test_initializer.py 24.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import numpy as np
18 19
import unittest

20
import paddle
21
import paddle.fluid as fluid
22 23
import paddle.fluid.framework as framework
import paddle.fluid.initializer as initializer
24
from paddle.fluid.core import VarDesc
25 26 27 28

DELTA = 0.00001


29 30 31 32 33 34
def check_cast_op(op):
    return op.type == 'cast' and \
           op.attr('in_dtype') == VarDesc.VarType.FP32 and \
           op.attr('out_dtype') == VarDesc.VarType.FP16


35 36 37 38 39 40 41 42
def output_hist(out):
    hist, _ = np.histogram(out, range=(-1, 1))
    hist = hist.astype("float32")
    hist /= float(out.size)
    prob = 0.1 * np.ones((10))
    return hist, prob


43
class TestConstantInitializer(unittest.TestCase):
44
    def test_constant_initializer_default_value(self, dtype="float32"):
45 46 47 48
        """Test the constant initializer with default value
        """
        program = framework.Program()
        block = program.global_block()
49 50
        for _ in range(2):
            block.create_parameter(
51
                dtype=dtype,
52 53 54 55
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.ConstantInitializer())
56 57
        num_ops = 2 if dtype == "float16" else 1
        self.assertEqual(len(block.ops), num_ops)
58 59 60
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'fill_constant')
        self.assertAlmostEqual(init_op.attr('value'), 0.0, delta=DELTA)
61
        return block
62

63
    def test_constant_initializer(self, dtype="float32"):
64 65 66 67
        """Test constant initializer with supplied value
        """
        program = framework.Program()
        block = program.global_block()
68 69
        for _ in range(2):
            block.create_parameter(
70
                dtype=dtype,
71 72 73 74
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.ConstantInitializer(2.3))
75 76
        num_ops = 2 if dtype == "float16" else 1
        self.assertEqual(len(block.ops), num_ops)
77 78 79
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'fill_constant')
        self.assertAlmostEqual(init_op.attr('value'), 2.3, delta=DELTA)
80 81 82 83 84 85 86 87 88
        return block

    def test_constant_initializer_fp16(self):
        """Test constant initializer with float16
        """
        block = self.test_constant_initializer_default_value("float16")
        self.assertTrue(check_cast_op(block.ops[1]))
        block = self.test_constant_initializer("float16")
        self.assertTrue(check_cast_op(block.ops[1]))
89 90 91


class TestUniformInitializer(unittest.TestCase):
92
    def test_uniform_initializer_default_value(self, dtype="float32"):
93 94 95 96
        """Test the uniform initializer with default value
        """
        program = framework.Program()
        block = program.global_block()
97 98
        for _ in range(2):
            block.create_parameter(
99
                dtype=dtype,
100 101 102 103
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.UniformInitializer())
104 105
        num_ops = 2 if dtype == "float16" else 1
        self.assertEqual(len(block.ops), num_ops)
106 107 108 109 110
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'uniform_random')
        self.assertAlmostEqual(init_op.attr('min'), -1.0, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('max'), 1.0, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)
111
        return block
112

D
dzhwinter 已提交
113 114 115 116 117 118
    def test_uniform_initializer_random_seed(self):
        """Test the uniform initializer with manually setting seed
        """
        program = framework.Program()
        program.random_seed = 123
        block = program.global_block()
119 120 121 122 123
        for _ in range(2):
            block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
Q
qiaolongfei 已提交
124
                name="param1",
125 126 127 128 129
                initializer=initializer.UniformInitializer())
            block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
Q
qiaolongfei 已提交
130
                name="param2",
131
                initializer=initializer.UniformInitializer(seed=456))
D
dzhwinter 已提交
132 133 134 135 136
        init_op = block.ops[1]
        self.assertEqual(init_op.attr("seed"), 123)
        init_op1 = block.ops[0]
        self.assertEqual(init_op1.attr("seed"), 456)

