legacy_backward.yaml 86.6 KB
Newer Older
1
- backward_op : abs_double_grad
Z
zyfncg 已提交
2 3 4 5 6 7 8 9 10 11 12
  forward : abs_grad (Tensor x, Tensor grad_out) -> Tensor(grad_x)
  args : (Tensor x, Tensor grad_x_grad)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : abs_double_grad
  data_transform:
    skip_transform : grad_x_grad

13
- backward_op : abs_grad
Z
zyfncg 已提交
14 15 16 17 18 19 20 21 22 23
  forward : abs (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : abs_grad
  backward : abs_double_grad

24
- backward_op : add_double_grad
Z
zyfncg 已提交
25 26 27 28 29 30 31 32 33 34 35 36
  forward : add_grad (Tensor x, Tensor y, Tensor grad_out, int axis = -1) -> Tensor(grad_x), Tensor(grad_y)
  args : (Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, int axis = -1)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [grad_out]
  kernel :
    func : add_double_grad
  optional : grad_x_grad, grad_y_grad
  backward : add_triple_grad
  inplace : (grad_x_grad -> grad_out_grad)

37
- backward_op : add_grad
Z
zyfncg 已提交
38 39 40 41 42 43 44 45 46 47 48 49
  forward : add (Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : add_grad
  no_need_buffer : x, y
  backward : add_double_grad
  inplace : (out_grad -> x_grad)

50
- backward_op : add_triple_grad
Z
zyfncg 已提交
51 52 53 54 55 56 57 58 59 60
  forward : add_double_grad (Tensor y, Tensor grad_out, Tensor grad_grad_x, Tensor grad_grad_y, int axis = -1) -> Tensor(grad_grad_out)
  args : (Tensor grad_grad_x, Tensor grad_grad_y, Tensor grad_grad_out_grad, int axis = -1)
  output : Tensor(grad_grad_x_grad), Tensor(grad_grad_y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [grad_grad_x, grad_grad_y]
  kernel :
    func : add_triple_grad
  inplace : (grad_grad_out_grad -> grad_grad_x_grad)

61
- backward_op : addmm_grad
62
  forward : addmm (Tensor input, Tensor x, Tensor y, float beta, float alpha) -> Tensor(out)
Z
zyfncg 已提交
63 64 65 66 67 68 69 70
  args : (Tensor input, Tensor x, Tensor y, Tensor out_grad, float alpha, float beta)
  output : Tensor(input_grad), Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [input, x, y]
  kernel :
    func : addmm_grad

71
- backward_op : affine_grid_grad
72 73 74 75 76 77 78 79 80 81 82
  forward : affine_grid (Tensor input, IntArray outputShape, bool use_cudnn=true, bool align_corners=true) -> Tensor(output)
  args : (Tensor output_grad, IntArray outputShape, bool use_cudnn=true, bool align_corners=true)
  output : Tensor(input_grad)
  infer_meta :
    func : AffineGridGradInferMeta
    param : [output_grad, outputShape, align_corners]
  kernel :
    func : affine_grid_grad
    param : [output_grad, outputShape, align_corners]
    use_gpudnn: use_cudnn

83
- backward_op : amax_grad
84 85
  forward: amax (Tensor x,  int64_t[] axis={},  bool keepdim=false) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] axis={},  bool keepdim=false, bool reduce_all=false)
86 87 88 89 90 91 92
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : amax_grad

93
- backward_op : amin_grad
94 95
  forward: amin (Tensor x,  int64_t[] axis={},  bool keepdim=false) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] axis={},  bool keepdim=false, bool reduce_all=false)
96 97 98 99 100 101 102
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : amin_grad

103
- backward_op : as_complex_grad
104 105 106 107 108
  forward : as_complex (Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  invoke : as_real(out_grad)

109
- backward_op : as_real_grad
110 111 112 113 114
  forward : as_real (Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  invoke : as_complex(out_grad)

115
- backward_op : assign_grad
Z
zyfncg 已提交
116 117 118
  forward : assign (Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
119
  invoke : assign(out_grad)
Z
zyfncg 已提交
120

121
- backward_op : assign_out__grad
Z
zyfncg 已提交
122 123 124 125 126 127 128 129 130
  forward : assign_out_ (Tensor x, Tensor output) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
  kernel :
    func : assign
  inplace : (out_grad -> x_grad)

131
- backward_op : batch_norm_double_grad
132 133
  forward : batch_norm_grad (Tensor x, Tensor scale, Tensor bias, Tensor out_mean, Tensor out_variance, Tensor saved_mean, Tensor saved_variance, Tensor reserve_space, Tensor grad_out, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics) -> Tensor(grad_x), Tensor(grad_scale), Tensor(grad_bias)
  args : (Tensor x, Tensor scale, Tensor out_mean, Tensor out_variance, Tensor saved_mean, Tensor saved_variance, Tensor grad_out,  Tensor grad_x_grad, Tensor grad_scale_grad, Tensor grad_bias_grad, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics)
Z
zyfncg 已提交
134 135 136 137 138 139 140 141 142 143
  output : Tensor(x_grad), Tensor(scale_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [x, scale, x]
  kernel :
    func : batch_norm_grad_grad
    data_type : x
  optional : out_mean, out_variance
  inplace : (grad_out -> grad_out_grad)

144
- backward_op : batch_norm_grad
145 146
  forward : batch_norm (Tensor x, Tensor mean, Tensor variance, Tensor scale, Tensor bias, bool is_test, float momentum, float epsilon, str data_layout, bool use_global_stats, bool trainable_statistics) -> Tensor(out), Tensor(mean_out), Tensor(variance_out), Tensor(saved_mean), Tensor(saved_variance), Tensor(reserve_space)
  args : (Tensor x, Tensor scale, Tensor bias, Tensor mean_out, Tensor variance_out, Tensor saved_mean, Tensor saved_variance, Tensor reserve_space, Tensor out_grad, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics)
Z
zyfncg 已提交
147 148 149 150 151 152 153 154 155 156
  output : Tensor(x_grad), Tensor(scale_grad), Tensor(bias_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [x, scale, bias]
  kernel :
    func : batch_norm_grad
    data_type : out_grad
  optional : mean_out, variance_out, reserve_space
  backward : batch_norm_double_grad

157
- backward_op : bce_loss_grad
Z
zyfncg 已提交
158 159 160 161 162 163 164 165 166 167
  forward : bce_loss (Tensor input, Tensor label) -> Tensor(out)
  args : (Tensor input, Tensor label, Tensor out_grad)
  output : Tensor(input_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [input]
  kernel :
    func : bce_loss_grad
  inplace : (out_grad -> input_grad)

168
- backward_op : bicubic_interp_grad
169 170 171 172 173 174 175 176 177 178 179
  forward : bicubic_interp (Tensor x, Tensor out_size, Tensor[] size_tensor, Tensor scale_tensor, str data_layout, int out_d, int out_h, int out_w, float[] scale, str interp_method, bool align_corners, int align_mode) -> Tensor(output)
  args : (Tensor x, Tensor out_size, Tensor[] size_tensor, Tensor scale_tensor, Tensor output_grad, str data_layout, int out_d, int out_h, int out_w, float[] scale, str interp_method, bool align_corners, int align_mode)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  optional: out_size, size_tensor, scale_tensor
  kernel :
    func : bicubic_interp_grad
    data_type : output_grad

180
- backward_op : bilinear_interp_grad
181 182 183 184 185 186 187 188 189 190 191
  forward : bilinear_interp (Tensor x, Tensor out_size, Tensor[] size_tensor, Tensor scale_tensor, str data_layout, int out_d, int out_h, int out_w, float[] scale, str interp_method, bool align_corners, int align_mode) -> Tensor(output)
  args : (Tensor x, Tensor out_size, Tensor[] size_tensor, Tensor scale_tensor, Tensor output_grad, str data_layout, int out_d, int out_h, int out_w, float[] scale, str interp_method, bool align_corners, int align_mode)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  optional: out_size, size_tensor, scale_tensor
  kernel :
    func : bilinear_interp_grad
    data_type : output_grad

192
- backward_op : bilinear_tensor_product_grad
193 194 195 196 197 198 199 200
  forward : bilinear_tensor_product (Tensor x, Tensor y, Tensor weight, Tensor bias) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor weight, Tensor out_grad)
  output : Tensor(x_grad), Tensor(y_grad), Tensor(weight_grad), Tensor(bias_grad)
  infer_meta :
    func : BilinearTensorProductGradInferMeta
  kernel :
    func : bilinear_tensor_product_grad

201
- backward_op : broadcast_tensors_grad
202 203 204
  forward : broadcast_tensors (Tensor[] input) -> Tensor[](out)
  args : (Tensor[] input, Tensor[] out_grad)
  output : Tensor[](input_grad)
205 206
  infer_meta :
    func : UnchangedMultiInferMeta
207
    param : [input]
208 209 210
  kernel :
    func : broadcast_tensors_grad
    param : [out_grad]
211
  no_need_buffer : input
212

213
- backward_op : cast_grad
214
  forward : cast (Tensor x, DataType dtype) -> Tensor(out)
Z
zyfncg 已提交
215 216
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
217
  invoke : cast (out_grad, x.dtype())
Z
zyfncg 已提交
218 219
  no_need_buffer : x

220
- backward_op : celu_double_grad
Z
zyfncg 已提交
221 222 223 224 225 226 227 228 229 230
  forward : celu_grad(Tensor x, Tensor grad_out, float alpha) -> Tensor(grad_x)
  args : (Tensor x, Tensor grad_out, Tensor grad_x_grad, float alpha)
  output : Tensor(x_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, x]
  kernel :
    func : celu_double_grad
  inplace : (grad_x_grad -> grad_out_grad)

231
- backward_op : celu_grad
Z
zyfncg 已提交
232 233 234 235 236 237 238 239 240 241 242
  forward : celu(Tensor x, float alpha) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float alpha)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : celu_grad
  backward : celu_double_grad
  inplace : (out_grad -> x_grad)

243
- backward_op : clip_double_grad
Z
zyfncg 已提交
244 245 246 247 248 249 250 251 252
  forward : clip_grad (Tensor x, Tensor grad_out, Scalar min = 0., Scalar max = 0.) -> Tensor(grad_x)
  args : (Tensor x, Tensor grad_x_grad, Scalar min = 0., Scalar max = 0.)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : clip_grad

253
- backward_op : clip_grad
Z
zyfncg 已提交
254 255 256 257 258 259 260 261 262 263 264
  forward : clip (Tensor x, Scalar min, Scalar max) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, Scalar min = 0., Scalar max = 0.)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : clip_grad
  backward : clip_double_grad
  inplace : (out_grad -> x_grad)

265
- backward_op : complex_grad
266 267 268
  forward : complex (Tensor real, Tensor imag) -> Tensor(out)
  args : (Tensor real, Tensor imag, Tensor out_grad)
  output : Tensor(real_grad), Tensor(imag_grad)
269 270 271 272
  infer_meta :
    func : ComplexGradInferMeta
  kernel :
    func : complex_grad
273
    data_type : real
274

275
- backward_op : concat_double_grad
Z
zyfncg 已提交
276 277 278
  forward : concat_grad (Tensor[] x, Tensor grad_out, Scalar axis) -> Tensor[](grad_x)
  args : (Tensor[] grad_x_grad, Scalar axis = 0)
  output : Tensor(grad_out_grad)
279
  invoke : concat(grad_x_grad, axis)
Z
zyfncg 已提交
280

281
- backward_op : concat_grad
Z
zyfncg 已提交
282 283 284 285 286 287 288 289 290 291 292
  forward : concat (Tensor[] x, Scalar axis) -> Tensor(out)
  args : (Tensor[] x, Tensor out_grad, Scalar axis = 0)
  output : Tensor[](x_grad){x.size()}
  infer_meta :
    func : UnchangedMultiInferMeta
    param : [x]
  kernel :
    func : concat_grad
  no_need_buffer : x
  backward : concat_double_grad

293
- backward_op : conj_grad
Z
zyfncg 已提交
294 295 296 297 298 299 300 301 302
  forward : conj (Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [out_grad]
  kernel :
    func : conj

