t> var_shape = var->GetShape();
feed_target_shapes.push_back(var_shape);
}
delete scope;
return feed_target_shapes;
}
template <typename Place, bool CreateVars = true, bool PrepareContext = false>
void TestInference(const std::string& dirname,
const std::vector<paddle::framework::LoDTensor*>& cpu_feeds,
......@@ -124,22 +168,7 @@ void TestInference(const std::string& dirname,
paddle::platform::RecordEvent record_event(
"init_program",
paddle::platform::DeviceContextPool::Instance().Get(place));
if (is_combined) {
// All parameters are saved in a single file.
// Hard-coding the file names of program and parameters in unittest.
// The file names should be consistent with that used in Python API
// `fluid.io.save_inference_model`.
std::string prog_filename = "__model_combined__";
std::string param_filename = "__params_combined__";
inference_program = paddle::inference::Load(
&executor, scope, dirname + "/" + prog_filename,
dirname + "/" + param_filename);
} else {
// Parameters are saved in separate files sited in the specified
// `dirname`.
inference_program = paddle::inference::Load(&executor, scope, dirname);
}
inference_program = InitProgram(&executor, scope, dirname, is_combined);
}
// Disable the profiler and print the timing information
paddle::platform::DisableProfiler(paddle::platform::EventSortingKey::kDefault,
......
......@@ -186,6 +186,11 @@ endif()
add_subdirectory(detail)
if(WITH_DISTRIBUTE)
if(WITH_GPU)
op_library(gen_nccl_id_op DEPS nccl_common)
else()
set(DEPS_OPS ${DEPS_OPS} gen_nccl_id_op)
endif()
set(DISTRIBUTE_DEPS sendrecvop_grpc grpc++_unsecure grpc_unsecure gpr cares zlib protobuf)
set(DISTRIBUTE_COMPILE_FLAGS "-Wno-non-virtual-dtor -Wno-error=non-virtual-dtor -Wno-error=delete-non-virtual-dtor")
op_library(send_op DEPS ${DISTRIBUTE_DEPS})
......@@ -204,8 +209,9 @@ if(WITH_DISTRIBUTE)
set_source_files_properties(fetch_barrier_op.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS})
set_source_files_properties(send_recv_op_test.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS})
cc_test(test_send_recv SRCS send_recv_op_test.cc DEPS prefetch_op send_op listen_and_serv_op sum_op executor)
cc_test(test_send_nccl_id SRCS test_send_nccl_id.cc DEPS send_op listen_and_serv_op executor)
else()
set(DEPS_OPS ${DEPS_OPS} send_op prefetch_op recv_op listen_and_serv_op send_vars_op send_barrier_op fetch_barrier_op)
set(DEPS_OPS ${DEPS_OPS} send_op prefetch_op recv_op listen_and_serv_op send_vars_op send_barrier_op fetch_barrier_op gen_nccl_id_op)
endif()
op_library(cross_entropy_op DEPS cross_entropy)
......
......@@ -52,7 +52,7 @@ bool RPCClient::AsyncSendVariable(const std::string& ep,
// stub context
SendProcessor* s = new SendProcessor(ch);
s->Prepare(var_h, time_out);
s->response_call_back_ = NULL;
s->response_call_back_ = nullptr;
auto call = s->stub_g_.PrepareUnaryCall(
s->context_.get(), "/sendrecv.SendRecvService/SendVariable", req, &cq_);
......
......@@ -57,7 +57,9 @@ void ProcGetResponse(const VarHandle& var_h, const grpc::ByteBuffer& msg);
class BaseProcessor {
public:
explicit BaseProcessor(std::shared_ptr<grpc::Channel> ch) { context_ = NULL; }
explicit BaseProcessor(std::shared_ptr<grpc::Channel> ch) {
context_ = nullptr;
}
virtual ~BaseProcessor() {}
......@@ -105,7 +107,7 @@ class SendProcessor : public BaseProcessor {
::grpc::GenericStub stub_g_;
::grpc::ByteBuffer reply_;
RequestSendCallBack response_call_back_ = NULL;
RequestSendCallBack response_call_back_ = nullptr;
};
typedef std::function<void(const VarHandle&, const ::grpc::ByteBuffer&)>
......
......@@ -47,6 +47,7 @@ class AsyncGRPCServer final {
explicit AsyncGRPCServer(const std::string &address, bool sync_mode)
: address_(address), sync_mode_(sync_mode), ready_(0) {}
~AsyncGRPCServer() {}
void WaitServerReady();
void RunSyncUpdate();
......
