提交 00ee6c3c 编写于 作者: T tensor-tang

Merge remote-tracking branch 'ups/develop' into feature/libxsmm

......@@ -31,7 +31,7 @@ script:
if [[ "$JOB" != "doc" ]]; then exit 0; fi;
# For document only
if [[ "$TRAVIS_PULL_REQUEST" != "false" ]]; then exit 0; fi;
if [[ "$TRAVIS_BRANCH" != "develop" && ! "$TRAVIS_BRANCH" =~ ^v[[:digit:]]+\.[[:digit:]]+(\.[[:digit:]]+)?(-\S*)?$ ]]; then exit 0; fi;
if [[ "$TRAVIS_BRANCH" != "develop" && ! "$TRAVIS_BRANCH" =~ ^v|release/[[:digit:]]+\.[[:digit:]]+(\.[[:digit:]]+)?(-\S*)?$ ]]; then exit 0; fi;
export DEPLOY_DOCS_SH=https://raw.githubusercontent.com/PaddlePaddle/PaddlePaddle.org/master/scripts/deploy/deploy_docs.sh
export DOCS_DIR=`pwd`
cd ..
......
......@@ -23,7 +23,7 @@ ENV HOME /root
COPY ./paddle/scripts/docker/root/ /root/
RUN apt-get update && \
apt-get install -y --allow-downgrades \
apt-get install -y --allow-downgrades patchelf \
git python-pip python-dev python-opencv openssh-server bison \
libnccl2=2.1.2-1+cuda8.0 libnccl-dev=2.1.2-1+cuda8.0 \
wget unzip unrar tar xz-utils bzip2 gzip coreutils ntp \
......
# Get the latest git tag.
set(PADDLE_VERSION $ENV{PADDLE_VERSION})
set(tmp_version "HEAD")
set(TAG_VERSION_REGEX "[0-9]+\\.[0-9]+\\.[0-9]+(\\.(a|b|rc)\\.[0-9]+)?")
set(COMMIT_VERSION_REGEX "[0-9a-f]+[0-9a-f]+[0-9a-f]+[0-9a-f]+[0-9a-f]+")
while ("${PADDLE_VERSION}" STREQUAL "")
execute_process(
COMMAND ${GIT_EXECUTABLE} describe --tags --abbrev=0 ${tmp_version}
COMMAND ${GIT_EXECUTABLE} describe --tags --abbrev=0 --always ${tmp_version}
WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}
OUTPUT_VARIABLE GIT_TAG_NAME
RESULT_VARIABLE GIT_RESULT
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
if (NOT ${GIT_RESULT})
# Check the tag is a correct version
if (${GIT_TAG_NAME} MATCHES "v[0-9]+\\.[0-9]+\\.[0-9]+(\\.(a|b|rc)\\.[0-9]+)?")
if (${GIT_TAG_NAME} MATCHES "${COMMIT_VERSION_REGEX}")
# if no tag was found, set PADDLE_VERSION to latest
set(PADDLE_VERSION "latest")
elseif (${GIT_TAG_NAME} MATCHES "v${TAG_VERSION_REGEX}")
string(REPLACE "v" "" PADDLE_VERSION ${GIT_TAG_NAME})
else() # otherwise, get the previous git tag name.
set(tmp_version "${GIT_TAG_NAME}~1")
......
......@@ -14,6 +14,15 @@ DistributeTranspiler
:members:
:noindex:
.. _api_fluid_transpiler_InferenceTranspiler:
InferenceTranspiler
-------------------
.. autoclass:: paddle.fluid.transpiler.InferenceTranspiler
:members:
:noindex:
.. _api_fluid_transpiler_memory_optimize:
memory_optimize
......
# Design Doc: Distributed Lookup Table Operator
A lookup table operator in PaddlePaddle where the table could be out
A distribute lookup table operator in PaddlePaddle where the table could be out
of the memory of a computer.
## Background
......@@ -24,14 +24,14 @@ memory, so we'd need a distributed storage service, which supports the
lookup of rows.
The following figure illustrates the multiplication of x with two
non-zero elements, or say, two symbols, and a lookup table W:
non-zero elements, or say two symbols, and a lookup table W:
![lookup table](./src/lookup_table.png)
### The Backward Algorithm
The backward algorithm computes W'(x) using W(x). W'(x) has the same
scale of size as W(x) and is much smaller than W.
the scale of size as W(x) and is much smaller than W.