303
- backward_op : conv2d_grad
304 305
  forward : conv2d (Tensor input, Tensor filter, int[] strides, int[] paddings, str padding_algorithm, int[] dilations, int groups, str data_format) -> Tensor(out)
  args : (Tensor input, Tensor filter, Tensor out_grad,  int[] strides, int[] paddings, str padding_algorithm, int[] dilations, int groups, str data_format)
Z
zyfncg 已提交
306
  output : Tensor(input_grad), Tensor(filter_grad)
Z
zyfncg 已提交
307 308 309 310 311 312
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [input, filter]
  kernel :
    func : conv2d_grad
    use_gpudnn : true
Z
zyfncg 已提交
313 314
  backward : conv2d_grad_grad

315
- backward_op : conv2d_grad_grad
316 317
  forward : conv2d_grad (Tensor input, Tensor filter, Tensor grad_out,  int[] strides, int[] paddings, str padding_algorithm, int[] dilations, int groups, str data_format) -> Tensor(grad_input), Tensor(grad_filter)
  args : (Tensor input, Tensor filter, Tensor grad_out, Tensor grad_input_grad, Tensor grad_filter_grad, int[] strides, int[] paddings, str padding_algorithm, int[] dilations, int groups, str data_format)
Z
zyfncg 已提交
318 319 320 321 322 323 324 325 326
  output : Tensor(input_grad), Tensor(filter_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param: [input, filter, grad_out]
  kernel :
    func : conv2d_grad_grad
    use_gpudnn : true
  optional : grad_input_grad, grad_filter_grad

327
- backward_op : conv2d_transpose_double_grad
328 329
  forward : conv2d_transpose_grad(Tensor x, Tensor filter, Tensor grad_out, int[] strides, int[] paddings, int[] output_padding, IntArray output_size, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(grad_x), Tensor(grad_filter)
  args : (Tensor x, Tensor filter, Tensor grad_out, Tensor grad_x_grad, Tensor grad_filter_grad, int[] strides, int[] paddings, int[] output_padding, IntArray output_size, str padding_algorithm, int groups, int[] dilations, str data_format)
Z
zyfncg 已提交
330 331 332 333 334 335 336
  output : Tensor(x_grad), Tensor(filter_grad), Tensor(grad_out_grad)
  infer_meta :
    func : Conv2dTransposeDoubleGradInferMeta
  kernel :
    func : conv2d_transpose_grad_grad
    use_gpudnn : true

337
- backward_op : conv2d_transpose_grad
338 339
  forward : conv2d_transpose(Tensor x, Tensor filter, int[] strides, int[] paddings, int[] output_padding, IntArray output_size, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(out)
  args : (Tensor x, Tensor filter, Tensor out_grad, int[] strides, int[] paddings, int[] output_padding, IntArray output_size, str padding_algorithm, int groups, int[] dilations, str data_format)
Z
zyfncg 已提交
340 341
  output : Tensor(x_grad), Tensor(filter_grad)
  infer_meta :
342
    func : Conv2dTransposeGradInferMeta
Z
zyfncg 已提交
343 344 345 346 347
  kernel :
    func : conv2d_transpose_grad
    use_gpudnn : true
  backward : conv2d_transpose_double_grad

348 349 350 351 352 353 354 355 356 357 358 359
- backward_op : conv3d_double_grad
  forward : conv3d_grad (Tensor input, Tensor filter, Tensor grad_out,  int[] strides, int[] paddings, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(grad_input), Tensor(grad_filter)
  args : (Tensor input, Tensor filter, Tensor grad_out, Tensor grad_input_grad, Tensor grad_filter_grad, int[] strides, int[] paddings, str padding_algorithm, int groups, int[] dilations, str data_format)
  output : Tensor(input_grad), Tensor(filter_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param: [input, filter, grad_out]
  kernel :
    func : conv3d_double_grad
    use_gpudnn : true
  optional : grad_input_grad, grad_filter_grad

360
- backward_op : conv3d_grad
361 362
  forward : conv3d (Tensor input, Tensor filter, int[] strides, int[] paddings, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(out)
  args : (Tensor input, Tensor filter, Tensor out_grad,  int[] strides, int[] paddings, str padding_algorithm, int groups, int[] dilations, str data_format)
Z
zyfncg 已提交
363
  output : Tensor(input_grad), Tensor(filter_grad)
Z
zyfncg 已提交
364 365 366 367 368 369
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [input, filter]
  kernel :
    func : conv3d_grad
    use_gpudnn : true
370
  backward : conv3d_double_grad
Z
zyfncg 已提交
371

372
- backward_op : conv3d_transpose_grad
Z
zyfncg 已提交
373 374 375 376 377 378 379 380 381
  forward : conv3d_transpose(Tensor x, Tensor filter, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(out)
  args : (Tensor x, Tensor filter, Tensor out_grad, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format)
  output : Tensor(x_grad), Tensor(filter_grad)
  infer_meta :
    func : ConvTransposeGradInferMeta
  kernel :
    func : conv3d_transpose_grad
    use_gpudnn : true

382
- backward_op : crop_grad
383 384 385 386
  forward : crop_tensor (Tensor x, IntArray shape, IntArray offsets) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, IntArray offsets)
  output : Tensor(x_grad)
  infer_meta :
387
    func : CropGradInferMeta
388
  kernel :
389
    func : crop_grad
390 391
    data_type : x

392
- backward_op : cross_entropy_with_softmax_grad
Z
zyfncg 已提交
393 394 395 396 397 398 399 400 401 402
  forward : cross_entropy_with_softmax (Tensor input, Tensor label, bool soft_label, bool use_softmax, bool numeric_stable_mode, int ignore_index, int axis) -> Tensor(softmax), Tensor(loss)
  args : (Tensor label, Tensor softmax, Tensor loss_grad, bool soft_label, bool use_softmax, bool numeric_stable_mode, int ignore_index, int axis)
  output : Tensor(input_grad)
  infer_meta :
    func : CrossEntropyWithSoftmaxGradInferMeta
  kernel :
    func : cross_entropy_with_softmax_grad
    data_type : softmax
  inplace : (softmax -> input_grad)

403
- backward_op : cumprod_grad
Z
zyfncg 已提交
404 405 406 407 408 409 410 411 412
  forward : cumprod (Tensor x, int dim) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int dim)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : cumprod_grad

413
- backward_op : cumsum_grad
W
WangZhen 已提交
414 415
  forward : cumsum(Tensor x, Scalar axis, bool flatten, bool exclusive, bool reverse) -> Tensor(out)
  args : (Tensor out_grad, Scalar axis, bool flatten, bool exclusive, bool reverse)
Z
zyfncg 已提交
416 417 418
  output : Tensor(x_grad)
  invoke : cumsum(out_grad, axis, flatten, exclusive, !reverse)

419
- backward_op : deformable_conv_grad
Z
zyfncg 已提交
420 421 422 423 424 425 426 427 428 429
  forward : deformable_conv(Tensor x, Tensor offset, Tensor filter, Tensor mask, int[] strides, int[] paddings, int[] dilations, int deformable_groups, int groups, int im2col_step) -> Tensor(out)
  args : (Tensor x, Tensor offset, Tensor filter, Tensor mask, Tensor out_grad, int[] strides, int[] paddings, int[] dilations, int deformable_groups, int groups, int im2col_step)
  output : Tensor(x_grad), Tensor(offset_grad), Tensor(filter_grad), Tensor(mask_grad)
  infer_meta :
    func : DeformableConvGradInferMeta
  kernel :
    func : deformable_conv_grad
    data_type : x
  optional : mask

430 431 432 433 434 435 436 437 438 439 440
- backward_op : depthwise_conv2d_double_grad
  forward : depthwise_conv2d_grad (Tensor input, Tensor filter, Tensor grad_out, int[] strides, int[] paddings, str padding_algorithm, int groups, int[] dilations, str data_format, bool use_gpudnn) -> Tensor(grad_input), Tensor(grad_filter)
  args : (Tensor input, Tensor filter, Tensor grad_out, Tensor grad_input_grad, Tensor grad_filter_grad, int[] strides, int[] paddings, str padding_algorithm, int groups, int[] dilations, str data_format)
  output : Tensor(input_grad), Tensor(filter_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param: [input, filter, grad_out]
  kernel :
    func : depthwise_conv2d_double_grad
  optional : grad_input_grad, grad_filter_grad

441
- backward_op : depthwise_conv2d_grad
442 443
  forward : depthwise_conv2d (Tensor input, Tensor filter, int[] strides, int[] paddings, str padding_algorithm, int groups, int[] dilations, str data_format, bool use_gpudnn) -> Tensor(out)
  args : (Tensor input, Tensor filter, Tensor out_grad, int[] strides, int[] paddings, str padding_algorithm, int groups, int[] dilations, str data_format, bool use_gpudnn)
Z
zyfncg 已提交
444 445 446 447 448 449
  output : Tensor(input_grad), Tensor(filter_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [input, filter]
  kernel :
    func : depthwise_conv2d_grad
450
    param : [input, filter, out_grad, strides, paddings, padding_algorithm, groups, dilations, data_format]
Z
zyfncg 已提交
451
    use_gpudnn : use_gpudnn
452
  backward : depthwise_conv2d_double_grad
Z
zyfncg 已提交
453

454
- backward_op : depthwise_conv2d_transpose_grad
455 456
  forward : depthwise_conv2d_transpose(Tensor x, Tensor filter, int[] strides, int[] paddings, int[] output_padding, IntArray output_size, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(out)
  args : (Tensor x, Tensor filter, Tensor out_grad, int[] strides, int[] paddings, int[] output_padding, IntArray output_size, str padding_algorithm, int groups, int[] dilations, str data_format)
Z
zyfncg 已提交
457 458
  output : Tensor(x_grad), Tensor(filter_grad)
  infer_meta :
459
    func : Conv2dTransposeGradInferMeta
Z
zyfncg 已提交
460 461 462
  kernel :
    func : depthwise_conv2d_transpose_grad

463
- backward_op : divide_double_grad
Z
zyfncg 已提交
464 465 466 467 468 469 470 471 472 473 474 475
  forward : divide_grad (Tensor x, Tensor y, Tensor out, Tensor grad_out, int axis = -1) -> Tensor(grad_x), Tensor(grad_y)
  args : (Tensor y, Tensor out, Tensor grad_x, Tensor grad_x_grad, Tensor grad_y_grad, int axis = -1)
  output : Tensor(y_grad), Tensor(out_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [y, grad_x, grad_x]
  kernel :
    func : divide_double_grad
    data_type : out
  optional : grad_x_grad, grad_y_grad
  inplace : (grad_x_grad -> grad_out_grad)

476
- backward_op : divide_grad
Z
zyfncg 已提交
477 478 479 480 481 482 483 484 485 486
  forward : divide (Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out, Tensor out_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : divide_grad
  backward : divide_double_grad

487
- backward_op : dropout_grad
488 489
  forward : dropout (Tensor x, Tensor seed_tensor, Scalar p, bool is_test, str mode, int seed, bool fix_seed) -> Tensor(out), Tensor(mask)
  args : (Tensor mask, Tensor out_grad, Scalar p, bool is_test, str mode)
Z
zyfncg 已提交
490 491 492 493 494 495 496
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
    func : dropout_grad

497
- backward_op : eig_grad
498 499 500 501 502 503 504 505 506 507 508 509
  forward : eig (Tensor x) -> Tensor(out_w), Tensor(out_v)
  args : (Tensor out_w, Tensor out_v, Tensor out_w_grad, Tensor out_v_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_v]
  kernel :
    func : eig_grad
    data_type : out_v
  data_transform:
    skip_transform : out_w, out_w_grad

510
- backward_op : eigh_grad
511
  forward : eigh (Tensor x, str UPLO) -> Tensor(out_w), Tensor(out_v)
Z
zyfncg 已提交
512 513 514 515 516 517 518 519 520 521 522
  args : (Tensor out_w, Tensor out_v, Tensor out_w_grad, Tensor out_v_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_v]
  kernel :
    func : eigh_grad
    data_type : out_v
  data_transform:
    skip_transform : out_w, out_w_grad

