Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
00bbb8c5
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
00bbb8c5
编写于
3月 03, 2022
作者:
F
furnace
提交者:
GitHub
3月 03, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Phi] move gaussian_random (#39932)
[Phi] move gaussian_random kernel
上级
815f7a67
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
241 addition
and
75 deletion
+241
-75
paddle/fluid/operators/gaussian_random_op.cc
paddle/fluid/operators/gaussian_random_op.cc
+0
-23
paddle/fluid/operators/gaussian_random_op.cu
paddle/fluid/operators/gaussian_random_op.cu
+0
-52
paddle/phi/kernels/cpu/gaussian_random_kernel.cc
paddle/phi/kernels/cpu/gaussian_random_kernel.cc
+53
-0
paddle/phi/kernels/gaussian_random_kernel.h
paddle/phi/kernels/gaussian_random_kernel.h
+32
-0
paddle/phi/kernels/gpu/gaussian_random_kernel.cu
paddle/phi/kernels/gpu/gaussian_random_kernel.cu
+111
-0
paddle/phi/ops/compat/gaussian_random_sig.cc
paddle/phi/ops/compat/gaussian_random_sig.cc
+45
-0
未找到文件。
paddle/fluid/operators/gaussian_random_op.cc
浏览文件 @
00bbb8c5
...
@@ -26,27 +26,6 @@ namespace paddle {
...
@@ -26,27 +26,6 @@ namespace paddle {
namespace
operators
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
class
CPUGaussianRandomKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
float
mean
=
context
.
Attr
<
float
>
(
"mean"
);
float
std
=
context
.
Attr
<
float
>
(
"std"
);
auto
*
tensor
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
std
::
normal_distribution
<
T
>
dist
(
mean
,
std
);
auto
shape
=
GetShape
(
context
);
tensor
->
Resize
(
shape
);
int64_t
size
=
tensor
->
numel
();
T
*
data
=
tensor
->
mutable_data
<
T
>
(
context
.
GetPlace
());
unsigned
int
seed
=
static_cast
<
unsigned
int
>
(
context
.
Attr
<
int
>
(
"seed"
));
auto
engine
=
framework
::
GetCPURandomEngine
(
seed
);
for
(
int64_t
i
=
0
;
i
<
size
;
++
i
)
{
data
[
i
]
=
dist
(
*
engine
);
}
}
};
// namespace operators
template
<
typename
T
>
template
<
typename
T
>
class
CPUGaussianRandomBatchSizeLikeKernel
:
public
framework
::
OpKernel
<
T
>
{
class
CPUGaussianRandomBatchSizeLikeKernel
:
public
framework
::
OpKernel
<
T
>
{
...
@@ -194,8 +173,6 @@ Used to initialize tensors with gaussian random generator.
...
@@ -194,8 +173,6 @@ Used to initialize tensors with gaussian random generator.
namespace
ops
=
paddle
::
operators
;
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_WITHOUT_GRADIENT
(
gaussian_random
,
ops
::
GaussianRandomOp
,
REGISTER_OP_WITHOUT_GRADIENT
(
gaussian_random
,
ops
::
GaussianRandomOp
,
ops
::
GaussianRandomOpMaker
);
ops
::
GaussianRandomOpMaker
);
REGISTER_OP_CPU_KERNEL
(
gaussian_random
,
ops
::
CPUGaussianRandomKernel
<
float
>
,
ops
::
CPUGaussianRandomKernel
<
double
>
);
REGISTER_OP_CPU_KERNEL
(
gaussian_random_batch_size_like
,
REGISTER_OP_CPU_KERNEL
(
gaussian_random_batch_size_like
,
ops
::
CPUGaussianRandomBatchSizeLikeKernel
<
float
>
,
ops
::
CPUGaussianRandomBatchSizeLikeKernel
<
float
>
,
ops
::
CPUGaussianRandomBatchSizeLikeKernel
<
double
>
);
ops
::
CPUGaussianRandomBatchSizeLikeKernel
<
double
>
);
...
...
paddle/fluid/operators/gaussian_random_op.cu
浏览文件 @
00bbb8c5
...
@@ -52,53 +52,6 @@ struct GaussianGenerator {
...
@@ -52,53 +52,6 @@ struct GaussianGenerator {
}
}
};
};
template
<
typename
T
>
class
GPUGaussianRandomKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
tensor
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
unsigned
int
seed
=
static_cast
<
unsigned
int
>
(
context
.
Attr
<
int
>
(
"seed"
));
bool
seed_flag
=
false
;
if
(
seed
==
0
)
{
std
::
random_device
rd
;
seed
=
rd
();
seed_flag
=
true
;
}
T
mean
=
static_cast
<
T
>
(
context
.
Attr
<
float
>
(
"mean"
));
T
std
=
static_cast
<
T
>
(
context
.