To optimize W given W', we can do simple SGD update:
......@@ -44,111 +44,46 @@ $$W = f(W, W')$$
The following figure illustrates the backward pass of the lookup
operator: ![lookup table training](./src/lookup_table_training.png)
## Distributed Storage Service
The forward algorithm requires a distributed storage service for W.
The backward algorithm prefers that the storage system can apply the
optimization algorithm on W. The following two sections describe two
solutions -- the former doesn't require that the storage service can
do optimization, the latter does.
### Storage Service Doesn't Optimize
In this design, we use highly-optimized distributed storage, e.g.,
memcached, as the storage service, and we run the optimization
algorithm on parameter servers of PaddlePaddle. The following figure
illustrates the training process.
<!--
Note: please update the following URL when update this digraph.
<img src='https://g.gravizo.com/svg?
digraph G {
rankdir="LR";
subgraph cluster1 {
P1 [label="pserver 1"];
P2 [label="pserver 2"];
T1 [label="trainer 1"];
T2 [label="trainer 2"];
T3 [label="trainer 3"];
}
KV [label="memcached"];
T1 -> P1;
T1 -> P2;
T2 -> P1;
T2 -> P2;
T3 -> P1;
T3 -> P2;
P1 -> KV [color=gray, weight=0.1];
KV -> P1 [color=gray, weight=0.1];
P2 -> KV [color=gray, weight=0.1];
KV -> P2 [color=gray, weight=0.1];
KV -> T1 [color=gray, weight=0.1];
KV -> T2 [color=gray, weight=0.1];
KV -> T3 [color=gray, weight=0.1];
}
)
'/>
-->
<img src='https://g.gravizo.com/svg?%20digraph%20G%20{%20rankdir=%22LR%22;%20subgraph%20cluster1%20{%20P1%20[label=%22pserver%201%22];%20P2%20[label=%22pserver%202%22];%20T1%20[label=%22trainer%201%22];%20T2%20[label=%22trainer%202%22];%20T3%20[label=%22trainer%203%22];%20}%20KV%20[label=%22memcached%22];%20T1%20-%3E%20P1;%20T1%20-%3E%20P2;%20T2%20-%3E%20P1;%20T2%20-%3E%20P2;%20T3%20-%3E%20P1;%20T3%20-%3E%20P2;%20P1%20-%3E%20KV%20[color=gray,%20weight=0.1];%20KV%20-%3E%20P1%20[color=gray,%20weight=0.1];%20P2%20-%3E%20KV%20[color=gray,%20weight=0.1];%20KV%20-%3E%20P2%20[color=gray,%20weight=0.1];%20KV%20-%3E%20T1%20[color=gray,%20weight=0.1];%20KV%20-%3E%20T2%20[color=gray,%20weight=0.1];%20KV%20-%3E%20T3%20[color=gray,%20weight=0.1];%20}'/>
Each trainer runs the forward and backward passes using their local
data:
1. In the forward pass, when a trainer runs the forward algorithm of a
lookup operator, it retrieves W(x) from the storage service.
1. The trainer computes W'(x) in the backward pass using W(x).
During the global update process:
1. Each trainer uploads its W'(x) to parameter servers.
1. The parameter server runs the optimization algorithm, e.g., the
Adam optimization algorithm, which requires that
1. The parameter server retrieves W(x) from memcached, and
1. The parameter server pushes $\Delta W(x)=f(W(x), lambda \sum_j
W'(x))$ to memcached, where $f$ denotes the optimization
algorithm.
### Storage Service Does Optimize
This design is very similar to the above one, except that the
optimization algorithm $f$ runs on the storage service.
- Pro: parameter servers do not retrieve W(x) from the storage
service, thus saves half network communication.
- Con: the storage service needs to be able to run the optimization
algorithm.
## Distributed Sparse Table in Fluid
For another design, we can implement a distributed sparse table in Fluid,
and don't need to maintain an external storage component while training.
You may need to read Fluid [Distributed Training Architecture](./distributed_architecture.md)
and [Parameter Server](./parameter_server.md) before going on.