523
- backward_op : eigvalsh_grad
524 525 526 527 528 529 530 531 532 533 534
  forward : eigvalsh (Tensor x, str uplo, bool is_test) -> Tensor(eigenvalues), Tensor(eigenvectors)
  args : (Tensor eigenvectors, Tensor eigenvalues_grad, str uplo, bool is_test)
  output : Tensor(x_grad)
  infer_meta :
    func : EigvalshGradInferMeta
  kernel :
    func : eigvalsh_grad
    data_type : eigenvectors
  data_transform :
    skip_transform : eigenvalues_grad

535
- backward_op : einsum_grad
Z
zyfncg 已提交
536 537 538 539 540 541 542 543 544
  forward : einsum (Tensor[] x, str equation) -> Tensor(out), Tensor[](inner_cache), Tensor[](x_shape)
  args : (Tensor[] x_shape, Tensor[] inner_cache, Tensor out_grad, str equation)
  output : Tensor[](x_grad){x.size()}
  infer_meta :
    func : UnchangedMultiInferMeta
    param : [x_shape]
  kernel :
    func : einsum_grad

545
- backward_op : elementwise_pow_grad
Z
zyfncg 已提交
546 547 548 549 550 551 552 553 554
  forward : elementwise_pow(Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis=-1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, y]
  kernel :
    func : elementwise_pow_grad

555
- backward_op : elu_double_grad
Z
zyfncg 已提交
556 557 558 559 560 561 562 563 564 565
  forward : elu_grad (Tensor x, Tensor out, Tensor grad_out, float alpha)-> Tensor(grad_x)
  args : (Tensor x, Tensor grad_out, Tensor grad_x_grad, float alpha)
  output : Tensor(x_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, x]
  kernel :
    func : elu_double_grad
  inplace : (grad_x_grad -> grad_out_grad)

566
- backward_op : elu_grad
Z
zyfncg 已提交
567 568 569 570 571 572 573 574 575 576 577
  forward : elu (Tensor x, float alpha) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, float alpha)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : elu_grad
  backward : elu_double_grad
  inplace : (out_grad -> x_grad)

578
- backward_op : embedding_grad
Z
zyfncg 已提交
579 580 581 582 583
  forward : embedding (Tensor x, Tensor weight, int64_t padding_idx=-1, bool sparse=false) -> Tensor(out)
  args : (Tensor x, Tensor weight, Tensor out_grad, int64_t padding_idx=-1, bool sparse=false)
  output : Tensor(weight_grad)
  invoke : embedding_grad_impl(x, weight, out_grad, padding_idx, sparse, weight_grad)

584
- backward_op : expand_as_grad
Z
zyfncg 已提交
585 586 587 588 589 590 591 592 593 594
  forward : expand_as (Tensor x, Tensor y, int[] target_shape) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int[] target_shape)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : expand_as_grad
  no_need_buffer : x

595
- backward_op : expand_double_grad
Z
zyfncg 已提交
596 597 598
  forward : expand_grad (Tensor x, Tensor grad_out, IntArray shape) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, IntArray shape)
  output : Tensor(grad_out_grad)
599
  invoke : expand(grad_x_grad, shape)
Z
zyfncg 已提交
600

601
- backward_op : expand_grad
Z
zyfncg 已提交
602 603 604 605 606 607 608 609 610 611 612
  forward : expand (Tensor x, IntArray shape) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, IntArray shape)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : expand_grad
  no_need_buffer : x
  backward : expand_double_grad

613
- backward_op : exponential__grad
614
  forward : exponential_ (Tensor x, float lam) -> Tensor(out)
615 616 617 618
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
619
  invoke : zeros_like(out_grad)
620

621
- backward_op : fill_diagonal_grad
Z
zhiboniu 已提交
622 623 624 625 626 627 628
  forward : fill_diagonal (Tensor x, float value, int offset, bool wrap) -> Tensor(out)
  args : (Tensor out_grad, float value, int offset, bool wrap)
  output : Tensor(x_grad)
  infer_meta :
    func : FillDiagonalGradInferMeta
  kernel :
    func : fill_diagonal_grad
Z
zhiboniu 已提交
629

630
- backward_op : fill_diagonal_tensor_grad
Z
zhiboniu 已提交
631 632 633 634 635 636 637
  forward : fill_diagonal_tensor (Tensor x, Tensor y, int64_t offset, int dim1, int dim2) -> Tensor(out)
  args : (Tensor out_grad, int64_t offset, int dim1, int dim2)
  output : Tensor(x_grad)
  infer_meta :
    func : FillDiagonalTensorGradInferMeta
  kernel :
    func : fill_diagonal_tensor_grad
638 639
  inplace : (out_grad -> x_grad)

640
- backward_op : fill_grad
641 642 643 644 645 646 647 648 649 650
  forward : fill (Tensor x, Scalar value) -> Tensor(out)
  args : (Tensor out_grad, Scalar value)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
    func : fill_grad
  inplace : (out_grad -> x_grad)

651
- backward_op : flatten_grad
Z
zyfncg 已提交
652 653 654 655 656 657 658 659 660 661 662 663 664
  forward : flatten(Tensor x, int start_axis, int stop_axis) -> Tensor(out), Tensor(xshape)
  args : (Tensor xshape, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func :  KernelWithXShapeInferMeta
    param : [xshape]
  kernel :
    func : flatten_grad
    data_type: out_grad
    backend: out_grad
    layout: out_grad
  inplace : (out_grad -> x_grad)

665
- backward_op : fmax_grad
Z
zyfncg 已提交
666 667 668 669 670 671 672 673 674
  forward : fmax(Tensor x, Tensor y, int axis) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, y]
  kernel :
    func : fmax_grad

675
- backward_op : fmin_grad
Z
zyfncg 已提交
676 677 678 679 680 681 682 683 684
  forward : fmin(Tensor x, Tensor y, int axis) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, y]
  kernel :
    func : fmin_grad

685
- backward_op : frame_grad
C
Charles-hit 已提交
686 687 688 689 690 691 692 693 694
  forward : frame(Tensor x, int frame_length, int hop_length, int axis) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int frame_length, int hop_length, int axis)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : frame_grad

695
- backward_op : frobenius_norm_grad
Z
zyfncg 已提交
696 697 698 699 700 701 702 703 704
  forward : frobenius_norm(Tensor x, int64_t[] axis,  bool keep_dim,  bool reduce_all) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] axis,  bool keep_dim,  bool reduce_all)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : frobenius_norm_grad

705
- backward_op : gather_grad
Z
zyfncg 已提交
706 707 708 709 710 711 712 713 714 715 716
  forward : gather(Tensor x, Tensor index, Scalar axis=0) -> Tensor(out)
  args : (Tensor x, Tensor index, Tensor out_grad, Scalar axis=0, bool overwrite=false)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    data_type: x
    func : gather_grad
  no_need_buffer : x

717
- backward_op : gather_nd_grad
Z
zyfncg 已提交
718 719 720 721 722 723 724 725 726 727
  forward : gather_nd (Tensor x, Tensor index) -> Tensor(out)
  args : (Tensor x, Tensor index, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : gather_nd_grad
  no_need_buffer : x

728
- backward_op : gelu_grad
Z
zyfncg 已提交
729 730 731 732 733 734 735 736 737
  forward : gelu(Tensor x,  bool approximate) -> Tensor(out)
  args : (Tensor x, Tensor out_grad,  bool approximate)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : gelu_grad

738
- backward_op : grid_sample_grad
W
Wang Bojun 已提交
739 740 741
  forward : grid_sample (Tensor x, Tensor grid, str mode, str padding_mode, bool align_corners) -> Tensor(out)
  args : (Tensor x, Tensor grid, Tensor out_grad, str mode, str padding_mode, bool align_corners)
  output : Tensor(x_grad), Tensor(grid_grad)
742
  infer_meta :
W
Wang Bojun 已提交
743 744
    func : GeneralBinaryGradInferMeta
    param : [x, grid]
745
  kernel :
W
Wang Bojun 已提交
746 747 748
    func : grid_sample_grad
    data_type : x

749
- backward_op : group_norm_grad
Z
zyfncg 已提交
750 751 752 753 754 755 756 757 758 759 760 761
  forward : group_norm (Tensor x, Tensor scale, Tensor bias, float epsilon, int groups, str data_layout) -> Tensor(y), Tensor(mean), Tensor(variance)
  args : (Tensor x, Tensor scale, Tensor bias, Tensor y, Tensor mean, Tensor variance, Tensor y_grad, float epsilon, int groups, str data_layout)
  output : Tensor(x_grad), Tensor(scale_grad), Tensor(bias_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [y, scale, bias]
  kernel :
    func : group_norm_grad
    data_type : y_grad
  optional: scale, bias
  inplace : (y_grad -> x_grad)

762
- backward_op : gumbel_softmax_grad
Z
zyfncg 已提交
763 764 765 766 767 768 769 770 771
  forward : gumbel_softmax (Tensor x, float temperature, bool hard, int axis) -> Tensor(out)
  args : (Tensor out, Tensor out_grad, int axis)
  output : Tensor(x_grad)
  infer_meta :
    func : GumbelSoftmaxGradInferMeta
    param : [out, out_grad, axis]
  kernel :
    func : gumbel_softmax_grad

772 773
- backward_op : hardswish_grad
  forward : hardswish (Tensor x, float threshold = 6.0, float scale = 6.0, float offset = 3.0) -> Tensor(out)
Z
zyfncg 已提交
774 775 776 777 778 779 780 781 782
  args : (Tensor x, Tensor out_grad, float threshold, float scale, float offset)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : hard_swish_grad
  inplace : (out_grad -> x_grad)

783 784 785 786 787 788 789 790 791 792 793
- backward_op : hardtanh_grad
  forward : hardtanh (Tensor x, float t_min, float t_max) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float t_min, float t_max)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : hard_tanh_grad
  inplace : (out_grad -> x_grad)

794 795
- backward_op : hsigmoid_loss_grad
  forward : hsigmoid_loss (Tensor x, Tensor w, Tensor label, Tensor path, Tensor code, Tensor bias, int num_classes, bool remote_prefetch, int trainer_id, int64_t[] height_sections, str[] epmap, str[] table_names, bool is_sparse) -> Tensor(out), Tensor(pre_out), Tensor(w_out)
796 797 798 799 800 801 802
  args : (Tensor x, Tensor w, Tensor label, Tensor path, Tensor code, Tensor bias, Tensor pre_out, Tensor out_grad, int num_classes, bool remote_prefetch, int trainer_id, int64_t[] height_sections, str[] epmap, str[] table_names, bool is_sparse)
  output : Tensor(x_grad), Tensor(w_grad), Tensor(bias_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [x ,w, bias]
  optional: path, code, bias
  kernel :
803
    func : hsigmoid_loss_grad
804

805
- backward_op : huber_loss_grad
Z
zyfncg 已提交
806 807 808 809 810 811 812 813 814
  forward : huber_loss (Tensor input, Tensor label, float delta) -> Tensor(out), Tensor(residual)
  args : (Tensor residual, Tensor out_grad, float delta)
  output : Tensor(input_grad), Tensor(label_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [residual, residual]
  kernel :
    func : huber_loss_grad

815
- backward_op : imag_grad
Z
zyfncg 已提交
816 817 818 819 820
  forward : imag (Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  invoke : imag_grad_impl(out_grad, x_grad)

821
- backward_op : index_add_grad
L
Li Min 已提交
822 823 824 825 826 827 828 829 830 831
  forward : index_add(Tensor x, Tensor index,  Tensor add_value, int axis) -> Tensor(out)
  args : (Tensor index, Tensor add_value, Tensor out_grad, int axis)
  output : Tensor(x_grad), Tensor(add_value_grad)
  infer_meta :
    func : IndexAddGradInferMeta
  kernel :
    func : index_add_grad
    data_type : out_grad
  inplace : (out_grad -> x_grad)

832
- backward_op : index_sample_grad
Z
zyfncg 已提交
833 834 835 836 837 838 839 840 841 842 843
  forward : index_sample (Tensor x, Tensor index) -> Tensor(out)
  args : (Tensor x, Tensor index, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : index_sample_grad
    data_type : out_grad
  no_need_buffer : x