......@@ -32,6 +32,7 @@ service SendRecvService {
enum VarType {
LOD_TENSOR = 0;
SELECTED_ROWS = 1;
NCCL_ID = 2;
}
// NOTICE(gongwb):don't modify this proto if you are not
......
......@@ -14,6 +14,9 @@ limitations under the License. */
#include "paddle/fluid/operators/detail/sendrecvop_utils.h"
#ifdef PADDLE_WITH_CUDA
#include <nccl.h>
#endif
#include <sys/time.h>
#include <thread> // NOLINT
......@@ -129,6 +132,10 @@ void SerializeToByteBuffer(const std::string& name, framework::Variable* var,
} else if (var->IsType<framework::SelectedRows>()) {
request.set_type(::sendrecv::SELECTED_ROWS);
GetSelectedRowsPayload(var, ctx, &request, &payload, &payload_size);
#ifdef PADDLE_WITH_CUDA
} else if (var->IsType<ncclUniqueId>()) {
request.set_type(::sendrecv::NCCL_ID);
#endif
} else {
PADDLE_THROW("Serialize does not support type: %s",
typeid(var->Type()).name());
......@@ -149,6 +156,24 @@ void SerializeToByteBuffer(const std::string& name, framework::Variable* var,
void* buf = buffer.get();
ProtoEncodeHelper e(static_cast<char*>(buf), 1024);
e.WriteRawBytes(std::string(header.data(), header.size()));
// NCCLID is copied directly to the message, return bytebuffer
// with only one slice if serializing NCCLID.
#ifdef PADDLE_WITH_CUDA
if (var->IsType<ncclUniqueId>()) {
e.WriteVarlengthBeginning(VarMsg::kSerializedFieldNumber,
NCCL_UNIQUE_ID_BYTES);
const ncclUniqueId& uid = var->Get<ncclUniqueId>();
e.WriteRawBytes(std::string(uid.internal, NCCL_UNIQUE_ID_BYTES));
// for serialize NCCL_ID
::grpc::Slice slices(e.size());
memcpy(const_cast<uint8_t*>(slices.begin()), e.data(), e.size());
::grpc::ByteBuffer tmp(&slices, 1);
msg->Swap(&tmp);
return;
}
#endif
e.WriteVarlengthBeginning(VarMsg::kSerializedFieldNumber, payload_size);
// steal reference of tensor data
::grpc::Slice slices[4]; // metadata, tensor, rows meta, rows
......
......@@ -17,6 +17,9 @@
#include <string>
#include <utility>
#include <vector>
#ifdef PADDLE_WITH_CUDA
#include <nccl.h>
#endif
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/operators/detail/send_recv.pb.h"
......@@ -368,7 +371,8 @@ int VariableResponse::Parse(Source* source) {
}
case sendrecv::VariableMessage::kSerializedFieldNumber: {
PADDLE_ENFORCE((meta_.type() == sendrecv::SELECTED_ROWS ||
meta_.type() == sendrecv::LOD_TENSOR) &&
meta_.type() == sendrecv::LOD_TENSOR ||
meta_.type() == sendrecv::NCCL_ID) &&
meta_.varname() != "",
"meta info should be got first!");
......@@ -378,6 +382,22 @@ int VariableResponse::Parse(Source* source) {
return tag;
}
if (meta_.type() == sendrecv::NCCL_ID) {
#ifdef PADDLE_WITH_CUDA
auto* var = scope_->FindVar(meta_.varname());
if (var != nullptr) {
ncclUniqueId* id = var->GetMutable<ncclUniqueId>();
if (!ReadRaw(&input, *dev_ctx_, platform::CPUPlace(), id->internal,
num_bytes)) {
return tag;
}
}
break;
#else
PADDLE_THROW("Not compiled with CUDA!");
#endif
}
framework::DDim dims = GetDims(meta_.dims());
if (meta_.type() == sendrecv::LOD_TENSOR) {
PADDLE_ENFORCE(meta_.lod_size() >= 0,
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <nccl.h>
#include <stdint.h>
#include <ostream>
#include <string>
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/threadpool.h"
#include "paddle/fluid/operators/detail/grpc_client.h"
#include "paddle/fluid/operators/detail/grpc_server.h"
#include "paddle/fluid/platform/nccl_helper.h"
namespace paddle {
namespace operators {
class GenNCCLIdOp : public framework::OperatorBase {
public:
GenNCCLIdOp(const std::string& type, const framework::VariableNameMap& inputs,
const framework::VariableNameMap& outputs,
const framework::AttributeMap& attrs)
: OperatorBase(type, inputs, outputs, attrs) {}
void RunImpl(const framework::Scope& scope,
const platform::Place& dev_place) const override {
platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
// put nccl id in CPUPlace
auto& dev_ctx = *pool.Get(platform::CPUPlace());
int trainer_id = Attr<int>("trainer_id");
framework::Scope& local_scope = scope.NewScope();
if (trainer_id == 0) {