Attr
<
float
>
(
"std"
));
auto
shape
=
GetShape
(
context
);
tensor
->
Resize
(
shape
);
auto
&
dev_cxt
=
context
.
template
device_context
<
platform
::
CUDADeviceContext
>();
T
*
data
=
tensor
->
mutable_data
<
T
>
(
dev_cxt
.
GetPlace
());
int64_t
size
=
tensor
->
numel
();
int
device_id
=
context
.
GetPlace
().
GetDeviceId
();
auto
gen_cuda
=
framework
::
GetDefaultCUDAGenerator
(
device_id
);
if
(
gen_cuda
->
GetIsInitPy
()
&&
seed_flag
)
{
if
(
FLAGS_use_curand
)
{
using
MT
=
typename
details
::
MPTypeTrait
<
T
>::
Type
;
distribution
::
normal_distribution
<
MT
>
dist
;
distribution
::
normal_transform
<
MT
>
trans
(
mean
,
std
);
distribution
::
distribution_and_transform
<
T
>
(
dev_cxt
,
tensor
,
dist
,
trans
);
}
else
{
auto
seed_offset
=
gen_cuda
->
IncrementOffset
(
1
);
int64_t
gen_offset
=
size
*
seed_offset
.
second
;
auto
func
=
GaussianGenerator
<
T
>
(
mean
,
std
,
seed_offset
.
first
,
gen_offset
);
IndexKernel
<
T
,
GaussianGenerator
<
T
>>
(
dev_cxt
,
tensor
,
func
);
}
}
else
{
auto
func
=
GaussianGenerator
<
T
>
(
mean
,
std
,
seed
);
IndexKernel
<
T
,
GaussianGenerator
<
T
>>
(
dev_cxt
,
tensor
,
func
);
}
}
};
template
<
typename
T
>
template
<
typename
T
>
class
GPUGaussianRandomBatchSizeLikeKernel
:
public
framework
::
OpKernel
<
T
>
{
class
GPUGaussianRandomBatchSizeLikeKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
...
@@ -136,11 +89,6 @@ class GPUGaussianRandomBatchSizeLikeKernel : public framework::OpKernel<T> {
...
@@ -136,11 +89,6 @@ class GPUGaussianRandomBatchSizeLikeKernel : public framework::OpKernel<T> {
}
// namespace operators
}
// namespace operators
}
// namespace paddle
}
// namespace paddle
REGISTER_OP_CUDA_KERNEL
(
gaussian_random
,
paddle
::
operators
::
GPUGaussianRandomKernel
<
paddle
::
platform
::
float16
>
,
paddle
::
operators
::
GPUGaussianRandomKernel
<
float
>
,
paddle
::
operators
::
GPUGaussianRandomKernel
<
double
>
);
REGISTER_OP_CUDA_KERNEL
(
REGISTER_OP_CUDA_KERNEL
(
gaussian_random_batch_size_like
,
gaussian_random_batch_size_like
,
paddle
::
operators
::
GPUGaussianRandomBatchSizeLikeKernel
<
paddle
::
operators
::
GPUGaussianRandomBatchSizeLikeKernel
<
...
...
paddle/phi/kernels/cpu/gaussian_random_kernel.cc
0 → 100644
浏览文件 @
00bbb8c5
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/gaussian_random_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/fluid/framework/generator.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
GaussianRandomKernel
(
const
Context
&
dev_ctx
,
const
ScalarArray
&
shape
,
float
mean
,
float
std
,
int
seed
,
DataType
dtype
,
DenseTensor
*
out
)
{
auto
tensor
=
out
;
std
::
normal_distribution
<
T
>
dist
(
mean
,
std
);
tensor
->
Resize
(
phi
::
make_ddim
(
shape
.
GetData
()));
int64_t
size
=
tensor
->
numel
();
T
*
data
=
dev_ctx
.
template
Alloc
<
T
>(
tensor
);
auto
engine
=
paddle
::
framework
::
GetCPURandomEngine
(
seed
);
for
(
int64_t
i
=
0
;
i
<
size
;
++
i
)
{
data
[
i
]
=
dist
(
*
engine
);
}
}
}
// namespace phi
PD_REGISTER_KERNEL
(
gaussian_random
,
CPU
,
ALL_LAYOUT
,
phi
::
GaussianRandomKernel
,
float
,
double
)
{}
paddle/phi/kernels/gaussian_random_kernel.h
0 → 100644
浏览文件 @
00bbb8c5
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/common/scalar_array.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/device_context.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
GaussianRandomKernel
(
const
Context
&
ctx
,
const
ScalarArray
&
shape
,
float
mean
,
float
std
,
int
seed
,
DataType
dtype
,
DenseTensor
*
out
);
}
// namespace phi
paddle/phi/kernels/gpu/gaussian_random_kernel.cu
0 → 100644
浏览文件 @
00bbb8c5
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/gaussian_random_kernel.h"
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
#include <thrust/random.h>
#include <thrust/transform.h>
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/distribution_helper.h"
#include "paddle/phi/kernels/funcs/index_impl.cu.h"
#include "paddle/fluid/framework/generator.h"
DECLARE_bool
(
use_curand
);
namespace
phi
{
template
<
typename
T
>
struct
GaussianGenerator
{
T
mean_
,
std_
;
unsigned
int
seed_
;
unsigned
int
offset_
=
0
;
__host__
__device__
GaussianGenerator
(
T
mean
,
T
std
,
int
seed
)
:
mean_
(
mean
),
std_
(
std
),
seed_
(
seed
)
{}
__host__
__device__
GaussianGenerator
(
T
mean
,
T
std
,
int
seed
,
int
offset
)
:
mean_
(
mean
),
std_
(
std
),
seed_
(
seed
),
offset_
(
offset
)
{}
__host__
__device__
T
operator
()(
const
unsigned
int
n
)
const
{
thrust
::
minstd_rand
rng
;
rng
.