![fluid lookup remote table](./src/fluid_lookup_remote_table.png)
Partition a large table into multiple pserver instances
1. `DistributeTranspiler` would split the table partitioned into some small
table blocks with some partitioned algorithms such as
[RoundRobin](https://en.wikipedia.org/wiki/Round-robin_scheduling),
[Hash](https://en.wikipedia.org/wiki/Hash) and etc...
1. For some cases, the range of input `Ids` is very wide and unpredictable, so the sparse
table would be able to fill a new value for the id that didn't appear before with
zero, uniform random or Gaussian distribution.
For each Trainer's training process:
1. In the forward pass, we use `pre-fetch` op to pre-fetch parameter blocks according to the
input `Ids` from PServers instead of the local `lookup_table` op, and then merge the blocks
into a parameter `W`.
1. Compute `GRAD@W'` in the backward pass using the pre-fetched `W` and send it to PServer to
execute the optimize pass.
## Conclusion
Let us do the "storage service does not optimize" solution first, as a
baseline at least, because it is easier to use a well-optimized
distributed storage service like memcached. We can do the "storage
service does optimize" solution later or at the same time, which, if
implemented carefully, should have better performance than the former.
## Distributed Lookup Table
### Problem 1: The lookup table may be very large.
In the condition like the search engine and recommendation system, the number of feature Id may be very large, say 100,000,000,000, then for a float value lookup table of size 8, the total size of the table is:
```
100,000,000,000 * 8 * 4(Bytes) = 2980.23 GB
```
### Solution: Distributed storage
1. Paddle use [SelectedRows](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/design/modules/selected_rows.md) as the storage format for the lookup table, the lookup table parameter will be split to multi-machine according to the hash of the feature ID, and data will also be split and send to the same machine to prefetch the parameter.
1. For common parameters, the trainer will get the whole parameter for training, but for the big lookup table, the trainer can not store the whole parameter. Because the input data feature is very sparse, every time we only need a few parameters for training, so we use `prefetch_op` to only prefetch the parameter needed to trainer.
### Problem 2. The Id in the lookup table is not sure before training.
The feature Id is calculated by the hash function because the feature data source is so large, we can not get all the Id before training. So we can not initialize the table before training.
### Solution: Id auto growth
At the beginning of training, paddle only malloc the memory for the lookup table at parameter server side, the Id and it's value will not be initialized. During training, when a parameter server received an Id, if it is already in the lookup table, it will return the existing parameter, if the Id does not exist, paddle will add it into the lookup table and initialize the value for it.
### Problem 3: parameter load and save
For common parameters, paddle use trainer to save and load them. But for distributed lookup table, trainer cannot do this because it's large size.
### Solution: Parameter server side save and load
Paddle support parameter server side save and load for distribute lookup table. Each machine of parameter servers will only save and load part of the whole table.
## Architecture
The whole architecture of the distribute lookup table is as below:
### Training steps:
1. Read a batch of data, the data is feature ids.
1. The input ids will be split by `split_ids_op` with the same hash function of the lookup table.
1. The `prefetch_op` use the split result to prefetch parameters back from the lookup table.
1. Run forward-backward to get the gradient of the lookup table.
1. `split_ids_op` split the gradient and then use `send_op` to the parameter server.
1. parameter server update the table with the received gradient.
![distribute lookup table](./src/distributed_lookup_table.jpeg)
......@@ -46,9 +46,14 @@ cc_library(paddle_inference_api
SRCS paddle_inference_api.cc paddle_inference_api_impl.cc
DEPS ${FLUID_CORE_MODULES} ${GLOB_OP_LIB})
# Here the shared library doesn't depend on other fluid libraries, or double free will occur.
cc_library(paddle_inference_api_shared SHARED
SRCS paddle_inference_api.cc paddle_inference_api_impl.cc
DEPS ${FLUID_CORE_MODULES} ${GLOB_OP_LIB})
SRCS paddle_inference_api.cc paddle_inference_api_impl.cc)
set_target_properties(paddle_inference_api_shared PROPERTIES OUTPUT_NAME paddle_inference_api)
if(NOT APPLE)
set(LINK_FLAGS "-fPIC -fvisibility=hidden")
set_target_properties(paddle_inference_api_shared PROPERTIES LINK_FLAGS "${LINK_FLAGS}")
endif()
cc_test(test_paddle_inference_api
SRCS test_paddle_inference_api.cc
......