844
- backward_op : index_select_grad
845 846
  forward : index_select(Tensor x, Tensor index,  int axis) -> Tensor(out)
  args : (Tensor x, Tensor index, Tensor out_grad,  int axis)
Z
zyfncg 已提交
847 848 849 850 851 852 853 854 855
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : index_select_grad
    data_type : x
  no_need_buffer : x

856
- backward_op : instance_norm_double_grad
Z
zyfncg 已提交
857 858 859 860 861 862 863 864 865 866
  forward : instance_norm_grad(Tensor x, Tensor fwd_scale, Tensor saved_mean, Tensor saved_variance, Tensor grad_y, float epsilon) -> Tensor(grad_x), Tensor(grad_scale), Tensor(grad_bias)
  args : (Tensor x, Tensor fwd_scale, Tensor saved_mean, Tensor saved_variance, Tensor grad_y, Tensor grad_x_grad, Tensor grad_scale_grad, Tensor grad_bias_grad, float epsilon)
  output : Tensor(x_grad), Tensor(fwd_scale_grad), Tensor(grad_y_grad)
  infer_meta :
    func : InstanceNormDoubleGradInferMeta
  kernel :
    func : instance_norm_double_grad
    data_type : x
  optional : fwd_scale, grad_x_grad, grad_scale_grad, grad_bias_grad

867
- backward_op : instance_norm_grad
Z
zyfncg 已提交
868 869 870 871 872 873 874 875 876 877 878
  forward : instance_norm(Tensor x, Tensor scale, Tensor bias, float epsilon) -> Tensor(y), Tensor(saved_mean), Tensor(saved_variance)
  args : (Tensor x, Tensor scale, Tensor saved_mean, Tensor saved_variance, Tensor y_grad, float epsilon)
  output : Tensor(x_grad), Tensor(scale_grad), Tensor(bias_grad)
  infer_meta :
    func : InstanceNormGradInferMeta
  kernel :
    func : instance_norm_grad
    data_type : x
  optional : scale
  backward : instance_norm_double_grad

879
- backward_op : inverse_grad
880 881 882 883 884 885 886 887
  forward : inverse(Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta:
    func : InverseGradInferMeta
  kernel :
    func : inverse_grad

888
- backward_op : kldiv_loss_grad
Z
zyfncg 已提交
889 890 891 892 893 894 895 896 897 898
  forward : kldiv_loss(Tensor x, Tensor label, str reduction) -> Tensor(out)
  args : (Tensor x, Tensor label, Tensor out_grad, str reduction)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : kldiv_loss_grad
  no_need_buffer : x

899
- backward_op : kron_grad
Z
zyfncg 已提交
900 901 902 903 904 905 906 907 908 909
  forward : kron (Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : kron_grad
    data_type : out_grad

910
- backward_op : kthvalue_grad
Z
zyfncg 已提交
911 912 913 914 915 916 917 918 919
  forward : kthvalue(Tensor x, int k, int axis, bool keepdim) -> Tensor(out), Tensor(indices)
  args : (Tensor x, Tensor indices, Tensor out_grad, int k, int axis, bool keepdim)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : kthvalue_grad

920
- backward_op : label_smooth_grad
Z
zyfncg 已提交
921 922 923 924 925 926 927 928 929
  forward : label_smooth (Tensor label, Tensor prior_dist, float epsilon) -> Tensor(out)
  args : (Tensor out_grad, float epsilon)
  output : Tensor(label_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
    func : label_smooth_grad

930
- backward_op : layer_norm_grad
Z
zyfncg 已提交
931 932 933 934 935 936 937 938 939 940 941 942
  forward : layer_norm (Tensor x, Tensor scale, Tensor bias, float epsilon, int begin_norm_axis, bool is_test) -> Tensor(out), Tensor(mean), Tensor(variance)
  args : (Tensor x,  Tensor scale, Tensor bias, Tensor mean, Tensor variance, Tensor out_grad, float epsilon, int begin_norm_axis, bool is_test)
  output : Tensor(x_grad), Tensor(scale_grad), Tensor(bias_grad)
  infer_meta :
    func : LayerNormGradInferMeta
    param : [x, scale, bias]
  kernel :
    func : layer_norm_grad
    data_type : out_grad
  no_need_buffer : bias
  optional : scale, bias

943
- backward_op : leaky_relu_double_grad
944 945
  forward : leaky_relu_grad (Tensor x, Tensor grad_out, float negative_slope) -> Tensor(grad_x)
  args : (Tensor x, Tensor grad_x_grad, float negative_slope)
Z
zyfncg 已提交
946 947 948 949 950 951 952 953
  output : Tensor(grad_out_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [grad_x_grad]
  kernel :
    func : leaky_relu_double_grad
  inplace : (grad_x_grad -> grad_out_grad)

954
- backward_op : leaky_relu_grad
955 956
  forward : leaky_relu (Tensor x, float negative_slope) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float negative_slope)
Z
zyfncg 已提交
957 958 959 960 961 962 963 964 965
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : leaky_relu_grad
  backward : leaky_relu_double_grad
  inplace : (out_grad -> x_grad)

966
- backward_op : lerp_grad
Z
zyfncg 已提交
967 968 969 970 971 972 973 974 975
  forward : lerp (Tensor x, Tensor y, Tensor weight) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor weight, Tensor out, Tensor out_grad)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : lerp_grad

976
- backward_op : linear_interp_grad
977
  forward : linear_interp (Tensor x, Tensor out_size, Tensor[] size_tensor, Tensor scale_tensor, str data_layout, int out_d, int out_h, int out_w, float[] scale, str interp_method, bool align_corners, int align_mode) -> Tensor(output)
978 979 980 981 982 983 984
  args : (Tensor x, Tensor out_size, Tensor[] size_tensor, Tensor scale_tensor, Tensor output_grad, str data_layout, int out_d, int out_h, int out_w, float[] scale, str interp_method, bool align_corners, int align_mode)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  optional: out_size, size_tensor, scale_tensor
  kernel :
985
    func : linear_interp_grad
986 987
    data_type : output_grad

988
- backward_op : log_double_grad
Z
zyfncg 已提交
989 990 991 992 993 994 995 996 997 998
  forward : log_grad (Tensor x, Tensor grad_out) -> Tensor(grad_x)
  args : (Tensor x, Tensor grad_out, Tensor grad_x_grad)
  output : Tensor(x_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, x]
  kernel :
    func : log_double_grad
  inplace : (grad_x_grad -> grad_out_grad)

999
- backward_op : log_grad
Z
zyfncg 已提交
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
  forward : log (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : log_grad
  backward : log_double_grad
  inplace : (out_grad -> x_grad)

1011
- backward_op : log_loss_grad
Z
zyfncg 已提交
1012 1013 1014 1015 1016 1017 1018 1019 1020
  forward : log_loss (Tensor input, Tensor label, float epsilon) -> Tensor(out)
  args : (Tensor input, Tensor label, Tensor out_grad, float epsilon)
  output : Tensor(input_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [input]
  kernel :
    func : log_loss_grad

1021
- backward_op : log_softmax_grad
Z
zyfncg 已提交
1022 1023 1024 1025 1026 1027 1028 1029 1030
  forward : log_softmax(Tensor x,  int axis) -> Tensor(out)
  args : (Tensor out, Tensor out_grad,  int axis)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [out]
  kernel :
    func : log_softmax_grad

1031
- backward_op : logcumsumexp_grad
Z
zyfncg 已提交
1032 1033 1034 1035 1036 1037 1038 1039 1040
  forward : logcumsumexp(Tensor x, int axis, bool flatten, bool exclusive, bool reverse) -> Tensor(out)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  args : (Tensor x, Tensor out, Tensor out_grad, int axis, bool flatten, bool exclusive, bool reverse)
  output : Tensor(x_grad)
  kernel :
    func : logcumsumexp_grad

1041
- backward_op : logsumexp_grad
Z
zyfncg 已提交
1042 1043 1044 1045 1046 1047 1048 1049 1050
  forward : logsumexp(Tensor x, int64_t[] axis,  bool keepdim,  bool reduce_all) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] axis,  bool keepdim,  bool reduce_all)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : logsumexp_grad

1051
- backward_op : lu_grad
L
Lin Manhui 已提交
1052 1053 1054 1055 1056 1057 1058 1059
  forward : lu (Tensor x, bool pivot) -> Tensor(out), Tensor(pivots), Tensor(infos)
  args : (Tensor x, Tensor out, Tensor pivots, Tensor out_grad, bool pivot)
  output : Tensor(x_grad)
  infer_meta :
    func : LUGradInferMeta
  kernel :
    func : lu_grad

1060
- backward_op : lu_unpack_grad
1061 1062
  forward : lu_unpack (Tensor x, Tensor y, bool unpack_ludata, bool unpack_pivots) -> Tensor(pmat), Tensor(l), Tensor(u)
  args : (Tensor x, Tensor y, Tensor l, Tensor u, Tensor pmat, Tensor l_grad, Tensor u_grad, bool unpack_ludata, bool unpack_pivots)
1063 1064 1065 1066 1067 1068
  output : Tensor(x_grad)
  infer_meta :
    func : LUUnpackGradInferMeta
  kernel :
    func : lu_unpack_grad

1069
- backward_op : margin_cross_entropy_grad
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
  forward : margin_cross_entropy (Tensor logits, Tensor label, bool return_softmax, int ring_id, int rank, int nranks, float margin1, float margin2, float margin3, float scale) -> Tensor(softmax), Tensor(loss)
  args : (Tensor logits, Tensor label, Tensor softmax, Tensor loss_grad, bool return_softmax, int ring_id, int rank, int nranks, float margin1, float margin2, float margin3, float scale)
  output : Tensor(logits_grad)
  infer_meta :
    func : MarginCrossEntropyGradInferMeta
  kernel :
    func : margin_cross_entropy_grad
    data_type : softmax
  inplace : (softmax -> logits_grad)

1080
- backward_op : masked_select_grad
Z
zyfncg 已提交
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
  forward : masked_select (Tensor x, Tensor mask) -> Tensor(out)
  args : (Tensor x, Tensor mask, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : masked_select_grad
    data_type : x
  no_need_buffer : x

1092
- backward_op : matmul_double_grad
Z
zyfncg 已提交
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
  forward : matmul_grad (Tensor x, Tensor y, Tensor grad_out, bool transpose_x=false, bool transpose_y=false) -> Tensor(grad_x), Tensor(grad_y)
  args : (Tensor x, Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, bool transpose_x=false, bool transpose_y=false)
  output : Tensor(x_grad), Tensor(y_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [x, y, grad_out]
  kernel :
    func : matmul_double_grad
  backward : matmul_triple_grad
  optional : grad_x_grad, grad_y_grad

1104
- backward_op : matmul_grad
Z
zyfncg 已提交
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
  forward : matmul (Tensor x, Tensor y, bool transpose_x=false, bool transpose_y=false) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, bool transpose_x=false, bool transpose_y=false)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : matmul_grad
  backward : matmul_double_grad

1115
- backward_op : matmul_triple_grad
Z
zyfncg 已提交
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
  forward : matmul_double_grad (Tensor x, Tensor y, Tensor fwd_grad_out, Tensor fwd_grad_grad_x, Tensor fwd_grad_grad_y, bool transpose_x=false, bool transpose_y=false) -> Tensor(grad_x), Tensor(grad_y), Tensor(grad_grad_out)
  args : (Tensor x, Tensor y, Tensor fwd_grad_out, Tensor fwd_grad_grad_x, Tensor fwd_grad_grad_y, Tensor grad_x_grad, Tensor grad_y_grad, Tensor grad_grad_out_grad, bool transpose_x=false, bool transpose_y=false)
  output : Tensor(x_grad), Tensor(y_grad), Tensor(fwd_grad_out_grad), Tensor(fwd_grad_grad_x_grad), Tensor(fwd_grad_grad_y_grad)
  infer_meta :
    func : GeneralQuinaryGradInferMeta
    param : [x, y, fwd_grad_out, fwd_grad_grad_x, fwd_grad_grad_y]
  kernel :
    func : matmul_triple_grad
  optional : grad_x_grad, grad_y_grad, grad_grad_out_grad