GenerateAndSend(&local_scope, dev_ctx);
} else {
GetIdByServer(&local_scope, dev_ctx);
}
}
private:
void GenerateAndSend(framework::Scope* scope,
const platform::DeviceContext& dev_ctx) const {
auto var = scope->FindVar(NCCL_ID_VARNAME);
PADDLE_ENFORCE_NOT_NULL(var);
auto id = var->GetMutable<ncclUniqueId>();
PADDLE_ENFORCE(platform::dynload::ncclGetUniqueId(id));
std::vector<std::string> endpoint_list =
Attr<std::vector<std::string>>("endpoint_list");
detail::RPCClient client;
for (auto& ep : endpoint_list) {
VLOG(3) << "sending nccl id to " << ep;
client.AsyncSendVariable(ep, dev_ctx, *scope, NCCL_ID_VARNAME);
}
client.Wait();
VLOG(3) << "sending completed...";
}
void GetIdByServer(framework::Scope* scope,
const platform::DeviceContext& dev_ctx) const {
std::string endpoint = Attr<std::string>("endpoint");
// NOTE: Can not use unique_ptr here because the default
// deleter will call GRPC Server's base class's dtor and
// that will cause a wired crash.
detail::AsyncGRPCServer rpc_service(endpoint, true);
framework::ProgramDesc empty_program;
framework::Executor executor(dev_ctx.GetPlace());
rpc_service.SetScope(scope);
rpc_service.SetDevCtx(&dev_ctx);
rpc_service.SetProgram(&empty_program);
rpc_service.SetExecutor(&executor);
std::thread server_thread(
std::bind(&detail::AsyncGRPCServer::RunSyncUpdate, &rpc_service));
rpc_service.SetCond(0);
VLOG(3) << "start getting nccl id from trainer 0...";
auto recv = rpc_service.Get();
VLOG(3) << "got nccl id and stop server...";
rpc_service.ShutDown();
VLOG(3) << "rpc server stopped";
server_thread.join();
}
};
class GenNCCLIdOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddOutput("NCCLID", "Raw variable contains a NCCL UniqueId instaces.");
AddComment(R"DOC(
GenNCCLId operator
For trainer 0: generate a new UniqueId and send it to all the other trainers.
For trainer 1~n: start a gRPC server to get the UniqueId, once got, stop the server.
)DOC");
AddAttr<std::string>("endpoint",
"(string), e.g. 127.0.0.1:6175 "
"current listen endpoint");
AddAttr<std::vector<std::string>>(
"endpoint_list",
"['trainer1_ip:port', 'trainer2_ip:port', ...] "
"list of trainer endpoints start from trainer 1")
.SetDefault({});
AddAttr<int>("trainer_id",
"(int default 0) "
"The index of the trainer in distributed training.")
.SetDefault(0);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(gen_nccl_id, ops::GenNCCLIdOp, ops::GenNCCLIdOpMaker);
......@@ -64,18 +64,22 @@ class LoDTensor2BatchFunctor {
bool is_reverse = false) const {
if (!is_cal_batch_lod) {
auto lods = batch->lod();
PADDLE_ENFORCE_GT(lods.size(), 2UL);
PADDLE_ENFORCE_EQ(lods[1].size(),
static_cast<size_t>(lod_tensor.dims()[0]));
PADDLE_ENFORCE_GT(lods.size(), 2UL,
"The LoD of LoDTensor should inlcude at least 2-level "
"sequence information.");
PADDLE_ENFORCE_EQ(
lods[1].size(), static_cast<size_t>(lod_tensor.dims()[0]),
"The LoD information should be consistent with the dims.");
CopyMatrixRowsFunctor<DeviceContext, T> to_batch;
to_batch(context, lod_tensor, lods[1], batch, true);
return;
}
auto lods = lod_tensor.lod();
auto lod = lods[0];
PADDLE_ENFORCE_EQ(lods.size(), 1UL, "Only support one level sequence now.");
auto lod = lods[0];
std::vector<SeqInfo> seq_info;
for (size_t seq_id = 0; seq_id < lod.size() - 1; ++seq_id) {
int length = lod[seq_id + 1] - lod[seq_id];
......@@ -157,9 +161,12 @@ class Batch2LoDTensorFunctor {
const framework::LoDTensor& batch,
framework::LoDTensor* lod_tensor) const {
auto in_lod = batch.lod();
PADDLE_ENFORCE_GT(in_lod.size(), 2UL);
PADDLE_ENFORCE_EQ(in_lod[1].size(),
static_cast<size_t>(lod_tensor->dims()[0]));
PADDLE_ENFORCE_GT(in_lod.size(), 2UL,
"The LoD of LoDTensor should inlcude at least 2-level "
"sequence information.");
PADDLE_ENFORCE_EQ(
in_lod[1].size(), static_cast<size_t>(lod_tensor->dims()[0]),
"The LoD information should be consistent with the dims.");
CopyMatrixRowsFunctor<DeviceContext, T> to_seq;
to_seq(context, batch, in_lod[1], lod_tensor, false);
}
......