......@@ -23,7 +23,6 @@ int PaddleDtypeSize(PaddleDType dtype) {
case PaddleDType::INT64:
return sizeof(int64_t);
default:
//
assert(false);
return -1;
}
......
......@@ -34,7 +34,7 @@ struct BuildStrategy {
std::string debug_graphviz_path_{""};
bool enable_data_balance_{true};
bool enable_data_balance_{false};
};
} // namespace details
......
......@@ -86,9 +86,9 @@ std::vector<std::array<int, 3>> DataBalanceOpHandle::GetBalancePlan(
}
void DataBalanceOpHandle::RunImpl() {
if (places_.size() == 1) {
return;
}
PADDLE_ENFORCE_GT(places_.size(), 1,
"Data balance can only be enabled when the number of "
"places to run larger than 1.");
auto in_var_handles = DynamicCast<VarHandle>(inputs_);
auto out_var_handles = DynamicCast<VarHandle>(outputs_);
PADDLE_ENFORCE(in_var_handles.size() % places_.size() == 0);
......
......@@ -59,6 +59,11 @@ MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
grad_names_.insert(GradVarName(p));
}
balance_vars_.resize(places_.size(), 0);
if (strategy_.enable_data_balance_ && places_.size() == 1) {
LOG(WARNING) << "It is no need to enable data balance when there is only "
"one place. enable_data_balance is set to False.";
strategy_.enable_data_balance_ = false;
}
}
void MultiDevSSAGraphBuilder::CreateOpHandleIOs(SSAGraph *result,
......
......@@ -21,8 +21,8 @@ namespace framework {
// a static local variable is already being initialized.
// https://stackoverflow.com/questions/11711920/how-to-implement-multithread-safe-singleton-in-c11-without-using-mutex
OpInfoMap& OpInfoMap::Instance() {
static OpInfoMap* g_op_info_map = new OpInfoMap();
return *g_op_info_map;
static OpInfoMap g_op_info_map;
return g_op_info_map;
}
} // namespace framework
} // namespace paddle
......@@ -186,13 +186,7 @@ struct OpKernelRegistrarFunctorEx<PlaceType, false, I,
STATIC_ASSERT_GLOBAL_NAMESPACE( \
__reg_op__##op_type, \
"REGISTER_OPERATOR must be called in global namespace"); \
class _OpClass_##op_type##_ : public op_class { \
public: \
DEFINE_OP_CLONE_METHOD(_OpClass_##op_type##_); \
DEFINE_OP_CONSTRUCTOR(_OpClass_##op_type##_, op_class); \
}; \
static ::paddle::framework::OperatorRegistrar<_OpClass_##op_type##_, \
##__VA_ARGS__> \
static ::paddle::framework::OperatorRegistrar<op_class, ##__VA_ARGS__> \
__op_registrar_##op_type##__(#op_type); \
int TouchOpRegistrar_##op_type() { \
__op_registrar_##op_type##__.Touch(); \
......
......@@ -193,15 +193,10 @@ TEST(OpRegistry, CustomChecker) {
ASSERT_EQ(test_attr, 4);
}
class CosineOpComplete : public paddle::framework::CosineOp {
public:
DEFINE_OP_CONSTRUCTOR(CosineOpComplete, paddle::framework::CosineOp);
DEFINE_OP_CLONE_METHOD(CosineOpComplete);
};
TEST(OperatorRegistrar, Test) {
paddle::framework::OperatorRegistrar<
CosineOpComplete, paddle::framework::CosineOpProtoAndCheckerMaker>
paddle::framework::CosineOp,
paddle::framework::CosineOpProtoAndCheckerMaker>
reg("cos");
}
......
......@@ -633,6 +633,16 @@ void OperatorWithKernel::RunImpl(const Scope& scope,
VLOG(3) << "expected_kernel_key:" << expected_kernel_key;
auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
// workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
if (kernel_iter == kernels.end() &&
expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
expected_kernel_key.library_type_ = LibraryType::kPlain;
expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
kernel_iter = kernels.find(expected_kernel_key);
}
#endif
if (kernel_iter == kernels.end()) {
PADDLE_THROW("op %s does not have kernel for %s", type_,
KernelTypeToString(expected_kernel_key));
......