1126
- backward_op : matrix_power_grad
Z
zyfncg 已提交
1127 1128 1129 1130 1131 1132 1133 1134 1135
  forward : matrix_power (Tensor x, int n) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int n)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : matrix_power_grad

1136
- backward_op : max_grad
1137 1138
  forward: max (Tensor x,  IntArray axis={},  bool keepdim=false) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, IntArray axis={}, bool keepdim=false, bool reduce_all=false)
Z
zyfncg 已提交
1139 1140 1141 1142 1143 1144 1145
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : max_grad

1146
- backward_op : max_pool2d_with_index_grad
Z
zyfncg 已提交
1147 1148 1149 1150 1151 1152 1153 1154
  forward : max_pool2d_with_index(Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive) -> Tensor(out), Tensor(mask)
  args : (Tensor x, Tensor mask, Tensor out_grad, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive)
  output : Tensor(x_grad)
  infer_meta :
    func : MaxPoolWithIndexGradInferMeta
  kernel :
    func : max_pool2d_with_index_grad

1155
- backward_op : max_pool3d_with_index_grad
Z
zyfncg 已提交
1156 1157 1158 1159 1160 1161 1162 1163
  forward : max_pool3d_with_index(Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive) -> Tensor(out), Tensor(mask)
  args : (Tensor x, Tensor mask, Tensor out_grad, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive)
  output : Tensor(x_grad)
  infer_meta :
    func : MaxPoolWithIndexGradInferMeta
  kernel :
    func : max_pool3d_with_index_grad

1164
- backward_op : maximum_grad
Z
zyfncg 已提交
1165 1166 1167 1168 1169 1170 1171 1172 1173
  forward : maximum(Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis=-1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, y]
  kernel :
    func : maximum_grad

1174
- backward_op : maxout_grad
Z
zyfncg 已提交
1175 1176 1177 1178 1179 1180 1181 1182 1183
  forward : maxout(Tensor x, int groups, int axis) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int groups, int axis)
  output : Tensor(x_grad)
  infer_meta :
    func : GeneralUnaryGradInferMeta
    param: [x]
  kernel :
    func : maxout_grad

1184
- backward_op : mean_all_grad
Z
zyfncg 已提交
1185 1186 1187 1188 1189 1190 1191 1192 1193
  forward : mean_all(Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : mean_all_grad

1194
- backward_op : mean_double_grad
1195 1196
  forward: mean_grad (Tensor x, Tensor grad_out, IntArray axis={},  bool keepdim=false, bool reduce_all = false) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, IntArray axis={},  bool keepdim=false)
Z
zyfncg 已提交
1197
  output : Tensor(grad_out_grad)
1198
  invoke : mean(grad_x_grad, axis, keepdim)
Z
zyfncg 已提交
1199

1200
- backward_op : mean_grad
1201 1202
  forward: mean (Tensor x,  IntArray axis={},  bool keepdim=false) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, IntArray axis={},  bool keepdim=false, bool reduce_all=false)
Z
zyfncg 已提交
1203 1204 1205 1206 1207 1208 1209 1210 1211
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : mean_grad
  backward : mean_double_grad
  no_need_buffer : x

1212
- backward_op : meshgrid_grad
Z
zyfncg 已提交
1213 1214 1215 1216 1217 1218 1219 1220
  forward : meshgrid (Tensor[] inputs) -> Tensor[](outputs)
  args : (Tensor[] inputs, Tensor[] outputs_grad)
  output : Tensor[](inputs_grad){inputs.size()}
  infer_meta :
    func : MeshgridGradInferMeta
  kernel :
    func : meshgrid_grad

1221
- backward_op : min_grad
1222 1223
  forward: min (Tensor x,  IntArray axis={},  bool keepdim=false) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, IntArray axis={}, bool keepdim=false, bool reduce_all=false)
Z
zyfncg 已提交
1224 1225 1226 1227 1228 1229 1230
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : min_grad

1231
- backward_op : minimum_grad
Z
zyfncg 已提交
1232 1233 1234 1235 1236 1237 1238 1239 1240
  forward : minimum(Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis=-1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, y]
  kernel :
    func : minimum_grad

1241
- backward_op : mish_grad
Z
zyfncg 已提交
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
  forward : mish (Tensor x, float threshold) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float threshold)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : mish_grad
  inplace : (out_grad -> x_grad)

1252
- backward_op : mode_grad
Z
zyfncg 已提交
1253 1254 1255 1256 1257 1258 1259 1260 1261
  forward : mode(Tensor x,  int axis,  bool keepdim) -> Tensor(out), Tensor(indices)
  args : (Tensor x, Tensor indices, Tensor out_grad,  int axis,  bool keepdim)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : mode_grad

1262
- backward_op : multi_dot_grad
Z
zyfncg 已提交
1263 1264 1265 1266 1267 1268 1269 1270
  forward : multi_dot (Tensor[] x) -> Tensor(out)
  args : (Tensor[] x, Tensor out_grad)
  output : Tensor[](x_grad) {x.size()}
  infer_meta :
    func : MultiDotGradInferMeta
  kernel :
    func : multi_dot_grad

1271
- backward_op : multiplex_grad
1272 1273 1274
  forward : multiplex (Tensor[] inputs, Tensor index) -> Tensor(out)
  args : (Tensor[] inputs, Tensor index, Tensor out_grad)
  output : Tensor[](inputs_grad){inputs.size()}
Z
zyfncg 已提交
1275 1276
  infer_meta :
    func : MultiplexGradInferMeta
1277
    param : [index, out_grad]
Z
zyfncg 已提交
1278 1279
  kernel :
    func : multiplex_grad
1280
    param : [index, out_grad]
Z
zyfncg 已提交
1281

1282
- backward_op : multiply_double_grad
Z
zyfncg 已提交
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
  forward : multiply_grad (Tensor x, Tensor y, Tensor grad_out, int axis = -1) -> Tensor(grad_x), Tensor(grad_y)
  args : (Tensor x, Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [x, y, grad_out]
  kernel :
    func : multiply_double_grad
  optional : grad_x_grad, grad_y_grad
  backward : multiply_triple_grad
  inplace : (grad_x_grad -> grad_out_grad)

1295
- backward_op : multiply_grad
Z
zyfncg 已提交
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
  forward : multiply (Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : multiply_grad
  backward : multiply_double_grad

1306
- backward_op : multiply_triple_grad
Z
zyfncg 已提交
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
  forward : multiply_double_grad (Tensor x, Tensor y, Tensor fwd_grad_out, Tensor fwd_grad_grad_x, Tensor fwd_grad_grad_y, int aixs = -1) -> Tensor(grad_x), Tensor(grad_y), Tensor(grad_grad_out)
  args : (Tensor x, Tensor y, Tensor fwd_grad_out, Tensor fwd_grad_grad_x, Tensor fwd_grad_grad_y, Tensor grad_x_grad, Tensor grad_y_grad, Tensor grad_grad_out_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad), Tensor(fwd_grad_out_grad), Tensor(fwd_grad_grad_x_grad), Tensor(fwd_grad_grad_y_grad)
  infer_meta :
    func : GeneralQuinaryGradInferMeta
    param : [x, y, fwd_grad_out, x, y]
  kernel :
    func : multiply_triple_grad
  optional : fwd_grad_grad_x, fwd_grad_grad_y, grad_grad_out_grad

1317
- backward_op : nearest_interp_grad
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
  forward : nearest_interp (Tensor x, Tensor out_size, Tensor[] size_tensor, Tensor scale_tensor, str data_layout, int out_d, int out_h, int out_w, float[] scale, str interp_method, bool align_corners, int align_mode) -> Tensor(output)
  args : (Tensor x, Tensor out_size, Tensor[] size_tensor, Tensor scale_tensor, Tensor output_grad, str data_layout, int out_d, int out_h, int out_w, float[] scale, str interp_method, bool align_corners, int align_mode)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  optional: out_size, size_tensor, scale_tensor
  kernel :
    func : nearest_interp_grad
    data_type : output_grad

1329
- backward_op : nll_loss_grad
Z
zyfncg 已提交
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
  forward : nll_loss (Tensor input, Tensor label, Tensor weight, int64_t ignore_index, str reduction) -> Tensor(out), Tensor(total_weight)
  args : (Tensor input, Tensor label, Tensor weight, Tensor total_weight, Tensor out_grad, int64_t ignore_index, str reduction)
  output : Tensor(input_grad)
  infer_meta :
    func : NllLossGradInferMeta
  kernel :
    func : nll_loss_grad
    data_type : input
  optional : weight

1340
- backward_op : norm_grad
Z
zyfncg 已提交
1341 1342 1343 1344 1345 1346 1347 1348 1349
  forward : norm (Tensor x, int axis, float epsilon, bool is_test) -> Tensor(out), Tensor(norm)
  args : (Tensor x, Tensor norm, Tensor out_grad, int axis, float epsilon, bool is_test)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : norm_grad

1350
- backward_op : overlap_add_grad
1351 1352 1353 1354 1355 1356 1357 1358 1359
  forward : overlap_add(Tensor x, int hop_length, int axis) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int hop_length, int axis)
  output : Tensor(x_grad)
  infer_meta :
    func : OverlapAddGradInferMeta
  kernel :
    func : overlap_add_grad
    data_type : x

1360
- backward_op : p_norm_grad
Z
zyfncg 已提交
1361 1362 1363 1364 1365 1366 1367 1368 1369
  forward : p_norm(Tensor x,  float porder,  int axis,  float epsilon,  bool keepdim,  bool asvector=false) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad,  float porder,  int axis,  float epsilon,  bool keepdim,  bool asvector)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : p_norm_grad

1370
- backward_op : pad3d_double_grad
Z
zyfncg 已提交
1371 1372 1373 1374 1375 1376 1377 1378
  forward : pad3d_grad(Tensor x, Tensor grad_out, IntArray paddings, str mode, float pad_value, str data_format) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, IntArray paddings, str mode, float pad_value, str data_format)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : Pad3dInferMeta
  kernel :
    func : pad3d

1379
- backward_op : pad3d_grad
Z
zyfncg 已提交
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
  forward : pad3d(Tensor x, IntArray paddings, str mode,  float pad_value, str data_format) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, IntArray paddings, str mode,  float pad_value, str data_format)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : pad3d_grad
  no_need_buffer : x
  backward : pad3d_double_grad

1391
- backward_op : pad_double_grad
1392 1393
  forward : pad_grad(Tensor x, Tensor grad_out, int[] paddings, Scalar pad_value) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, int[] paddings, Scalar pad_value)
Z
zyfncg 已提交
1394 1395 1396 1397 1398 1399
  output : Tensor(grad_out_grad)
  infer_meta :
    func : PadInferMeta
  kernel :
    func : pad

1400
- backward_op : pad_grad
1401 1402
  forward : pad(Tensor x, int[] paddings, Scalar pad_value) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int[] paddings, Scalar pad_value)
Z
zyfncg 已提交
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : pad_grad
    param: [out_grad, paddings, pad_value]
  no_need_buffer : x
  backward : pad_double_grad

1413
- backward_op : pixel_shuffle_grad
Z
zyfncg 已提交
1414 1415 1416 1417 1418 1419 1420 1421
  forward : pixel_shuffle (Tensor x, int upscale_factor, str data_format) -> Tensor(out)
  args : (Tensor out_grad, int upscale_factor, str data_format)
  output : Tensor(x_grad)
  infer_meta :
    func : PixelShuffleGradInferMeta
  kernel :
    func : pixel_shuffle_grad