......@@ -92,14 +92,16 @@ class ReshapeOp : public framework::OperatorWithKernel {
}
if (unk_dim_idx != -1) {
output_shape[unk_dim_idx] = -in_size / capacity;
if (in_size > 0) {
// in_size < 0 and is un-determinate in compile time, skip the check,
// for example, in_dims = [-1, 8, 1, 1], shape = [-1, 3, 8],
// capacity = -24, in_size = -8, output_shape[0] = 0
// the following check will fail.
if (in_size > 0) {
output_shape[unk_dim_idx] = -in_size / capacity;
PADDLE_ENFORCE_EQ(output_shape[unk_dim_idx] * capacity, -in_size,
"Invalid shape is given.");
} else {
output_shape[unk_dim_idx] = -1;
}
} else {
PADDLE_ENFORCE_EQ(capacity, in_size, "Invalid shape is given.");
......@@ -122,7 +124,10 @@ class ReshapeKernel : public framework::OpKernel<T> {
void Compute(const framework::ExecutionContext &ctx) const {
auto *out = ctx.Output<framework::LoDTensor>("Out");
auto *in = ctx.Input<framework::LoDTensor>("X");
auto *shape_tensor = ctx.Input<framework::LoDTensor>("Shape");
auto *shape_tensor = ctx.HasInput("Shape")
? ctx.Input<framework::LoDTensor>("Shape")
: nullptr;
framework::DDim out_dims = out->dims();
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <unistd.h>
#include <string>
#include <thread> // NOLINT
#include "gtest/gtest.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/operators/detail/grpc_client.h"
#include "paddle/fluid/operators/listen_and_serv_op.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
#include "paddle/fluid/platform/nccl_helper.h"
#include "paddle/fluid/string/printf.h"
USE_NO_KERNEL_OP(listen_and_serv);
namespace f = paddle::framework;
namespace p = paddle::platform;
namespace m = paddle::operators::math;
namespace detail = paddle::operators::detail;
namespace string = paddle::string;
std::unique_ptr<detail::AsyncGRPCServer> rpc_service;
void StartServer(std::atomic<bool>* initialized) {
f::Scope scope;
p::CPUPlace place;
scope.Var(NCCL_ID_VARNAME);
p::DeviceContextPool& pool = p::DeviceContextPool::Instance();
auto& dev_ctx = *pool.Get(p::CPUPlace());
rpc_service.reset(new detail::AsyncGRPCServer("127.0.0.1:0", true));
f::ProgramDesc empty_program;
f::Executor executor(dev_ctx.GetPlace());
rpc_service->SetScope(&scope);
rpc_service->SetDevCtx(&dev_ctx);
rpc_service->SetProgram(&empty_program);
rpc_service->SetExecutor(&executor);
std::thread server_thread(
std::bind(&detail::AsyncGRPCServer::RunSyncUpdate, rpc_service.get()));
*initialized = true;
rpc_service->SetCond(0);
auto recv = rpc_service->Get();
LOG(INFO) << "got nccl id and stop server...";
rpc_service->ShutDown();
server_thread.join();
}
TEST(SendNcclId, Normal) {
std::atomic<bool> initialized{false};
std::thread server_thread(StartServer, &initialized);
while (!initialized) {
}
// wait server to start
// sleep(2);
rpc_service->WaitServerReady();
f::Scope scope;
p::CPUPlace place;
p::DeviceContextPool& pool = p::DeviceContextPool::Instance();
auto& dev_ctx = *pool.Get(p::CPUPlace());
auto var = scope.Var(NCCL_ID_VARNAME);
// var->SetType(f::proto::VarType_Type_RAW);
auto id = var->GetMutable<ncclUniqueId>();
p::dynload::ncclGetUniqueId(id);
int port = rpc_service->GetSelectedPort();
std::string ep = string::Sprintf("127.0.0.1:%d", port);
detail::RPCClient client;
