framework.py 246.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
H
huzhiqiang 已提交
19
from collections.abc import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26
import copy
27
from types import MethodType, FunctionType
28

Y
Yu Yang 已提交
29
import numpy as np
30
import subprocess
S
sneaxiy 已提交
31
import multiprocessing
32
import sys
33
import logging
M
minqiyang 已提交
34
from .. import compat as cpt
35
from .proto import framework_pb2
36 37

from . import core
38
from . import unique_name
39 40
import paddle.version as fluid_version
import warnings
41
import functools
42
from .variable_index import _getitem_impl_, _setitem_impl_
Y
Yu Yang 已提交
43

44
__all__ = [
45 46 47 48
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
49
    'name_scope',
J
jianghaicheng 已提交
50
    'ipu_shard_guard',
S
sneaxiy 已提交
51 52
    'cuda_places',
    'cpu_places',
53
    'xpu_places',
54
    'mlu_places',
S
sneaxiy 已提交
55
    'cuda_pinned_places',
J
Jiabin Yang 已提交
56
    '_non_static_mode',
L
lujun 已提交
57
    'in_dygraph_mode',
58
    'is_compiled_with_cinn',
C
chengduo 已提交
59
    'is_compiled_with_cuda',
60
    'is_compiled_with_rocm',
61
    'is_compiled_with_xpu',
62
    'is_compiled_with_npu',
63
    'Variable',
64
    'require_version',
65
    'device_guard',
G
guofei 已提交
66 67
    'set_flags',
    'get_flags',
68
]
Y
Yu Yang 已提交
69

Q
qiaolongfei 已提交
70 71 72 73
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
74 75
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
76
_dygraph_tracer_ = None
77
_in_eager_mode_ = (os.environ.get('FLAGS_enable_eager_mode') == '1')
78
_global_expected_place_ = None
79
_current_device = None
80
global_prog_seed = 0
81
_current_pipeline_stage = None
82
_already_patch_eager_tensor = False
J
Jiabin Yang 已提交
83
_already_patch_varbase = False
84
_global_flags_ = core.globals()
J
Jiabin Yang 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

# Some explanation of our execution system 2022.03
# For now we have 3 kinds of execution system, since we refactored dygraph mode to 
# build a fast execution system for dynamic mode. But we can't just remove all legacy
# code once we present the new system for some historical reason. That's why we have 
# these flags.
# 
# 1. _non_static_mode():
# _non_static_mode means  we are now running in legacy dygraph mode or dygraph mode. 
# 2. dygraph_mode():
# This flags inidicates we are now running in dygraph mode which called eager mode before.
# 3. _in_legacy_dygraph():
# This flags inidicates we are now running in legacy dygraph mode
# 
# They have a relation ship as below:
# Both dygraph_mode and _in_legacy_dygraph are _non_static_mode, but if you are running in 
# dygraph mode means you are not in _in_legacy_dygraph.
# 
# Why we have to make different of _in_legacy_dygraph and dygraph_mode?
# In some performance issue, we find that python if statement cause server performance problem
# and we need our new dygraph mode becomes as fast as it could be. That's why we make these flags
# to make sure in most case, we find new dygraph mode first with only one if statement.


109 110 111 112 113 114 115 116 117
def _update_monkey_methods(is_eager):
    """
    Update monkey methods of VarBase or eager.Tensor while
    switching eager mode and legacy mode.
    """
    from paddle import _C_ops
    from .dygraph.varbase_patch_methods import monkey_patch_varbase
    from .dygraph import monkey_patch_math_varbase

118 119 120
    global _already_patch_eager_tensor
    global _already_patch_varbase

121
    assert isinstance(is_eager, bool)
122
    # switch into eager mode
123 124
    if is_eager:
        _C_ops.switch_to_eager_ops()
125 126 127 128 129 130
        if not _already_patch_eager_tensor:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_eager_tensor = True
    # switch back into legacy mode
131 132
    else:
        _C_ops.switch_to_core_ops()
133 134 135 136 137
        if not _already_patch_varbase:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_varbase = True
138

139 140 141 142 143 144 145 146 147 148 149
    # switch Paddle.Tensor bind type
    _switch_tensor_bind_type(is_eager)


def _switch_tensor_bind_type(is_eager):
    import paddle
    if is_eager:
        paddle.Tensor = core.eager.Tensor
    else:
        paddle.Tensor = core.VarBase
    paddle.Tensor.__qualname__ = 'Tensor'
150 151


J
Jiabin Yang 已提交
152 153 154
def _enable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = False
155
    _update_monkey_methods(is_eager=False)
J
Jiabin Yang 已提交
156 157 158 159 160


def _disable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = True
161
    _update_monkey_methods(is_eager=True)
J
Jiabin Yang 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204


def _in_eager_without_dygraph_check():
    global _in_eager_mode_
    return _in_eager_mode_


def in_dygraph_mode():
    """

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .

    Returns:
        bool: Whether paddle runs in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode

    """
    return (_dygraph_tracer_ is not None) and _in_eager_mode_


def _in_legacy_dygraph():
    return (not _in_eager_mode_) and (_dygraph_tracer_ is not None)


def _non_static_mode():
    return _dygraph_tracer_ is not None
205 206 207


@signature_safe_contextmanager
J
Jiabin Yang 已提交
208 209
def _test_eager_guard(place=None):
    _disable_legacy_dygraph()
210
    try:
J
Jiabin Yang 已提交
211
        yield
212
    finally:
J
Jiabin Yang 已提交
213
        _enable_legacy_dygraph()
214 215


J
jianghaicheng 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
global_ipu_index = None
global_ipu_stage = None
ipu_index_attr_name = 'ipu_index'
ipu_stage_attr_name = 'ipu_stage'


@signature_safe_contextmanager
def ipu_shard_guard(index=None, stage=None):
    """
    Used to shard the graph on IPUs. Set each Op run on which IPU in the sharding and which stage in the pipelining.

    Args:
        index(int, optional): Specify which ipu the Tensor is computed on, (such as ‘0, 1, 2, 3’).
            The default value is None, which means the Op only run on IPU 0.
        stage(int, optional): Specify the computation order of the sharded model(such as ‘0, 1, 2, 3’).
            The sharded model will be computed from small to large. The default value is None, 
            which means no pipelining computation order and run Ops in terms of graph.
    
    **Note**:
    Only if the enable_manual_shard=True, the ‘index’ is able to be set not None. Please refer 
    to :code:`paddle.static.IpuStrategy` . 
    Only if the enable_pipelining=True, the ‘stage’ is able to be set not None. Please refer 
    to :code:`paddle.static.IpuStrategy` .
    A index is allowed to match none stage or a stage. A stage is only allowed to match a new or 
    duplicated index.

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
            with paddle.static.ipu_shard_guard(index=0, stage=0):
                b = a + 1
            with paddle.static.ipu_shard_guard(index=1, stage=1):
                c = b + 1
            with paddle.static.ipu_shard_guard(index=0, stage=2):
                d = c + 1
    """
    if not core.is_compiled_with_ipu():
        raise ValueError(
            "Can not use this function since PaddlePaddle is not compiled with IPU"
        )

    global global_ipu_index
    global global_ipu_stage
    prev_ipu_index = global_ipu_index
    prev_ipu_stage = global_ipu_stage
    global_ipu_index = index
    global_ipu_stage = stage
    try:
        yield
    finally:
        global_ipu_index = prev_ipu_index
        global_ipu_stage = prev_ipu_stage


275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


382 383
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
384 385
        assert not _non_static_mode(
        ), "We don't support %s in dynamic graph mode" % func.__name__
386 387 388 389 390 391 392
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
393
        assert _non_static_mode(
394 395 396 397 398 399 400 401
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
402
        assert not _non_static_mode(
403
        ), "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__
404 405 406 407 408
        return func(*args, **kwargs)

    return __impl__


409 410 411 412 413
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


414 415 416 417 418 419
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
420
# same base class.
421 422 423
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
424 425 426 427 428
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
            "  2. If you are using `@paddle.jit.to_static`, you can turn off ProgramTranslator by calling `paddle.jit.ProgramTranslator().enable(False)`. "
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
            % (func.__name__, func.__name__))
429 430 431 432

    return __impl__


T
tangwei12 已提交
433 434
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


452 453
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
454
static_only = wrap_decorator(_static_only_)
455
fake_interface_only = wrap_decorator(_fake_interface_only_)
456 457


L
lujun 已提交
458 459
def _dygraph_tracer():
    return _dygraph_tracer_
460

W
Wu Yi 已提交
461

462 463 464 465
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
466
def _current_expected_place():
467 468 469
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
470 471 472 473 474 475 476 477 478 479 480
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CUDAPlace(0)
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
481 482 483 484 485 486 487 488 489 490 491 492
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.XPUPlace(0)
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
493 494 495 496 497 498 499 500 501 502 503 504
        elif core.is_compiled_with_mlu():
            try:
                device_count = core.get_mlu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.MLUPlace(0)
            else:
                warnings.warn(
                    "You are using MLU version Paddle, but your MLU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
520
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
521 522