......@@ -121,10 +121,6 @@ class OperatorBase {
//! Get all outputs variable names
virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
// Return a new operator instance, which is as same as this.
// Use unique_ptr to prevent caller forget to delete this pointer.
virtual std::unique_ptr<OperatorBase> Clone() const = 0;
protected:
std::string type_;
// NOTE: in case of OpGrad, inputs_ contains:
......@@ -145,37 +141,6 @@ class OperatorBase {
const platform::Place& place) const = 0;
};
// Macro for define a clone method.
// If you are writing an kernel operator, `Clone` will be defined when you
// register it. i.e. `Clone` method is not needed to define by yourself.
#define DEFINE_OP_CLONE_METHOD(cls) \
std::unique_ptr<::paddle::framework::OperatorBase> Clone() const final { \
return std::unique_ptr<::paddle::framework::OperatorBase>(new cls(*this)); \
}
// Macro for define a default constructor for Operator.
// You can also use
// using PARENT_CLASS::PARENT_CLASS;
// to use parent's constructor.
#define DEFINE_OP_CONSTRUCTOR(cls, parent_cls) \
cls(const std::string& type, \
const ::paddle::framework::VariableNameMap& inputs, \
const ::paddle::framework::VariableNameMap& outputs, \
const paddle::framework::AttributeMap& attrs) \
: parent_cls(type, inputs, outputs, attrs) {}
class NOP : public OperatorBase {
public:
using OperatorBase::OperatorBase;
std::unique_ptr<OperatorBase> Clone() const override {
return std::unique_ptr<OperatorBase>(new NOP(*this));
}
private:
void RunImpl(const Scope& scope,
const platform::Place& place) const override {}
};
class ExecutionContext {
public:
ExecutionContext(const OperatorBase& op, const Scope& scope,
......
......@@ -247,26 +247,3 @@ TEST(OpKernel, multi_inputs) {
auto op = paddle::framework::OpRegistry::CreateOp(op_desc);
op->Run(scope, cpu_place);
}
class OperatorClone : public paddle::framework::OperatorBase {
public:
DEFINE_OP_CLONE_METHOD(OperatorClone);
OperatorClone(const std::string& type,
const paddle::framework::VariableNameMap& inputs,
const paddle::framework::VariableNameMap& outputs,
const paddle::framework::AttributeMap& attrs)
: OperatorBase(type, inputs, outputs, attrs) {}
private:
void RunImpl(const paddle::framework::Scope& scope,
const paddle::platform::Place& place) const override {}
};
TEST(Operator, Clone) {
paddle::framework::InitDevices(true);
OperatorClone a("ABC", paddle::framework::VariableNameMap{},
paddle::framework::VariableNameMap{},
paddle::framework::AttributeMap{});
auto b = a.Clone();
ASSERT_EQ(a.Type(), b->Type());
}
......@@ -22,6 +22,17 @@ limitations under the License. */
namespace paddle {
namespace framework {
class NOP : public OperatorBase {
public:
NOP(const std::string &type, const VariableNameMap &inputs,
const VariableNameMap &outputs, const AttributeMap &attrs)
: OperatorBase(type, inputs, outputs, attrs) {}
private:
void RunImpl(const Scope &scope,
const platform::Place &place) const override {}
};
class SumOpMaker : public OpProtoAndCheckerMaker {
public:
void Make() {
......
......@@ -19,8 +19,9 @@ namespace paddle {
namespace memory {
namespace detail {
BuddyAllocator::BuddyAllocator(SystemAllocator* system_allocator,
size_t min_chunk_size, size_t max_chunk_size)
BuddyAllocator::BuddyAllocator(
std::unique_ptr<SystemAllocator> system_allocator, size_t min_chunk_size,
size_t max_chunk_size)
: min_chunk_size_(min_chunk_size),
max_chunk_size_(max_chunk_size),
cache_(system_allocator->UseGpu()),
......
......@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once
#include <memory>
#include <mutex> // NOLINT
#include <set>
#include <tuple>
......@@ -32,8 +33,8 @@ namespace detail {
class BuddyAllocator {
public:
BuddyAllocator(SystemAllocator* system_allocator, size_t min_chunk_size,
size_t max_chunk_size);
BuddyAllocator(std::unique_ptr<SystemAllocator> system_allocator,
size_t min_chunk_size, size_t max_chunk_size);
~BuddyAllocator();
......@@ -103,7 +104,7 @@ class BuddyAllocator {
private:
/*! Allocate CPU/GPU memory from system */
SystemAllocator* system_allocator_;
std::unique_ptr<SystemAllocator> system_allocator_;
std::mutex mutex_;
};
......