client.AsyncSendVariable(ep, dev_ctx, scope, NCCL_ID_VARNAME);
client.Wait();
server_thread.join();
auto* ptr = rpc_service.release();
delete ptr;
}
......@@ -14,12 +14,15 @@
#pragma once
#include <stdio.h>
#include <thread> // NOLINT
#include <typeindex>
#include <vector>
#include "paddle/fluid/platform/dynload/nccl.h"
#include "paddle/fluid/platform/enforce.h"
#define NCCL_ID_VARNAME "NCCLID"
namespace paddle {
namespace platform {
......@@ -73,7 +76,9 @@ struct NCCLContextMap {
std::unordered_map<int, NCCLContext> contexts_;
std::vector<int> order_;
explicit NCCLContextMap(const std::vector<platform::Place> &places) {
explicit NCCLContextMap(const std::vector<platform::Place> &places,
ncclUniqueId *nccl_id = nullptr,
size_t num_trainers = 1, size_t trainer_id = 0) {
PADDLE_ENFORCE(!places.empty());
order_.reserve(places.size());
for (auto &p : places) {
......@@ -85,19 +90,35 @@ struct NCCLContextMap {
order_.size(), contexts_.size(),
"NCCL Context Map does not support contain two or more same device");
if (places.size() > 1) {
if (places.size() <= 1) {
return;
}
std::unique_ptr<ncclComm_t[]> comms(new ncclComm_t[order_.size()]);
{
// if pass nccl_id here, can assume we are doing multi node training
if (nccl_id == nullptr) {
std::lock_guard<std::mutex> guard(NCCLGroupGuard::NCCLMutex());
PADDLE_ENFORCE(platform::dynload::ncclCommInitAll(
comms.get(), static_cast<int>(order_.size()), order_.data()));
} else {
PADDLE_ENFORCE_GT(num_trainers, 1);
// TODO(wuyi): need to ensure each node have same number of GPUs
{
int nranks = num_trainers * order_.size();
NCCLGroupGuard gurad;
for (auto &gpu_id : order_) {
int rank = trainer_id * order_.size() + gpu_id;
VLOG(3) << "init nccl rank: " << rank << " nranks: " << nranks;
PADDLE_ENFORCE(cudaSetDevice(gpu_id));
PADDLE_ENFORCE(platform::dynload::ncclCommInitRank(
comms.get() + gpu_id, nranks, *nccl_id, rank));
}
}
}
int i = 0;
for (auto &dev_id : order_) {
contexts_.at(dev_id).comm_ = comms[i++];
}
}
}
NCCLContextMap(const NCCLContextMap &other) = delete;
NCCLContextMap &operator=(const NCCLContextMap &other) = delete;
......
......@@ -503,12 +503,13 @@ All parameter, weight, gradient are variables in Paddle.
const ProgramDesc &main_program, const std::string &loss_var_name,
Scope *scope, std::vector<Scope *> &local_scopes,
bool allow_op_delay, bool use_default_grad_scale,
bool balance_parameter_opt_between_cards) {
bool balance_parameter_opt_between_cards, size_t num_trainers,
size_t trainer_id) {
new (&self) ParallelExecutor(
num_threads, use_event, places, params, bcast_vars,
main_program, loss_var_name, scope, local_scopes,
allow_op_delay, use_default_grad_scale,
balance_parameter_opt_between_cards);
balance_parameter_opt_between_cards, num_trainers, trainer_id);
})
.def("bcast_params", &ParallelExecutor::BCastParamsToGPUs)
// NOTE: even we return a vec<Scope*>* to Python use reference policy.
......
......@@ -480,6 +480,8 @@ def append_backward(loss, parameter_list=None, no_grad_set=None,
program.current_block_idx = current_block_idx
program.sync_with_cpp()
# FIXME(zcd): prevent loss.grad optimized by mem_opt.
loss.block.var(_append_grad_suffix_(loss.name)).persistable = True
if parameter_list is not None:
parameters = parameter_list
......