1422
- backward_op : pool2d_double_grad
1423 1424
  forward : pool2d_grad(Tensor x, Tensor out, Tensor grad_out, IntArray kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm, bool use_gpudnn) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, IntArray kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm, bool use_gpudnn)
Z
zyfncg 已提交
1425 1426
  output : Tensor(grad_out_grad)
  infer_meta :
1427
    func : Pool2DInferMeta
1428
    param : [grad_x_grad, kernel_size, strides, paddings, ceil_mode, exclusive, data_format, pooling_type, global_pooling, adaptive, padding_algorithm]
Z
zyfncg 已提交
1429 1430
  kernel :
    func : pool2d_double_grad
1431 1432
    param : [grad_x_grad, kernel_size, strides, paddings, ceil_mode, exclusive, data_format, pooling_type, global_pooling, adaptive, padding_algorithm]
    use_gpudnn : use_gpudnn
Z
zyfncg 已提交
1433

1434
- backward_op : pool2d_grad
1435 1436
  forward : pool2d(Tensor x, IntArray kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm, bool use_gpudnn) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, IntArray kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm, bool use_gpudnn)
Z
zyfncg 已提交
1437 1438
  output : Tensor(x_grad)
  infer_meta :
1439 1440
    func : UnchangedInferMeta
    param: [x]
Z
zyfncg 已提交
1441 1442
  kernel :
    func : pool2d_grad
1443 1444
    param : [x, out, out_grad, kernel_size, strides, paddings, ceil_mode, exclusive, data_format, pooling_type, global_pooling, adaptive, padding_algorithm]
    use_gpudnn : use_gpudnn
Z
zyfncg 已提交
1445 1446
  backward : pool2d_double_grad

1447
- backward_op : pool3d_grad
1448 1449
  forward : pool3d(Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm, bool use_gpudnn) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm, bool use_gpudnn)
Z
zyfncg 已提交
1450 1451
  output : Tensor(x_grad)
  infer_meta :
1452 1453
    func : UnchangedInferMeta
    param: [x]
Z
zyfncg 已提交
1454 1455
  kernel :
    func : pool3d_grad
1456 1457
    param : [x, out, out_grad, kernel_size, strides, paddings, ceil_mode, exclusive, data_format, pooling_type, global_pooling, adaptive, padding_algorithm]
    use_gpudnn : use_gpudnn
Z
zyfncg 已提交
1458

1459
- backward_op : pow_grad
1460 1461
  forward : pow(Tensor x, Scalar y) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, Scalar y=-1)
Z
zyfncg 已提交
1462 1463 1464 1465 1466 1467 1468 1469
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : pow_grad
  inplace : (out_grad -> x_grad)

1470
- backward_op : prelu_grad
Z
zyfncg 已提交
1471 1472 1473 1474 1475 1476 1477 1478 1479
  forward : prelu(Tensor x, Tensor alpha, str data_format, str mode) -> Tensor(out)
  args : (Tensor x, Tensor alpha, Tensor out_grad, str data_format, str mode)
  output : Tensor(x_grad), Tensor(alpha_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, alpha]
  kernel :
    func : prelu_grad

1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
- backward_op : prod_grad
  forward : prod (Tensor x, IntArray dims, bool keep_dim, bool reduce_all) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, IntArray dims,  bool keep_dim, bool reduce_all)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : prod_grad

1490
- backward_op : psroi_pool_grad
Z
zyfncg 已提交
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
  forward : psroi_pool (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height, int pooled_width, int output_channels, float spatial_scale) -> Tensor(out)
  args : (Tensor x, Tensor boxes, Tensor boxes_num, Tensor out_grad, int pooled_height, int pooled_width, int output_channels, float spatial_scale)
  output : Tensor(x_grad)
  infer_meta :
    func : GeneralUnaryGradInferMeta
    param : [x]
  kernel :
    func : psroi_pool_grad
    data_type : x
  optional : boxes_num

# output is optional
1503
- backward_op : put_along_axis_grad
1504 1505
  forward : put_along_axis (Tensor arr, Tensor indices, Tensor value, int axis, str reduce) -> Tensor(out)
  args : (Tensor arr, Tensor indices, Tensor out_grad, int axis, str reduce)
1506
  output : Tensor(arr_grad), Tensor(value_grad)
Z
zyfncg 已提交
1507 1508
  infer_meta :
    func : GeneralBinaryGradInferMeta
1509
    param : [arr, indices]
Z
zyfncg 已提交
1510 1511 1512
  kernel :
    func : put_along_axis_grad

1513
- backward_op : qr_grad
Y
Yulong Ao 已提交
1514 1515 1516 1517 1518 1519 1520 1521 1522
  forward : qr (Tensor x, str mode) -> Tensor(q), Tensor(r)
  args : (Tensor x, Tensor q, Tensor r, Tensor q_grad, Tensor r_grad, str mode)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : qr_grad

1523
- backward_op : real_grad
Z
zyfncg 已提交
1524 1525 1526 1527 1528
  forward : real (Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  invoke : real_grad_impl(out_grad, x_grad)

1529
- backward_op : relu6_grad
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
  forward : relu6 (Tensor x, float threshold) -> Tensor(out)
  args : (Tensor out, Tensor out_grad, float threshold)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : relu6_grad
  inplace : (out_grad -> x_grad)

1540
- backward_op : relu_double_grad
Z
zyfncg 已提交
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
  forward : relu_grad (Tensor out, Tensor grad_out) -> Tensor(grad_x)
  args : (Tensor out, Tensor grad_x_grad)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : relu_double_grad
  inplace : (grad_x_grad -> grad_out_grad)

1551
- backward_op : relu_grad
Z
zyfncg 已提交
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
  forward : relu (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : relu_grad
  backward: relu_double_grad
  inplace : (out_grad -> x_grad)

1563
- backward_op : renorm_grad
S
seemingwang 已提交
1564 1565 1566 1567 1568 1569 1570 1571 1572
  forward : renorm (Tensor x, float p, int axis, float max_norm) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float p, int axis, float max_norm)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
    func : renorm_grad

1573
- backward_op : repeat_interleave_grad
1574 1575
  forward : repeat_interleave(Tensor x, int repeats, int axis) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int repeats, int axis)
S
seemingwang 已提交
1576 1577 1578 1579 1580 1581 1582
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : repeat_interleave_grad

1583
- backward_op : repeat_interleave_with_tensor_index_grad
1584 1585
  forward : repeat_interleave_with_tensor_index(Tensor x, Tensor repeats, int axis) -> Tensor(out)
  args : (Tensor x, Tensor repeats, Tensor out_grad, int axis)
S
seemingwang 已提交
1586 1587 1588 1589 1590 1591 1592 1593
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : repeat_interleave_with_tensor_index_grad
    data_type : x

1594
- backward_op : reshape_double_grad
Z
zyfncg 已提交
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
  forward : reshape_grad (Tensor xshape, Tensor grad_out) -> Tensor(grad_x)
  args : (Tensor grad_out, Tensor grad_x_grad)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [grad_out]
  kernel :
    func : reshape_double_grad
  no_need_buffer : grad_out
  inplace : (grad_x_grad -> grad_out_grad)

1606
- backward_op : reshape_grad
Z
zyfncg 已提交
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
  forward : reshape (Tensor x, IntArray shape) -> Tensor(out), Tensor(xshape)
  args : (Tensor xshape, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : KernelWithXShapeInferMeta
    param : [xshape]
  kernel :
    func : reshape_grad
    param : [out_grad]
    data_type: out_grad
    backend: out_grad
    layout: out_grad
  backward : reshape_double_grad
  inplace : (out_grad -> x_grad)

1622
- backward_op : reverse_array_grad
1623 1624
  forward : reverse_array (Tensor[] x, IntArray axis) -> Tensor[](out)
  args : (Tensor[] out_grad, IntArray axis)
W
wanghuancoder 已提交
1625 1626 1627 1628 1629 1630
  output : Tensor[](x_grad){out_grad.size()}
  infer_meta :
    func : ReverseArrayInferMeta
  kernel :
    func : reverse

1631
- backward_op : reverse_grad
1632 1633
  forward : reverse (Tensor x, IntArray axis) -> Tensor(out)
  args : (Tensor out_grad, IntArray axis)
W
wanghuancoder 已提交
1634 1635 1636
  output : Tensor(x_grad)
  invoke : reverse(out_grad, axis)

Y
YuanRisheng 已提交
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
- backward_op : rnn_grad
  forward : rnn (Tensor x, Tensor[] pre_state, Tensor[] weight_list, Tensor sequence_length, Tensor dropout_state_in, float dropout_prob, bool is_bidirec, int input_size, int hidden_size, int num_layers, str mode, int seed, bool is_test) -> Tensor(out), Tensor(dropout_state_out), Tensor[](state), Tensor(reserve)
  args : (Tensor x, Tensor[] pre_state, Tensor[] weight_list, Tensor sequence_length, Tensor out, Tensor dropout_state_out, Tensor reserve, Tensor out_grad, Tensor[] state_grad, float dropout_prob, bool is_bidirec, int input_size, int hidden_size, int num_layers, str mode, int seed, bool is_test)
  output : Tensor(x_grad), Tensor[](pre_state_grad){pre_state.size()}, Tensor[](weight_list_grad){weight_list.size()}
  infer_meta :
    func : RnnGradInferMeta
    param : [x, pre_state, weight_list]
  kernel :
    func : rnn_grad
    data_type: out_grad
  optional : sequence_length

1649
- backward_op : roi_align_grad
Z
zyfncg 已提交
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
  forward : roi_align (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height, int pooled_width, float spatial_scale, int sampling_ratio, bool aligned) -> Tensor(out)
  args : (Tensor x, Tensor boxes, Tensor boxes_num, Tensor out_grad, int pooled_height, int pooled_width, float spatial_scale, int sampling_ratio, bool aligned)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : roi_align_grad
    data_type : boxes
  no_need_buffer : x
  optional : boxes_num

1662
- backward_op : roi_pool_grad
Z
zyfncg 已提交
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
  forward : roi_pool (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height, int pooled_width, float spatial_scale) -> Tensor(out), Tensor(arg_max)
  args : (Tensor x, Tensor boxes, Tensor boxes_num, Tensor arg_max, Tensor out_grad, int pooled_height, int pooled_width, float spatial_scale)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : roi_pool_grad
    data_type : x
  optional : boxes_num

1674
- backward_op : roll_grad
Z
zyfncg 已提交
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
  forward : roll(Tensor x, IntArray shifts, int64_t[] axis) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, IntArray shifts, int64_t[] axis)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : roll_grad
    data_type : x
  no_need_buffer : x

1686
- backward_op : rsqrt_double_grad
Z
zyfncg 已提交
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
  forward : rsqrt_grad (Tensor out, Tensor grad_out) -> Tensor(grad_x)
  args : (Tensor out, Tensor grad_x, Tensor grad_x_grad)
  output : Tensor(out_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [out, out]
  kernel :
    func : rsqrt_double_grad
  inplace : (grad_x_grad -> grad_out_grad)

1697
- backward_op : rsqrt_grad
Z
zyfncg 已提交
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
  forward : rsqrt (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : rsqrt_grad
  backward : rsqrt_double_grad
  inplace : (out_grad -> x_grad)

1709
- backward_op : scale_grad
Z
zyfncg 已提交
1710
  forward : scale (Tensor x, Scalar scale, float bias, bool bias_after_scale) -> Tensor(out)
1711
  args : (Tensor out_grad, Scalar scale=1.0, bool bias_after_scale=true)
Z
zyfncg 已提交
1712 1713 1714
  output : Tensor(x_grad)
  invoke : scale(out_grad, scale, 0.0, bias_after_scale)

1715
- backward_op : scatter_grad
Z
zyfncg 已提交
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
  forward : scatter (Tensor x, Tensor index, Tensor updates, bool overwrite) -> Tensor(out)
  args : (Tensor index, Tensor updates, Tensor out_grad, bool overwrite)
  output : Tensor(x_grad), Tensor(updates_grad)
  infer_meta :
    func : ScatterGradInferMeta
    param : [index, updates, out_grad, overwrite]
  kernel :
    func : scatter_grad
  no_need_buffer : updates

1726
- backward_op : scatter_nd_add_grad
Z
zyfncg 已提交
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
  forward : scatter_nd_add (Tensor x, Tensor index, Tensor updates) -> Tensor(out)
  args : (Tensor index, Tensor updates, Tensor out_grad)
  output : Tensor(x_grad), Tensor(updates_grad)
  infer_meta :
    func : ScatterNdAddGradInferMeta
    param : [index, updates, out_grad]
  kernel :
    func : scatter_nd_add_grad
  no_need_buffer : updates