......@@ -12,6 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <vector>
#include "paddle/fluid/memory/malloc.h"
#include "glog/logging.h"
......@@ -34,12 +36,15 @@ namespace memory {
using BuddyAllocator = detail::BuddyAllocator;
BuddyAllocator* GetCPUBuddyAllocator() {
static std::once_flag init_flag;
static detail::BuddyAllocator* a = nullptr;
if (a == nullptr) {
a = new detail::BuddyAllocator(new detail::CPUAllocator,
platform::CpuMinChunkSize(),
platform::CpuMaxChunkSize());
}
std::call_once(init_flag, []() {
a = new detail::BuddyAllocator(
std::unique_ptr<detail::SystemAllocator>(new detail::CPUAllocator),
platform::CpuMinChunkSize(), platform::CpuMaxChunkSize());
});
return a;
}
......@@ -68,19 +73,22 @@ size_t Used<platform::CPUPlace>(platform::CPUPlace place) {
#ifdef PADDLE_WITH_CUDA
BuddyAllocator* GetGPUBuddyAllocator(int gpu_id) {
static BuddyAllocator** as = NULL;
if (as == NULL) {
static std::once_flag init_flag;
static detail::BuddyAllocator** a_arr = nullptr;
std::call_once(init_flag, [gpu_id]() {
int gpu_num = platform::GetCUDADeviceCount();
as = new BuddyAllocator*[gpu_num];
for (int gpu = 0; gpu < gpu_num; gpu++) {
as[gpu] = nullptr;
}
}
platform::SetDeviceId(gpu_id);
if (!as[gpu_id]) {
as[gpu_id] = new BuddyAllocator(new detail::GPUAllocator(gpu_id),
platform::GpuMinChunkSize(),
platform::GpuMaxChunkSize());
PADDLE_ENFORCE(gpu_id < gpu_num, "gpu_id:%d should < gpu_num:%d", gpu_id,
gpu_num);
a_arr = new BuddyAllocator*[gpu_num];
for (int i = 0; i < gpu_num; i++) {
a_arr[i] = nullptr;
platform::SetDeviceId(i);
a_arr[i] = new BuddyAllocator(
std::unique_ptr<detail::SystemAllocator>(new detail::GPUAllocator(i)),
platform::GpuMinChunkSize(), platform::GpuMaxChunkSize());
VLOG(10) << "\n\nNOTE: each GPU device use "
<< FLAGS_fraction_of_gpu_memory_to_use * 100
<< "% of GPU memory.\n"
......@@ -88,7 +96,10 @@ BuddyAllocator* GetGPUBuddyAllocator(int gpu_id) {
<< "FLAGS_fraction_of_gpu_memory_to_use"
<< "' to change the fraction of GPU usage.\n\n";
}
return as[gpu_id];
});
platform::SetDeviceId(gpu_id);
return a_arr[gpu_id];
}
template <>
......@@ -125,12 +136,16 @@ void Free<platform::CUDAPlace>(platform::CUDAPlace place, void* p) {
}
BuddyAllocator* GetCUDAPinnedBuddyAllocator() {
static BuddyAllocator* ba = NULL;
if (ba == NULL) {
ba = new BuddyAllocator(new detail::CUDAPinnedAllocator,
static std::once_flag init_flag;
static BuddyAllocator* ba = nullptr;
std::call_once(init_flag, []() {
ba = new BuddyAllocator(std::unique_ptr<detail::SystemAllocator>(
new detail::CUDAPinnedAllocator),
platform::CUDAPinnedMinChunkSize(),
platform::CUDAPinnedMaxChunkSize());
}
});
return ba;
}
......
......@@ -85,7 +85,7 @@ class EltwiseAddMKLDNNKernel : public framework::OpKernel<T> {
"Wrong layout/format set for X tensor");
PADDLE_ENFORCE(y->layout() == DataLayout::kMKLDNN &&
y->format() != memory::format::format_undef,
"Wrong layout/format set for X tensor");
"Wrong layout/format set for Y tensor");
std::vector<int> src_x_tz = framework::vectorize2int(x_dims);
std::vector<int> src_y_tz = framework::vectorize2int(y_dims);
......