......@@ -489,7 +489,7 @@ class Operator(object):
'rnn_memory_helper_grad', 'conditional_block', 'while', 'send',
'recv', 'listen_and_serv', 'parallel_do', 'save_combine',
'load_combine', 'ncclInit', 'channel_create', 'channel_close',
'channel_send', 'channel_recv', 'select'
'channel_send', 'channel_recv', 'select', 'gen_nccl_id'
}
if type not in no_kernel_op_set:
self.desc.infer_var_type(self.block.desc)
......
......@@ -31,7 +31,9 @@ class ParallelExecutor(object):
allow_op_delay=False,
share_vars_from=None,
use_default_grad_scale=True,
balance_parameter_opt_between_cards=False):
balance_parameter_opt_between_cards=False,
num_trainers=1,
trainer_id=0):
"""
ParallelExecutor can run program in parallel.
......@@ -55,6 +57,11 @@ class ParallelExecutor(object):
balance_parameter_opt_between_cards(bool, default True): Whether
updating different gradients on different cards. Currently, it
is not recommended.
num_trainers(int, default 1): If greater than 1, NCCL will be
initialized with multpile rank of nodes, each node should have
same number of GPUs. Distributed training will be enabled then.
trainer_id(int, default 0): Must use together with num_trainers.
trainer_id is the "rank" of current node starts from 0.
Returns:
A ParallelExecutor object.
......@@ -134,8 +141,9 @@ class ParallelExecutor(object):
local_scopes,
allow_op_delay,
use_default_grad_scale,
balance_parameter_opt_between_cards)
balance_parameter_opt_between_cards,
num_trainers,
trainer_id)
self.scope = scope
def run(self, fetch_list, feed=None, feed_dict=None):
......
......@@ -6,4 +6,5 @@ foreach(src ${TEST_OPS})
py_test(${src} SRCS ${src}.py)
endforeach()
add_subdirectory(fit_a_line)
add_subdirectory(recognize_digits)
file(GLOB TEST_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "test_*.py")
string(REPLACE ".py" "" TEST_OPS "${TEST_OPS}")
# default test
foreach(src ${TEST_OPS})
py_test(${src} SRCS ${src}.py)
endforeach()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.fluid as fluid
import contextlib
import numpy
import unittest
# train reader
BATCH_SIZE = 20
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.uci_housing.train(), buf_size=500),
batch_size=BATCH_SIZE)
test_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.uci_housing.test(), buf_size=500),
batch_size=BATCH_SIZE)
def inference_program():
x = fluid.layers.data(name='x', shape=[13], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
return y_predict
def linear():
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
y_predict = inference_program()
loss = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_loss = fluid.layers.mean(loss)
return avg_loss
def train(use_cuda, save_dirname):
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
trainer = fluid.Trainer(
train_func=linear,
infer_func=inference_program,
place=place,
optimizer=fluid.optimizer.SGD(learning_rate=0.001))
def event_handler(event):
if isinstance(event, fluid.EndEpochEvent):
test_metrics = trainer.test(
reader=test_reader, feed_order=['x', 'y'])
print test_metrics
'''
...
['25.768919467926025']
['15.343549569447836']
...
'''
if float(test_metrics[0]) < 20.0:
if save_dirname is not None:
# NOT clear yet
# fluid.io.save_inference_model(save_dirname, ['x'], [y_predict])
# trainer.save_params(save_dirname)
# https://github.com/PaddlePaddle/Paddle/pull/10445
trainer.save_inference_model(save_dirname)
return
trainer.train(
reader=train_reader,
num_epochs=100,
event_handler=event_handler,
feed_order=['x', 'y'])
# infer
def infer(use_cuda, save_dirname=None):
if save_dirname is None:
return
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
inferencer = fluid.Inferencer(param_path=save_dirname, place=place)
batch_size = 10
tensor_x = numpy.random.uniform(0, 10, [batch_size, 13]).astype("float32")
results = inferencer.infer({'x': tensor_x})
print("infer results: ", results[0])
def main(use_cuda):
if use_cuda and not fluid.core.is_compiled_with_cuda():
return
# Directory for saving the trained model
save_dirname = "fit_a_line.inference.model"
train(use_cuda, save_dirname)
infer(use_cuda, save_dirname)
class TestFitALine(unittest.TestCase):
def test_cpu(self):
with self.program_scope_guard():
with fluid.unique_name.guard():
main(use_cuda=False)
def test_cuda(self):
with self.program_scope_guard():
with fluid.unique_name.guard():
main(use_cuda=True)
@contextlib.contextmanager
def program_scope_guard(self):
prog = fluid.Program()
startup_prog = fluid.Program()
scope = fluid.core.Scope()
with fluid.scope_guard(scope):
with fluid.program_guard(prog, startup_prog):
yield
if __name__ == '__main__':
unittest.main()
......@@ -170,7 +170,7 @@ def train(word_dict,
assert save_dirname is None
adagrad = fluid.optimizer.Adagrad(learning_rate=0.002)
optimize_ops, params_grads = adagrad.minimize(cost)
adagrad.minimize(cost)
train_data = paddle.batch(
paddle.reader.shuffle(
......