1737
- backward_op : segment_pool_grad
Z
zyfncg 已提交
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
  forward : segment_pool (Tensor x, Tensor segment_ids, str pooltype) -> Tensor(out), Tensor(summed_ids)
  args : (Tensor x, Tensor segment_ids, Tensor out, Tensor summed_ids, Tensor out_grad, str pooltype)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : segment_pool_grad
    data_type : x
  optional : summed_ids

1749
- backward_op : selu_grad
Z
zyfncg 已提交
1750 1751 1752 1753 1754 1755 1756 1757 1758
  forward : selu (Tensor x, float scale, float alpha) -> Tensor(out)
  args : (Tensor out, Tensor out_grad, float scale, float alpha)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : selu_grad

1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
- backward_op : send_u_recv_grad
  forward : send_u_recv (Tensor x, Tensor src_index, Tensor dst_index, str reduce_op = "SUM", IntArray out_size = {0}) -> Tensor(out), Tensor(dst_count)
  args : (Tensor x, Tensor src_index, Tensor dst_index, Tensor out, Tensor dst_count, Tensor out_grad, str reduce_op = "SUM")
  output : Tensor(x_grad)
  infer_meta :
    func : GeneralUnaryGradInferMeta
    param : [x]
  kernel :
    func : send_u_recv_grad
    data_type : out_grad
  optional: out, dst_count

- backward_op : send_ue_recv_grad
  forward : send_ue_recv (Tensor x, Tensor y, Tensor src_index, Tensor dst_index, str message_op, str reduce_op, IntArray out_size) -> Tensor(out), Tensor(dst_count)
  args : (Tensor x, Tensor y, Tensor src_index, Tensor dst_index, Tensor out, Tensor dst_count, Tensor out_grad, str message_op, str reduce_op)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : send_ue_recv_grad
    data_type : out_grad
  optional: out, dst_count

1783
- backward_op : sigmoid_cross_entropy_with_logits_grad
Z
zyfncg 已提交
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
  forward : sigmoid_cross_entropy_with_logits (Tensor x, Tensor label, bool normalize, int ignore_index) -> Tensor(out)
  args : (Tensor x, Tensor label, Tensor out_grad, bool normalize, int ignore_index)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : sigmoid_cross_entropy_with_logits_grad
  inplace : (out_grad -> x_grad)

1794
- backward_op : sigmoid_double_grad
Z
zyfncg 已提交
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
  forward : sigmoid_grad (Tensor out, Tensor fwd_grad_out) -> Tensor(grad_x)
  args : (Tensor out, Tensor fwd_grad_out, Tensor grad_x_grad)
  output : Tensor(out_grad), Tensor(fwd_grad_out_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [out, fwd_grad_out]
  kernel :
    func : sigmoid_double_grad
  backward : sigmoid_triple_grad
  inplace : (grad_x_grad -> fwd_grad_out_grad)

1806
- backward_op : sigmoid_grad
Z
zyfncg 已提交
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
  forward : sigmoid (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : sigmoid_grad
  backward : sigmoid_double_grad
  inplace : (out_grad -> x_grad)

1818
- backward_op : sigmoid_triple_grad
Z
zyfncg 已提交
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
  forward : sigmoid_double_grad (Tensor out, Tensor fwd_grad_out, Tensor grad_grad_x) -> Tensor(grad_out), Tensor(grad_grad_out)
  args : (Tensor out, Tensor fwd_grad_out, Tensor grad_grad_x, Tensor grad_out_grad, Tensor grad_grad_out_grad)
  output : Tensor(out_grad), Tensor(fwd_grad_out_grad), Tensor(grad_grad_x_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [out, fwd_grad_out, grad_grad_x]
  kernel :
    func : sigmoid_triple_grad
  optional : grad_grad_out_grad
  inplace : (grad_grad_x -> fwd_grad_out_grad)

1830 1831 1832 1833 1834 1835
- backward_op : sign_grad
  forward : sign (Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  invoke : scale(out_grad, 0.0, 0.0, true)

1836
- backward_op : slice_double_grad
1837 1838 1839
  forward : slice_grad (Tensor input, Tensor grad_out, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis) -> Tensor(grad_input)
  args : (Tensor grad_input_grad, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis)
  output : Tensor(grad_out_grad)
1840
  invoke : slice(grad_input_grad, axes, starts, ends, infer_flags, decrease_axis)
1841

1842
- backward_op : slice_grad
Z
zyfncg 已提交
1843 1844 1845 1846 1847 1848 1849 1850
  forward : slice (Tensor input, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis) -> Tensor(out)
  args : (Tensor input, Tensor out_grad, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis)
  output : Tensor(input_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [input]
  kernel :
    func : slice_grad
1851
  backward : slice_double_grad
Z
zyfncg 已提交
1852 1853
  no_need_buffer : input

1854
- backward_op : slogdet_grad
1855 1856 1857 1858 1859 1860 1861 1862 1863
  forward : slogdet (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : slogdeterminant_grad

1864
- backward_op : softmax_grad
Z
zyfncg 已提交
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
  forward : softmax (Tensor x, int axis) -> Tensor(out)
  args : (Tensor out, Tensor out_grad, int axis)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : softmax_grad
    use_gpudnn : true

1875
- backward_op : softplus_grad
W
Wang Bojun 已提交
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
  forward : softplus (Tensor x, float beta, float threshold) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float beta, float threshold)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : softplus_grad
  inplace : (out_grad -> x_grad)

1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
- backward_op : softshrink_grad
  forward : softshrink (Tensor x, float threshold) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float threshold)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : soft_shrink_grad
  inplace : (out_grad -> x_grad)

1897
- backward_op : softsign_grad
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
  forward : softsign (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : softsign_grad
  inplace : (out_grad -> x_grad)

1908
- backward_op : spectral_norm_grad
1909 1910 1911 1912 1913 1914 1915 1916 1917
  forward : spectral_norm (Tensor weight, Tensor u, Tensor v, int dim, int power_iters, float eps) -> Tensor(out)
  args : (Tensor weight, Tensor u, Tensor v, Tensor out_grad, int dim, int power_iters, float eps)
  output : Tensor(weight_grad)
  infer_meta :
    func : SpectralNormGradInferMeta
  kernel :
    func : spectral_norm_grad
    data_type : out_grad

1918
- backward_op : split_grad
Z
zyfncg 已提交
1919 1920 1921 1922
  forward : split (Tensor x, IntArray num_or_sections, Scalar axis) -> Tensor[](out)
  args : (Tensor[] out_grad, Scalar axis = -1)
  output : Tensor(x_grad)
  invoke : concat( out_grad, axis)
C
Charles-hit 已提交
1923

1924
- backward_op : split_with_num_grad
C
Charles-hit 已提交
1925 1926 1927 1928
  forward : split_with_num (Tensor x, int num, Scalar axis) -> Tensor[](out)
  args : (Tensor[] out_grad, Scalar axis = -1)
  output : Tensor(x_grad)
  invoke : concat( out_grad, axis)
Z
zyfncg 已提交
1929

1930
- backward_op : sqrt_double_grad
Z
zyfncg 已提交
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
  forward : sqrt_grad (Tensor out, Tensor grad_out) -> Tensor(grad_x)
  args : (Tensor out, Tensor grad_x, Tensor grad_x_grad)
  output : Tensor(out_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [out, out]
  kernel :
    func : sqrt_double_grad
  inplace : (grad_x_grad -> grad_out_grad)

1941
- backward_op : sqrt_grad
Z
zyfncg 已提交
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
  forward : sqrt (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : sqrt_grad
  backward : sqrt_double_grad
  inplace : (out_grad -> x_grad)

1953
- backward_op : square_double_grad
Z
zyfncg 已提交
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
  forward : square_grad (Tensor x, Tensor grad_out) -> Tensor(grad_x)
  args : (Tensor x, Tensor grad_out, Tensor grad_x_grad)
  output : Tensor(x_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, x]
  kernel :
    func : square_double_grad
  inplace : (grad_x_grad -> grad_out_grad)

1964
- backward_op : square_grad
Z
zyfncg 已提交
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
  forward : square (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : square_grad
  backward : square_double_grad
  inplace : (out_grad -> x_grad)

1976
- backward_op : squared_l2_norm_grad
1977 1978 1979 1980 1981 1982 1983 1984 1985
  forward : squared_l2_norm(Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : squared_l2_norm_grad

1986
- backward_op : squeeze_double_grad
1987 1988
  forward : squeeze_grad(Tensor xshape, Tensor grad_out, IntArray axis) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, IntArray axis)
Z
zyfncg 已提交
1989
  output : Tensor(grad_out_grad)
1990
  invoke: squeeze(grad_x_grad, axis)
Z
zyfncg 已提交
1991

1992
- backward_op : squeeze_grad
1993 1994
  forward : squeeze(Tensor x, IntArray axis) -> Tensor(out), Tensor(xshape)
  args : (Tensor xshape, Tensor out_grad, IntArray axis)
Z
zyfncg 已提交
1995 1996 1997 1998 1999 2000 2001 2002 2003
  output : Tensor(x_grad)
  infer_meta :
    func : KernelWithXShapeInferMeta
    param: [xshape]
  kernel :
    func : squeeze_grad
  inplace : (out_grad -> x_grad)
  backward: squeeze_double_grad

2004
- backward_op : stack_grad
Z
zyfncg 已提交
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
  forward : stack (Tensor[] x, int axis) -> Tensor(out)
  args : (Tensor[] x, Tensor out_grad, int axis)
  output : Tensor[](x_grad){x.size()}
  infer_meta :
    func : StackGradInferMeta
    param: [out_grad, axis]
  kernel :
    func : stack_grad
    param : [out_grad, axis]
  no_need_buffer : x

2016
- backward_op : strided_slice_grad
Z
zyfncg 已提交
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
  forward : strided_slice (Tensor x, int[] axes, IntArray starts, IntArray ends, IntArray strides) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int[] axes, IntArray starts, IntArray ends, IntArray strides)
  output : Tensor(x_grad)
  infer_meta :
    func : GeneralUnaryGradInferMeta
    param : [x]
  kernel :
    func : strided_slice_grad
  no_need_buffer : x

2027
- backward_op : subtract_double_grad
Z
zyfncg 已提交
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
  forward : subtract_grad (Tensor x, Tensor y, Tensor grad_out, int axis = -1) -> Tensor(grad_x), Tensor(grad_y)
  args : (Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, int axis = -1)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [grad_out]
  kernel :
    func : subtract_double_grad
  optional : grad_x_grad, grad_y_grad
  no_need_buffer : y, grad_out
  inplace : (grad_x_grad -> grad_out_grad)

2040
- backward_op : subtract_grad
Z
zyfncg 已提交
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
  forward : subtract (Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : subtract_grad
  no_need_buffer : x, y
  backward : subtract_double_grad
  inplace : (out_grad -> x_grad)

2053
- backward_op : sum_double_grad
2054 2055
  forward : sum_grad (Tensor x, Tensor grad_out, IntArray axis, bool keepdim, bool reduce_all=false) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, IntArray axis={}, bool keepdim=false)
Z
zyfncg 已提交
2056
  output : Tensor(grad_out_grad)
2057
  invoke : sum(grad_x_grad, axis, grad_x_grad.dtype(), keepdim)
Z
zyfncg 已提交
2058

2059
- backward_op : sum_grad
2060 2061
  forward : sum (Tensor x, IntArray axis={}, DataType dtype=DataType::UNDEFINED, bool keepdim=false) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, IntArray axis, bool keepdim, bool reduce_all=false)
Z
zyfncg 已提交
2062 2063 2064 2065 2066 2067 2068 2069 2070
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : sum_grad
  no_need_buffer : x
  backward : sum_double_grad

2071
- backward_op : svd_grad
2072 2073
  forward : svd (Tensor x, bool full_matrices) -> Tensor(u), Tensor(s), Tensor(vh)
  args : (Tensor x, Tensor u, Tensor vh, Tensor s, Tensor u_grad, Tensor vh_grad, Tensor s_grad, bool full_matrices)
2074 2075 2076 2077 2078 2079 2080 2081
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : svd_grad
  optional: u_grad, vh_grad, s_grad