......@@ -92,9 +92,13 @@ class ReadOpMaker : public framework::OpProtoAndCheckerMaker {
void Make() override {
AddInput("Reader", "(ReaderHolder) The executed reader.");
AddOutput("Out", "(LoDTensor) The output data.").AsDuplicable();
AddAttr<bool>("throw_eof_exp",
AddAttr<bool>(
"throw_eof_exp",
"If set true, an exception will be thrown when the Reader "
"yields empty (which means there is no next data).")
"yields empty (which means there is no next data).\n"
"NOTES: This flag must be true always. It will be set to false"
" only when the data-balance is enabled in ParallelExecutor"
" and it is set by ParallelExecutor instance, not users.")
.SetDefault(true);
AddComment(R"DOC(
Read Operator
......
......@@ -532,6 +532,7 @@ void TrainerThread::computeThread() {
break;
}
}
hl_fini();
}
void TrainerThread::prefetch() {
......@@ -651,6 +652,7 @@ void TrainerThread::copyGradToBufferThread() {
}
partnerThread->notifyGradientCollect(pid);
}
hl_fini();
}
void TrainerThread::gradCollectThread() {
......@@ -693,6 +695,7 @@ void TrainerThread::gradCollectThread() {
notifyCopyGradToBuffer(pid);
}
}
hl_fini();
}
void TrainerThread::doCallback(int pid) {
......@@ -741,6 +744,7 @@ void TrainerThread::valueDispatchThread() {
thread->notifyValueReady(pid);
}
hl_fini();
}
void TrainerThread::notifyValueReady(int paramId) {
......
......@@ -197,6 +197,7 @@ void ParallelThread::computeThread() {
job_work.layer_->markAllInputGrad();
}
}
hl_fini();
}
void ParallelThread::start() {
......
......@@ -103,8 +103,12 @@ class TestDataBalance(unittest.TestCase):
exe = fluid.Executor(place)
exe.run(startup_prog)
build_strategy = fluid.BuildStrategy()
build_strategy.enable_data_balance = True
parallel_exe = fluid.ParallelExecutor(
use_cuda=self.use_cuda, main_program=main_prog)
use_cuda=self.use_cuda,
main_program=main_prog,
build_strategy=build_strategy)
if (parallel_exe.device_count > self.batch_size):
print("WARNING: Unittest TestDataBalance skipped. \
......@@ -145,9 +149,12 @@ class TestDataBalance(unittest.TestCase):
place = fluid.CUDAPlace(0) if self.use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(startup_prog)
build_strategy = fluid.BuildStrategy()
build_strategy.enable_data_balance = True
parallel_exe = fluid.ParallelExecutor(
use_cuda=self.use_cuda, main_program=main_prog)
use_cuda=self.use_cuda,
main_program=main_prog,
build_strategy=build_strategy)
if (parallel_exe.device_count > self.batch_size):
print("WARNING: Unittest TestDataBalance skipped. \
......
......@@ -19,7 +19,7 @@ from ..framework import Program
from ..executor import global_scope
class InferenceTranspiler:
class InferenceTranspiler(object):
'''
Convert the fluid program to optimized inference program.
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# used for setup.py.in to store the thirdparty shared libraries
from setuptools import setup, Distribution, Extension
import subprocess
import os
import re
import shutil
class BinaryDistribution(Distribution):
def has_ext_modules(foo):
return True
MAJOR = 0
MINOR = 14
PATCH = 0
RC = 0
ISTAGED = False
......@@ -20,14 +19,47 @@ def git_commit():
git_commit = 'Unknown'
return git_commit
def _get_version_detail(idx):
assert idx < 3, "vesion info consists of %(major)d.%(minor)d.%(patch)d, \
so detail index must less than 3"
if re.match('@TAG_VERSION_REGEX@', '@PADDLE_VERSION@'):
version_details = '@PADDLE_VERSION@'.split('.')