seed
(
seed_
);
using
MT
=
typename
phi
::
kps
::
details
::
MPTypeTrait
<
T
>::
Type
;
thrust
::
normal_distribution
<
MT
>
dist
(
mean_
,
std_
);
unsigned
int
new_n
=
n
+
offset_
;
rng
.
discard
(
new_n
);
MT
out
=
dist
(
rng
);
return
static_cast
<
T
>
(
out
);
}
};
template
<
typename
T
,
typename
Context
>
void
GaussianRandomKernel
(
const
Context
&
dev_ctx
,
const
ScalarArray
&
shape
,
float
mean
,
float
std
,
int
seed
,
DataType
dtype
,
DenseTensor
*
out
)
{
auto
tensor
=
out
;
bool
seed_flag
=
false
;
if
(
seed
==
0
)
{
std
::
random_device
rd
;
seed
=
rd
();
seed_flag
=
true
;
}
tensor
->
Resize
(
phi
::
make_ddim
(
shape
.
GetData
()));
T
*
data
=
dev_ctx
.
template
Alloc
<
T
>(
tensor
);
int64_t
size
=
tensor
->
numel
();
int
device_id
=
dev_ctx
.
GetPlace
().
GetDeviceId
();
auto
gen_cuda
=
paddle
::
framework
::
GetDefaultCUDAGenerator
(
device_id
);
using
MT
=
typename
phi
::
kps
::
details
::
MPTypeTrait
<
T
>::
Type
;
if
(
gen_cuda
->
GetIsInitPy
()
&&
seed_flag
)
{
if
(
FLAGS_use_curand
)
{
funcs
::
normal_distribution
<
MT
>
dist
;
funcs
::
normal_transform
<
MT
>
trans
(
mean
,
std
);
funcs
::
distribution_and_transform
<
T
>
(
dev_ctx
,
tensor
,
dist
,
trans
);
}
else
{
auto
seed_offset
=
gen_cuda
->
IncrementOffset
(
1
);
int64_t
gen_offset
=
size
*
seed_offset
.
second
;
auto
func
=
GaussianGenerator
<
MT
>
(
mean
,
std
,
seed_offset
.
first
,
gen_offset
);
IndexKernel
<
T
,
GaussianGenerator
<
MT
>>
(
dev_ctx
,
tensor
,
func
);
}
}
else
{
auto
func
=
GaussianGenerator
<
MT
>
(
mean
,
std
,
seed
);
IndexKernel
<
T
,
GaussianGenerator
<
MT
>>
(
dev_ctx
,
tensor
,
func
);
}
}
}
// namespace phi
PD_REGISTER_KERNEL
(
gaussian_random
,
GPU
,
ALL_LAYOUT
,
phi
::
GaussianRandomKernel
,
phi
::
dtype
::
float16
,
float
,
double
)
{}
paddle/phi/ops/compat/gaussian_random_sig.cc
0 → 100644
浏览文件 @
00bbb8c5
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/core/compat/op_utils.h"
namespace
phi
{
KernelSignature
GaussianRandomOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
if
(
ctx
.
InputSize
(
"ShapeTensorList"
)
>
0
)
{
return
KernelSignature
(
"gaussian_random"
,
{},
{
"ShapeTensorList"
,
"mean"
,
"std"
,
"seed"
,
"dtype"
},
{
"Out"
});
}
const
auto
&
shape
=
paddle
::
any_cast
<
std
::
vector
<
int64_t
>>
(
ctx
.
Attr
(
"shape"
));
if
(
ctx
.
HasInput
(
"ShapeTensor"
)
&&
shape
.
empty
())
{
return
KernelSignature
(
"gaussian_random"
,
{},
{
"ShapeTensor"
,
"mean"
,
"std"
,
"seed"
,
"dtype"
},
{
"Out"
});
}
return
KernelSignature
(
"gaussian_random"
,
{},
{
"shape"
,
"mean"
,
"std"
,
"seed"
,
"dtype"
},
{
"Out"
});
}
}
// namespace phi
PD_REGISTER_ARG_MAPPING_FN
(
gaussian_random
,
phi
::
GaussianRandomOpArgumentMapping
);
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录