2082
- backward_op : swish_grad
Z
zyfncg 已提交
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
  forward : swish (Tensor x, float beta=1.0) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float bete=1.0)
  output : Tensor(x_grad)
  infer_meta :
    func : GeneralUnaryGradInferMeta
    param : [x]
  kernel :
    func : swish_grad
  inplace : (out_grad -> x_grad)

2093
- backward_op : sync_batch_norm_grad
2094 2095
  forward : sync_batch_norm_ (Tensor x, Tensor mean, Tensor variance, Tensor scale, Tensor bias, bool is_test, float momentum, float epsilon, str data_layout, bool use_global_stats, bool trainable_statistics) -> Tensor(out), Tensor(mean_out), Tensor(variance_out), Tensor(saved_mean), Tensor(saved_variance), Tensor(reserve_space)
  args : (Tensor x, Tensor scale, Tensor bias, Tensor saved_mean, Tensor saved_variance, Tensor reserve_space, Tensor out_grad, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics)
2096 2097 2098 2099 2100 2101 2102
  output : Tensor(x_grad), Tensor(scale_grad), Tensor(bias_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [x, scale, bias]
  kernel :
    func : sync_batch_norm_grad
    data_type : out_grad
2103
  optional : reserve_space
2104

2105
- backward_op : take_along_axis_grad
2106 2107 2108
  forward : take_along_axis (Tensor arr, Tensor indices, int axis) -> Tensor(out)
  args : (Tensor arr, Tensor indices, Tensor out_grad, int axis)
  output : Tensor(arr_grad)
Z
zyfncg 已提交
2109 2110
  infer_meta :
    func : UnchangedInferMeta
2111
    param : [arr]
Z
zyfncg 已提交
2112 2113 2114
  kernel :
    func : take_along_axis_grad

2115
- backward_op : tanh_shrink_grad
Z
zyfncg 已提交
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
  forward : tanh_shrink (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : tanh_shrink_grad
  inplace : (out_grad -> x_grad)

2126
- backward_op : temporal_shift_grad
C
ccrrong 已提交
2127 2128 2129 2130 2131 2132 2133 2134 2135
  forward : temporal_shift(Tensor x, int seg_num, float shift_ratio, str data_format_str) -> Tensor(out)
  args : (Tensor out_grad, int seg_num, float shift_ratio, str data_format_str)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
    func : temporal_shift_grad

2136
- backward_op : thresholded_relu_grad
Z
zyfncg 已提交
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
  forward : thresholded_relu (Tensor x, float threshold) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float threshold)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : thresholded_relu_grad
  inplace : (out_grad -> x_grad)

2147
- backward_op : tile_double_grad
Z
zyfncg 已提交
2148 2149 2150
  forward : tile_grad (Tensor x, Tensor grad_out, IntArray repeat_times) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, IntArray repeat_times)
  output : Tensor(grad_out_grad)
2151
  invoke : tile(grad_x_grad, repeat_times)
Z
zyfncg 已提交
2152

2153
- backward_op : tile_grad
Z
zyfncg 已提交
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
  forward : tile (Tensor x, IntArray repeat_times) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, IntArray repeat_times)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : tile_grad
  no_need_buffer : x
  backward : tile_double_grad

2165 2166
- backward_op : topk_grad
  forward : topk (Tensor x, Scalar k, int axis = -1, bool largest = true, bool sorted = true) -> Tensor(out), Tensor(indices)
Z
zyfncg 已提交
2167 2168 2169 2170 2171 2172 2173 2174
  args : (Tensor x, Tensor indices, Tensor out_grad, Scalar k = -1, int axis = -1, bool largest = true, bool sorted = true)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : top_k_grad

2175
- backward_op : transpose_double_grad
2176 2177
  forward : transpose_grad (Tensor grad_out, int[] perm) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, int[] perm)
Z
zyfncg 已提交
2178
  output : Tensor(grad_out_grad)
2179
  invoke : transpose(grad_x_grad, perm)
Z
zyfncg 已提交
2180

2181
- backward_op : transpose_grad
2182 2183
  forward : transpose (Tensor x, int[] perm) -> Tensor(out)
  args : (Tensor out_grad, int[] perm)
Z
zyfncg 已提交
2184 2185 2186
  output : Tensor(x_grad)
  infer_meta :
    func : TransposeGradInferMeta
2187
    param : [out_grad, perm]
Z
zyfncg 已提交
2188 2189 2190 2191
  kernel :
    func : transpose_grad
  backward : transpose_double_grad

2192
- backward_op : triangular_solve_grad
Z
zyfncg 已提交
2193 2194 2195 2196 2197 2198 2199 2200 2201
  forward : triangular_solve (Tensor x, Tensor y, bool upper, bool tranpose, bool unitriangular) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out, Tensor out_grad, bool upper, bool tranpose, bool unitriangular)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : triangular_solve_grad

2202 2203
- backward_op : tril_grad
  forward : tril(Tensor x,  int diagonal,  bool lower) -> Tensor(out)
Z
zyfncg 已提交
2204 2205 2206 2207 2208 2209
  args : (Tensor out_grad,  int diagonal,  bool lower)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
2210
    func : tril_grad
Z
zyfncg 已提交
2211

2212
- backward_op : trilinear_interp_grad
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
  forward : trilinear_interp (Tensor x, Tensor out_size, Tensor[] size_tensor, Tensor scale_tensor, str data_layout, int out_d, int out_h, int out_w, float[] scale, str interp_method, bool align_corners, int align_mode) -> Tensor(output)
  args : (Tensor x, Tensor out_size, Tensor[] size_tensor, Tensor scale_tensor, Tensor output_grad, str data_layout, int out_d, int out_h, int out_w, float[] scale, str interp_method, bool align_corners, int align_mode)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  optional: out_size, size_tensor, scale_tensor
  kernel :
    func : trilinear_interp_grad
    data_type : output_grad

2224
- backward_op : unbind_grad
Z
zyfncg 已提交
2225 2226 2227 2228 2229
  forward : unbind (Tensor input, int axis) -> Tensor[](out)
  args : (Tensor[] out_grad, int axis)
  output : Tensor(input_grad)
  invoke : stack(out_grad, axis)

2230
- backward_op : unfold_grad
Z
zyfncg 已提交
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
  forward : unfold (Tensor x, int[] kernel_sizes, int[] strides, int[] paddings, int[] dilations) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int[] kernel_sizes, int[] strides, int[] paddings, int[] dilations)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : unfold_grad
  no_need_buffer : x

2241 2242
- backward_op : uniform_inplace_grad
  forward : uniform_inplace(Tensor x, float min, float max, int seed, int diag_num, int diag_step, float diag_val) -> Tensor(out)
2243 2244 2245 2246 2247
  args : (Tensor out_grad, float min, float max, int seed, int diag_num, int diag_step, float diag_val)
  output : Tensor(x_grad)
  infer_meta :
    func : UniformRandomInplaceGradInferMeta
  kernel :
2248
    func : uniform_inplace_grad
2249 2250
  inplace : (out_grad -> x_grad)

2251
- backward_op : unsqueeze_double_grad
Z
zyfncg 已提交
2252 2253 2254 2255 2256
  forward : unsqueeze_grad(Tensor xshape, Tensor grad_out, IntArray axes) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, IntArray axes)
  output : Tensor(grad_out_grad)
  invoke : unsqueeze(grad_x_grad, axes)

2257
- backward_op : unsqueeze_grad
Z
zyfncg 已提交
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
  forward : unsqueeze(Tensor x, IntArray axes) -> Tensor(out), Tensor(xshape)
  args : (Tensor xshape, Tensor out_grad, IntArray axes)
  output : Tensor(x_grad)
  infer_meta :
    func : KernelWithXShapeInferMeta
    param: [xshape]
  kernel :
    func : unsqueeze_grad
    param: [xshape, out_grad]
  inplace : (out_grad -> x_grad)
  backward : unsqueeze_double_grad

2270
- backward_op : unstack_grad
2271 2272 2273 2274 2275 2276 2277 2278 2279
  forward : unstack (Tensor x, int axis, int num) -> Tensor[](out)
  args : (Tensor[] out_grad, int axis)
  output : Tensor(x_grad)
  infer_meta :
    func : UnStackGradInferMeta
    param : [out_grad, axis]
  kernel :
    func : unstack_grad

2280
- backward_op : warpctc_grad
2281
  forward : warpctc (Tensor logits, Tensor label, Tensor logits_length, Tensor labels_length, int blank, bool norm_by_times) -> Tensor(loss), Tensor(warpctcgrad)
Z
Zhong Hui 已提交
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
  args : (Tensor logits, Tensor logits_length, Tensor warpctcgrad, Tensor loss_grad, int blank, bool norm_by_times)
  output : Tensor(logits_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [logits]
  kernel :
    func : warpctc_grad
  optional : logits_length
  no_need_buffer : logits

2292
- backward_op : where_grad
Z
zyfncg 已提交
2293 2294 2295 2296 2297 2298 2299 2300 2301
  forward : where (Tensor condition, Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor condition, Tensor x, Tensor y, Tensor out_grad)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : where_grad
  no_need_buffer : x, y
2302

2303 2304
- backward_op : yolo_loss_grad
  forward : yolo_loss(Tensor x, Tensor gt_box, Tensor gt_label, Tensor gt_score, int[] anchors, int[] anchor_mask, int class_num, float ignore_thresh, int downsample_ratio, bool use_label_smooth=true, float scale_x_y=1.0) -> Tensor(loss), Tensor(objectness_mask), Tensor(gt_match_mask)
2305 2306 2307
  args : (Tensor x, Tensor gt_box, Tensor gt_label, Tensor gt_score, Tensor objectness_mask, Tensor gt_match_mask, Tensor loss_grad, int[] anchors, int[] anchor_mask, int class_num, float ignore_thresh, int downsample_ratio, bool use_label_smooth=true, float scale_x_y=1.0)
  output : Tensor(x_grad), Tensor(gt_box_grad), Tensor(gt_label_grad), Tensor(gt_score_grad)
  infer_meta :
2308
    func : YoloLossGradInferMeta
2309
  kernel :
2310
    func : yolo_loss_grad
2311
  optional : gt_score
X
xiaoting 已提交
2312

2313
- backward_op: fold_grad
X
xiaoting 已提交
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
  forward: fold (Tensor x, int[] output_sizes, int[] kernel_sizes, int[] strides, int[] paddings, int[] dilations) -> Tensor(out)
  args: (Tensor x, Tensor out_grad, int[] output_sizes, int[] kernel_sizes, int[] strides, int[] paddings, int[] dilations)
  output: Tensor(x_grad)
  infer_meta:
    func: UnchangedInferMeta
    param : [x]
  kernel:
    func: fold_grad
  no_need_buffer : x

2324
- backward_op: unpool3d_grad
X
xiaoting 已提交
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
  forward: unpool3d (Tensor x, Tensor indices, int[] ksize, int[] strides, int[] padding, int[] output_size, str data_format) -> Tensor(out)
  args: (Tensor x, Tensor indices, Tensor out, Tensor out_grad, int[] ksize, int[] strides, int[] padding, int[] output_size, str data_format)
  output: Tensor(x_grad)
  infer_meta:
    func: UnchangedInferMeta
    param : [x]
  kernel:
    func: unpool3d_grad
    data_type: x

2335
- backward_op: unpool_grad
2336 2337
  forward: unpool (Tensor x, Tensor indices, int[] ksize, int[] strides, int[] padding,  IntArray output_size, str data_format) -> Tensor(out)
  args: (Tensor x, Tensor indices, Tensor out, Tensor out_grad, int[] ksize, int[] strides, int[] padding, IntArray output_size, str data_format)
X
xiaoting 已提交
2338 2339 2340 2341 2342 2343 2344
  output: Tensor(x_grad)
  infer_meta:
    func: UnchangedInferMeta
    param : [x]
  kernel:
    func: unpool_grad
    data_type: x