if len(version_details) == 3:
return version_details[idx]
return 0
def get_major():
return int(_get_version_detail(0))
def get_minor():
return int(_get_version_detail(1))
def get_patch():
return str(_get_version_detail(2))
def is_taged():
try:
cmd = ['git', 'describe', '--exact-match', '--tags']
git_tag = subprocess.Popen(cmd, stdout = subprocess.PIPE).communicate()[0].strip()
except:
return False
if git_tag.replace('v', '') == '@PADDLE_VERSION@':
return True
else:
return False
def write_version_py(filename='paddle/version.py'):
cnt = '''
# THIS FILE IS GENERATED FROM PADDLEPADDLE SETUP.PY
#
full_version = '%(major)d.%(minor)d.%(patch)d'
full_version = '%(major)d.%(minor)d.%(patch)s'
major = '%(major)d'
minor = '%(minor)d'
patch = '%(patch)d'
patch = '%(patch)s'
rc = '%(rc)d'
istaged = %(istaged)s
commit = '%(commit)s'
......@@ -49,19 +81,20 @@ def mkl():
commit = git_commit()
with open(filename, 'w') as f:
f.write(cnt % {
'major': MAJOR,
'minor': MINOR,
'patch': PATCH,
'major': get_major(),
'minor': get_minor(),
'patch': get_patch(),
'rc': RC,
'version': '${PADDLE_VERSION}',
'commit': commit,
'istaged': ISTAGED,
'istaged': is_taged(),
'with_mkl': '@WITH_MKL@'})
write_version_py(filename='@PADDLE_BINARY_DIR@/python/paddle/version.py')
packages=['paddle',
'paddle.libs',
'paddle.utils',
'paddle.dataset',
'paddle.reader',
......@@ -114,11 +147,34 @@ package_dir={
if '${WITH_FLUID_ONLY}'== 'OFF':
package_dir['py_paddle']='${PADDLE_BINARY_DIR}/python/py_paddle'
paddle_rt_lib_dir = 'lib'
paddle_rt_libs = ['${WARPCTC_LIBRARIES}']
if '${MKL_SHARED_LIBS}'!= '':
paddle_rt_libs += '${MKL_SHARED_LIBS}'.split(';')
# put all thirdparty libraries in paddle.libs
package_data['paddle.libs']=['libwarpctc.so']
libs_path='${PADDLE_BINARY_DIR}/python/paddle/libs'
shutil.copy('${WARPCTC_LIBRARIES}', libs_path)
if '${WITH_MKL}' == 'ON':
shutil.copy('${MKLML_LIB}', libs_path)
shutil.copy('${MKLML_IOMP_LIB}', libs_path)
package_data['paddle.libs']+=['libmklml_intel.so','libiomp5.so']
if '${WITH_MKLDNN}' == 'ON':
# change rpath of libmkldnn.so.0, add $ORIGIN/ to it.
# The reason is that all thirdparty libraries in the same directory,
# thus, libmkldnn.so.0 will find libmklml_intel.so and libiomp5.so.
command = "patchelf --set-rpath '$ORIGIN/' ${MKLDNN_SHARED_LIB}"
if os.system(command) != 0:
raise Exception("patchelf --set-rpath for libmkldnn.so.0 fails")
package_data['paddle.libs']+=['libmkldnn.so.0']
shutil.copy('${MKLDNN_SHARED_LIB}', libs_path)
# remove unused paddle/libs/__init__.py
os.remove(libs_path+'/__init__.py')
package_dir['paddle.libs']=libs_path
# change rpath of core.so, add $ORIGIN/../libs/ to it.
# The reason is that libwarpctc.so, libiomp5.so etc are in paddle.libs, and
# core.so is in paddle.fluid, thus paddle/fluid/../libs will pointer to above libraries.
# This operation will fix https://github.com/PaddlePaddle/Paddle/issues/3213
command = "patchelf --set-rpath '$ORIGIN/../libs/' ${PADDLE_BINARY_DIR}/python/paddle/fluid/core.so"
if os.system(command) != 0:
raise Exception("patchelf --set-rpath for core.so fails")
setup(name='${PACKAGE_NAME}',
version='${PADDLE_VERSION}',
......@@ -128,6 +184,5 @@ setup(name='${PACKAGE_NAME}',
ext_modules=[Extension('_foo', ['stub.cc'])],
package_data=package_data,
package_dir=package_dir,
scripts=paddle_bins,
data_files=[(paddle_rt_lib_dir, paddle_rt_libs)]
scripts=paddle_bins
)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册