......@@ -33,7 +33,7 @@ def train(use_cuda, save_dirname, is_local):
avg_cost = fluid.layers.mean(cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost)
sgd_optimizer.minimize(avg_cost)
BATCH_SIZE = 20
......
......@@ -125,7 +125,7 @@ def train(net_type, use_cuda, save_dirname, is_local):
test_program = fluid.default_main_program().clone(for_test=True)
optimizer = fluid.optimizer.Adam(learning_rate=0.001)
optimize_ops, params_grads = optimizer.minimize(avg_cost)
optimizer.minimize(avg_cost)
BATCH_SIZE = 128
PASS_NUM = 1
......
......@@ -175,7 +175,7 @@ def train(use_cuda, save_dirname=None, is_local=True):
decay_steps=100000,
decay_rate=0.5,
staircase=True))
optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost)
sgd_optimizer.minimize(avg_cost)
# TODO(qiao)
# add dependency track and move this config before optimizer
......
......@@ -185,7 +185,7 @@ def train_main(use_cuda, is_sparse, is_local=True):
learning_rate=1e-4,
regularization=fluid.regularizer.L2DecayRegularizer(
regularization_coeff=0.1))
optimize_ops, params_grads = optimizer.minimize(avg_cost)
optimizer.minimize(avg_cost)
train_data = paddle.batch(
paddle.reader.shuffle(
......
......@@ -95,7 +95,7 @@ def train(nn_type,
test_program = fluid.default_main_program().clone(for_test=True)
optimizer = fluid.optimizer.Adam(learning_rate=0.001)
optimize_ops, params_grads = optimizer.minimize(avg_loss)
optimizer.minimize(avg_loss)
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
......
......@@ -160,7 +160,7 @@ def train(use_cuda, save_dirname, is_local=True):
test_program = fluid.default_main_program().clone(for_test=True)
sgd_optimizer = SGDOptimizer(learning_rate=0.2)
optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost)
sgd_optimizer.minimize(avg_cost)
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
......
......@@ -101,7 +101,7 @@ def train(use_cuda, is_sparse, is_parallel, save_dirname, is_local=True):
avg_cost = fluid.layers.mean(pd())
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost)
sgd_optimizer.minimize(avg_cost)
train_reader = paddle.batch(
paddle.dataset.imikolov.train(word_dict, N), BATCH_SIZE)
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.layers as layers
from paddle.fluid.transpiler.distribute_transpiler import delete_ops
import numpy
class TestDistTranspiler(unittest.TestCase):
def setUp(self):
self.trainer_id = 0
self.trainers = 2
self.pservers = 2
self.pserver_eps = "127.0.0.1:6174,127.0.0.1:6175"
self.current_pserver_ep = "127.0.0.1:6174"
def net_conf(self):
x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
y_predict = fluid.layers.fc(input=x,
size=1000,
act=None,
param_attr=fluid.ParamAttr(name='fc_w'))
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.1)
optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost)
return optimize_ops, params_grads
def test_transpiler(self):
trainer = self.get_trainer()
pserver, startup = self.get_pserver(self.current_pserver_ep)
self.assertEqual([op.type for op in trainer.global_block().ops],
self.get_expect_trainer_ops())
self.assertEqual(len(pserver.blocks), 3)
# block0: listen_and_serv
self.assertEqual([op.type for op in pserver.blocks[0].ops],
["listen_and_serv"])
# block2: optimize pass
self.assertEqual([op.type for op in pserver.blocks[1].ops],
["sum", "scale", "sgd"])
# confirm startup program
self.assertEqual([op.type for op in startup.global_block().ops], [
"fill_constant", "fill_constant", "uniform_random", "uniform_random"
])
# the variable #fc_w will be split into two blocks
fc_w_var = startup.global_block().var("fc_w.block1")
self.assertEqual(fc_w_var.shape, (500, 1000))
def get_main_program(self):
main = fluid.Program()
with fluid.program_guard(main):
self.net_conf()
return main
def get_expect_trainer_ops(self):
trainer = fluid.Program()
with fluid.program_guard(trainer):