137
    def test_uniform_initializer(self, dtype="float32"):
138 139 140 141
        """Test uniform initializer with supplied attributes
        """
        program = framework.Program()
        block = program.global_block()
142 143
        for _ in range(2):
            block.create_parameter(
144
                dtype=dtype,
145 146 147 148
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.UniformInitializer(-4.2, 3.1, 123))
149 150
        num_ops = 2 if dtype == "float16" else 1
        self.assertEqual(len(block.ops), num_ops)
151 152 153 154 155
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'uniform_random')
        self.assertAlmostEqual(init_op.attr('min'), -4.2, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('max'), 3.1, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 123)
156
        return block
157

158
    def test_uniform_initializer_two_op(self, dtype="float32"):
159 160 161 162 163 164
        """Test uniform initializer with supplied attributes
        """
        program = framework.Program()
        block = program.global_block()
        for i in range(2):
            block.create_parameter(
165
                dtype=dtype,
166 167 168 169
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.UniformInitializer(-4.2, float(i), 123))
170 171
        num_ops = 2 if dtype == "float16" else 1
        self.assertEqual(len(block.ops), num_ops)
172 173 174
        init_op0 = block.ops[0]
        self.assertEqual(init_op0.type, 'uniform_random')
        self.assertAlmostEqual(init_op0.attr('min'), -4.2, delta=DELTA)
Q
qiaolongfei 已提交
175
        self.assertAlmostEqual(init_op0.attr('max'), 0.0, delta=DELTA)
176
        self.assertEqual(init_op0.attr('seed'), 123)
177 178 179 180 181 182 183 184 185 186 187
        return block

    def test_uniform_initializer_fp16(self):
        """Test uniform initializer with float16
        """
        block = self.test_uniform_initializer_default_value("float16")
        self.assertTrue(check_cast_op(block.ops[1]))
        block = self.test_uniform_initializer(dtype="float16")
        self.assertTrue(check_cast_op(block.ops[1]))
        block = self.test_uniform_initializer_two_op("float16")
        self.assertTrue(check_cast_op(block.ops[1]))
188

189 190 191 192 193 194 195

class TestNormalInitializer(unittest.TestCase):
    def test_normal_initializer_default_value(self):
        """Test the normal initializer with default value
        """
        program = framework.Program()
        block = program.global_block()
196 197 198 199 200 201 202
        for _ in range(2):
            block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.NormalInitializer())
203 204 205 206 207 208 209
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'gaussian_random')
        self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('std'), 1.0, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

210
    def test_normal_initializer(self, dtype="float32"):
211 212 213 214
        """Test normal initializer with supplied attributes
        """
        program = framework.Program()
        block = program.global_block()
215 216
        for _ in range(2):
            block.create_parameter(
217
                dtype=dtype,
218 219 220 221
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.NormalInitializer(2.3, 1.9, 123))
222 223
        num_ops = 2 if dtype == "float16" else 1
        self.assertEqual(len(block.ops), num_ops)
224 225 226 227 228
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'gaussian_random')
        self.assertAlmostEqual(init_op.attr('mean'), 2.3, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('std'), 1.9, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 123)
229 230 231 232 233 234 235
        return block

    def test_normal_initializer_fp16(self):
        """Test normal initializer with float16
        """
        block = self.test_normal_initializer("float16")
        self.assertTrue(check_cast_op(block.ops[1]))
236 237


238 239 240 241 242 243 244
class TestXavierInitializer(unittest.TestCase):
    def test_uniform_xavier_initializer(self):
        """Test Xavier initializer with uniform distribution on
           for matrix multiply.
        """
        program = framework.Program()
        block = program.global_block()
245 246 247 248 249 250 251
        for _ in range(2):
            param = block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.XavierInitializer())
252 253 254 255 256 257 258 259 260 261 262 263 264 265
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'uniform_random')
        limit = np.sqrt(6.0 / (param.shape[0] + param.shape[1]))
        self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

    def test_uniform_xavier_initializer_conv(self):
        """Test Xavier initializer with uniform distribution on
           for convolutions.
        """
        program = framework.Program()
        block = program.global_block()
266 267 268 269 270 271 272
        for _ in range(2):
            param = block.create_parameter(
                dtype="float32",
                shape=[5, 10, 15, 20],
                lod_level=0,
                name="param",
                initializer=initializer.XavierInitializer())
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'uniform_random')
        receptive_field_size = float(15 * 20)
        limit = np.sqrt(6.0 / (
            (param.shape[0] + param.shape[1]) * receptive_field_size))
        self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

    def test_normal_xavier_initializer(self):
        """Test Xavier initializer with normal distribution on
           for matrix multiply.
        """
        program = framework.Program()
        block = program.global_block()
289 290 291 292 293 294 295
        for _ in range(2):
            param = block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.XavierInitializer(uniform=False))
296 297 298 299 300 301 302 303 304 305 306 307 308 309
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'gaussian_random')
        std = np.sqrt(2.0 / (param.shape[0] + param.shape[1]))
        self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('std'), std, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

    def test_normal_xavier_initializer_conv(self):
        """Test Xavier initializer with normal distribution on
           for convolutions.
        """
        program = framework.Program()
        block = program.global_block()
310 311 312 313 314 315 316
        for _ in range(2):
            param = block.create_parameter(
                dtype="float32",
                shape=[5, 10, 15, 20],
                lod_level=0,
                name="param",
                initializer=initializer.XavierInitializer(uniform=False))
317 318 319 320 321 322 323 324 325 326
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'gaussian_random')
        receptive_field_size = float(15 * 20)
        std = np.sqrt(2.0 / (
            (param.shape[0] + param.shape[1]) * receptive_field_size))
        self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('std'), std, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

327
    def test_xavier_initializer_supplied_arguments(self, dtype="float32"):
328 329 330 331
        """Test the Xavier initializer with supplied arguments
        """
        program = framework.Program()
        block = program.global_block()
332 333
        for _ in range(2):
            block.create_parameter(
334
                dtype=dtype,
335 336 337 338 339
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.XavierInitializer(
                    fan_in=12, fan_out=23, seed=134))
340 341
        num_ops = 2 if dtype == "float16" else 1
        self.assertEqual(len(block.ops), num_ops)
342 343 344 345 346 347
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'uniform_random')
        limit = np.sqrt(6.0 / (12 + 23))
        self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 134)
348 349 350 351 352 353 354
        return block

    def test_xavier_initializer_fp16(self):
        """Test the Xavier initializer with float16
        """
        block = self.test_xavier_initializer_supplied_arguments("float16")
        self.assertTrue(check_cast_op(block.ops[1]))
355 356


357 358 359 360 361 362 363
class TestMSRAInitializer(unittest.TestCase):
    def test_uniform_msra_initializer(self):
        """Test MSRA initializer with uniform distribution on
           for matrix multiply.
        """
        program = framework.Program()
        block = program.global_block()
364 365 366 367 368 369 370
        for _ in range(2):
            param = block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.MSRAInitializer())
371 372 373 374 375 376 377 378 379 380 381 382 383 384
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'uniform_random')
        limit = np.sqrt(6.0 / param.shape[0])
        self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

    def test_uniform_msra_initializer_conv(self):
        """Test MSRA initializer with uniform distribution on
           for convolutions.
        """
        program = framework.Program()
        block = program.global_block()
385 386 387 388 389 390 391
        for _ in range(2):
            param = block.create_parameter(
                dtype="float32",
                shape=[5, 10, 15, 20],
                lod_level=0,
                name="param",
                initializer=initializer.MSRAInitializer())
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'uniform_random')
        receptive_field_size = float(15 * 20)
        limit = np.sqrt(6.0 / (param.shape[1] * receptive_field_size))
        self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

    def test_normal_msra_initializer(self):
        """Test MSRA initializer with normal distribution on
           for matrix multiply.
        """
        program = framework.Program()
        block = program.global_block()
407 408 409 410 411 412 413
        for _ in range(2):
            param = block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.MSRAInitializer(uniform=False))
414 415 416 417 418 419 420 421 422 423 424 425 426 427
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'gaussian_random')
        std = np.sqrt(2.0 / param.shape[0])
        self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('std'), std, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