optimize_ops, params_grads = self.net_conf()
delete_ops(trainer.global_block(), optimize_ops)
return [op.type for op in trainer.global_block().ops
] + ["split_byref", "send", "concat"]
def get_trainer(self):
return self._transpiler_instance().get_trainer_program()
def get_pserver(self, ep):
t = self._transpiler_instance()
pserver = t.get_pserver_program(ep)
startup = t.get_startup_program(ep, pserver)
return pserver, startup
def _transpiler_instance(self):
main = self.get_main_program()
t = fluid.DistributeTranspiler()
t.transpile(
self.trainer_id,
program=main,
pservers=self.pserver_eps,
trainers=self.trainers)
return t
if __name__ == "__main__":
unittest.main()
......@@ -27,12 +27,15 @@ class TestNetWithDtype(unittest.TestCase):
def set_network(self):
self.dtype = "float64"
self.init_dtype()
main = fluid.Program()
with fluid.program_guard(main):
self.x = fluid.layers.data(name='x', shape=[13], dtype=self.dtype)
self.y = fluid.layers.data(name='y', shape=[1], dtype=self.dtype)
y_predict = fluid.layers.fc(input=self.x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=self.y)
avg_cost = fluid.layers.mean(cost)
self.program = main
self.fetch_list = [avg_cost]
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
......@@ -45,7 +48,7 @@ class TestNetWithDtype(unittest.TestCase):
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
for data in train_reader():
exe.run(fluid.default_main_program(),
exe.run(self.program,
feed=feeder.feed(data),
fetch_list=self.fetch_list)
# the main program is runable, the datatype is fully supported
......@@ -68,7 +71,7 @@ class TestNetWithDtype(unittest.TestCase):
# TODO(dzhwinter): make sure the fp16 is runable
# class TestFloat16(SimpleNet):
# class TestFloat16(TestNetWithDtype):
# def init_dtype(self):
# self.dtype = "float16"
......
......@@ -11,6 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from distribute_transpiler import DistributeTranspiler
from inference_transpiler import InferenceTranspiler
from memory_optimization_transpiler import memory_optimize, release_memory
......
......@@ -469,7 +469,7 @@ class DistributeTranspiler:
def __append_optimize_op__(op, block, grad_to_block_id):
if self._is_opt_op(op):
self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
default_main_program())
self.origin_program)
else:
self._append_pserver_non_opt_ops(block, op)
......
......@@ -28,3 +28,38 @@ git clone https://github.com/paddlepaddle/paddle
cd paddle/tools/manylinux1
REPO=[yourrepo] ./build_all.sh
```
## Build PaddlePaddle for the different Python ABIs
Choose one of the following Python ABI and set the correct environment variables.
- cp27-cp27m
```bash
export LD_LIBRARY_PATH=/opt/_internal/cpython-2.7.11-ucs2/lib:${LD_LIBRARY_PATH#/opt/_internal/cpython-2.7.11-ucs4/lib:}
export PATH=/opt/python/cp27-cp27m/bin/:${PATH}
export PYTHON_FLAGS="-DPYTHON_EXECUTABLE:FILEPATH=/opt/python/cp27-cp27m/bin/python
-DPYTHON_INCLUDE_DIR:PATH=/opt/python/cp27-cp27m/include/python2.7
-DPYTHON_LIBRARIES:FILEPATH=/opt/_internal/cpython-2.7.11-ucs2/lib/libpython2.7.so"
```
- cp27-cp27mu
```bash
export LD_LIBRARY_PATH=/opt/_internal/cpython-2.7.11-ucs4/lib:${LD_LIBRARY_PATH#/opt/_internal/cpython-2.7.11-ucs2/lib:}
export PATH=/opt/python/cp27-cp27mu/bin/:${PATH}
export PYTHON_FLAGS="-DPYTHON_EXECUTABLE:FILEPATH=/opt/python/cp27-cp27mu/bin/python
-DPYTHON_INCLUDE_DIR:PATH=/opt/python/cp27-cp27mu/include/python2.7
-DPYTHON_LIBRARIES:FILEPATH=/opt/_internal/cpython-2.7.11-ucs4/lib/libpython2.7.so"
```
And then add the `PYTHON_FLAGS` as your cmake flags:
```bash
cmake ..
${PYTHON_FLAGS} \
-DWITH_GPU=OFF \
...
```
You can find more details about cmake flags at [here](http://www.paddlepaddle.org/docs/develop/documentation/fluid/en/build_and_install/build_from_source_en.html#appendix-build-options)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册