    def test_normal_msra_initializer_conv(self):
        """Test MSRA initializer with normal distribution on
           for convolutions.
        """
        program = framework.Program()
        block = program.global_block()
428 429 430 431 432 433 434
        for _ in range(2):
            param = block.create_parameter(
                dtype="float32",
                shape=[5, 10, 15, 20],
                lod_level=0,
                name="param",
                initializer=initializer.MSRAInitializer(uniform=False))
435 436 437 438 439 440 441 442 443
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'gaussian_random')
        receptive_field_size = float(15 * 20)
        std = np.sqrt(2.0 / (param.shape[1] * receptive_field_size))
        self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('std'), std, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

444
    def test_msra_initializer_supplied_arguments(self, dtype="float32"):
445 446 447 448
        """Test the MSRA initializer with supplied arguments
        """
        program = framework.Program()
        block = program.global_block()
449 450
        for _ in range(2):
            block.create_parameter(
451
                dtype=dtype,
452 453 454 455 456
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.MSRAInitializer(
                    fan_in=12, seed=134))
457 458
        num_ops = 2 if dtype == "float16" else 1
        self.assertEqual(len(block.ops), num_ops)
459 460 461 462 463 464
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'uniform_random')
        limit = np.sqrt(6.0 / 12)
        self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 134)
465
        return block
466

467 468 469 470 471
    def test_msra_initializer_fp16(self):
        """Test the MSRA initializer with float16
        """
        block = self.test_msra_initializer_supplied_arguments("float16")
        self.assertTrue(check_cast_op(block.ops[1]))
472

473 474 475

class TestBilinearInitializer(unittest.TestCase):
    def test_bilinear_initializer(self, dtype="float32"):
476 477 478 479
        """Test the bilinear initializer with supplied arguments
        """
        program = framework.Program()
        block = program.global_block()
480 481
        for _ in range(2):
            block.create_parameter(
482
                dtype=dtype,
483 484 485 486
                shape=[8, 1, 3, 3],
                lod_level=0,
                name="param",
                initializer=initializer.BilinearInitializer())
487
        num_ops = 2 if dtype == "float16" or dtype == "float64" else 1
488
        self.assertEqual(len(block.ops), num_ops)
489 490
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'assign_value')
491 492
        return block

493 494 495
    def test_bilinear_initializer_fp64(self):
        self.test_bilinear_initializer(dtype='float64')

496 497 498 499 500
    def test_bilinear_initializer_fp16(self):
        """Test the bilinear initializer with supplied arguments
        """
        block = self.test_bilinear_initializer("float16")
        self.assertTrue(check_cast_op(block.ops[1]))
501

502 503 504
    def test_type_error(self):
        self.assertRaises(TypeError, self.test_bilinear_initializer, 'int32')

505

Q
Qiao Longfei 已提交
506
class TestNumpyArrayInitializer(unittest.TestCase):
507
    def test_numpy_array_initializer(self, dtype="float32"):
Q
Qiao Longfei 已提交
508 509 510 511 512
        """Test the numpy array initializer with supplied arguments
        """
        import numpy
        program = framework.Program()
        block = program.global_block()
513
        np_array = numpy.random.random((10000)).astype(dtype)
Q
Qiao Longfei 已提交
514 515 516 517 518 519 520
        for _ in range(2):
            block.create_parameter(
                dtype=np_array.dtype,
                shape=np_array.shape,
                lod_level=0,
                name="param",
                initializer=initializer.NumpyArrayInitializer(np_array))
521 522
        num_ops = 2 if dtype == "float16" else 1
        self.assertEqual(len(block.ops), num_ops)
Q
Qiao Longfei 已提交
523 524
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'assign_value')
525
        assert (init_op.attr('fp32_values') == np_array).all()
526 527 528 529 530 531 532
        return block

    def test_numpy_array_initializer_fp16(self):
        """Test the numpy array initializer with float16
        """
        block = self.test_numpy_array_initializer("float16")
        self.assertTrue(block.ops[1])
Q
Qiao Longfei 已提交
533 534


535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
class TestSetGlobalInitializer(unittest.TestCase):
    def test_set_global_weight_initilizer(self):
        """Test Set Global Param initilizer with UniformInitializer
        """
        main_prog = framework.Program()
        startup_prog = framework.Program()
        fluid.set_global_initializer(initializer.Uniform(low=-0.5, high=0.5))
        with fluid.program_guard(main_prog, startup_prog):
            x = fluid.data(name="x", shape=[1, 3, 32, 32])
            # default initilizer of param in layers.conv2d is NormalInitializer
            conv = fluid.layers.conv2d(x, 5, 3)

        block = startup_prog.global_block()
        self.assertEqual(len(block.ops), 2)

        # init bias is the first op, and weight is the second
        bias_init_op = block.ops[0]
        self.assertEqual(bias_init_op.type, 'fill_constant')
        self.assertAlmostEqual(bias_init_op.attr('value'), 0.0, delta=DELTA)

        param_init_op = block.ops[1]
        self.assertEqual(param_init_op.type, 'uniform_random')
        self.assertAlmostEqual(param_init_op.attr('min'), -0.5, delta=DELTA)
        self.assertAlmostEqual(param_init_op.attr('max'), 0.5, delta=DELTA)
        self.assertEqual(param_init_op.attr('seed'), 0)
        fluid.set_global_initializer(None)

    def test_set_global_bias_initilizer(self):
        """Test Set Global Bias initilizer with NormalInitializer
        """
        main_prog = framework.Program()
        startup_prog = framework.Program()
        fluid.set_global_initializer(
            initializer.Uniform(
                low=-0.5, high=0.5),
            bias_init=initializer.Normal(
                loc=0.0, scale=2.0))
        with fluid.program_guard(main_prog, startup_prog):
            x = fluid.data(name="x", shape=[1, 3, 32, 32])
            # default initilizer of bias in layers.conv2d is ConstantInitializer
            conv = fluid.layers.conv2d(x, 5, 3)

        block = startup_prog.global_block()
        self.assertEqual(len(block.ops), 2)

        # init bias is the first op, and weight is the second
        bias_init_op = block.ops[0]
        self.assertEqual(bias_init_op.type, 'gaussian_random')
        self.assertAlmostEqual(bias_init_op.attr('mean'), 0.0, delta=DELTA)
        self.assertAlmostEqual(bias_init_op.attr('std'), 2.0, delta=DELTA)
        self.assertEqual(bias_init_op.attr('seed'), 0)

        param_init_op = block.ops[1]
        self.assertEqual(param_init_op.type, 'uniform_random')
        self.assertAlmostEqual(param_init_op.attr('min'), -0.5, delta=DELTA)
        self.assertAlmostEqual(param_init_op.attr('max'), 0.5, delta=DELTA)
        self.assertEqual(param_init_op.attr('seed'), 0)
        fluid.set_global_initializer(None)


595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
class TestUniformInitializerDygraph(unittest.TestCase):
    def test_uniform_initializer(self, dtype="float32"):
        """
        In dygraph mode, we can use initializer directly to initialize a tensor.
        """
        paddle.disable_static()

        tensor = paddle.zeros([1024, 1024])
        tensor.stop_gradient = False
        self.assertTrue(np.allclose(np.zeros((1024, 1024)), tensor.numpy()))

        uniform_ = paddle.nn.initializer.Uniform()
        uniform_(tensor)

        self.assertEqual(tensor.stop_gradient,
                         False)  # stop_gradient is not changed

        hist, prob = output_hist(tensor.numpy())

        self.assertTrue(
            np.allclose(
                hist, prob, rtol=0, atol=1e-3), "hist: " + str(hist))

        paddle.enable_static()


621 622
if __name__ == '__main__':
    unittest.main()