L
Leo Chen 已提交
523 524 525 526
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
T
tangwei12 已提交
527

L
Leo Chen 已提交
528 529 530 531 532 533 534 535 536 537 538 539
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
540
def _cpu_num():
541
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
542 543 544 545 546 547 548 549
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
550
        os.environ['CPU_NUM'] = str(1)
551
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
552 553 554 555 556 557 558 559 560 561
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
562 563


564 565 566 567 568 569 570 571 572
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_xpu_device_count())
    return device_ids


573 574 575 576 577 578 579 580 581
def _npu_ids():
    npus_env = os.getenv("FLAGS_selected_npus")
    if npus_env:
        device_ids = [int(s) for s in npus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_npu_device_count())
    return device_ids


582 583 584 585 586 587 588 589 590
def _mlu_ids():
    mlus_env = os.getenv("FLAGS_selected_mlus")
    if mlus_env:
        device_ids = [int(s) for s in mlus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_mlu_device_count())
    return device_ids


591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
def is_compiled_with_npu():
    """
    Whether this whl package can be used to run the model on NPU.

    Returns (bool): support npu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_npu = fluid.is_compiled_with_npu()
    """
    return core.is_compiled_with_npu()


621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
    
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

    Returns: None 

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

    Returns (bool): `True` if CINN is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
661 662 663 664
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

665
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
666 667 668 669

    Examples:
        .. code-block:: python

670
            import paddle
671
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
672 673 674 675
    """
    return core.is_compiled_with_cuda()


676 677 678 679 680 681 682 683 684 685
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
686
            support_gpu = paddle.device.is_compiled_with_rocm()
687 688 689 690
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
691
def cuda_places(device_ids=None):
L
lujun 已提交
692
    """
693 694 695 696
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
697
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
698 699

    If :code:`device_ids` is None, environment variable of
700
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
701
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
702
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
703
    If :code:`FLAGS_selected_gpus` is not set, all visible
704
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
705 706

    If :code:`device_ids` is not None, it should be the device
707
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
708
    the returned list would be 
C
Chen Weihang 已提交
709
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
710

711
    Parameters:
712
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
713 714

    Returns:
C
Chen Weihang 已提交
715
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
716 717 718 719

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
720 721
            import paddle
            import paddle.static as static
T
tangwei12 已提交
722

723 724
            # required: gpu
            
C
Chen Weihang 已提交
725 726 727
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
728 729

    """
S
sneaxiy 已提交
730 731 732
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
733
        device_ids = _cuda_ids()
S
sneaxiy 已提交
734 735 736 737 738
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


739 740 741 742
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
743 744 745 746 747 748 749 750 751 752 753
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
        the returned list would be 
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
754 755 756 757 758 759 760
    
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
761

762 763
            # required: xpu

764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
    assert core.is_compiled_with_xpu(), \
        "Not compiled with XPU"
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
def npu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_npus` environment variable to set the visible NPU device.
    
    This function creates a list of :code:`paddle.NPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_npus` would be checked first. For example, if
    :code:`FLAGS_selected_npus=0,1,2`, the returned list would
    be [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    If :code:`FLAGS_selected_npus` is not set, all visible
    npu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of NPUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be 
    [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    
    Parameters:
        device_ids (list or tuple of int, optional): list of NPU device ids.
    Returns:
        list of paddle.NPUPlace: Created NPU place list.
    Examples:
        .. code-block:: python

            # required: npu

            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            npu_places = static.npu_places()
    """
    assert core.is_compiled_with_npu(), \
        "Not compiled with NPU"
    if device_ids is None:
        device_ids = _npu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.NPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
820
def cpu_places(device_count=None):
L
lujun 已提交
821
    """
C
Chen Weihang 已提交
822
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
823

S
add doc  
sneaxiy 已提交
824 825
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
826 827
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
828 829
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
830

831 832
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
833 834

    Returns:
C
Chen Weihang 已提交
835
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
836 837 838 839

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
840 841
            import paddle
            import paddle.static as static
T
tangwei12 已提交
842

C
Chen Weihang 已提交
843 844 845
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
846 847
    """

S
sneaxiy 已提交
848 849 850 851 852 853
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
854
    """
855
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
856 857 858

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
859 860 861 862
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
863

864 865
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
866 867

    Returns:
868
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
869 870 871 872

    Examples:
        .. code-block:: python

873
            import paddle.fluid as fluid
L
lujun 已提交
874 875 876 877 878
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
879 880 881
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
882 883
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
884 885


886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
def mlu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_mlus` environment variable to set the visible MLU device.
        This function creates a list of :code:`paddle.device.MLUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_mlus` would be checked first. For example, if
        :code:`FLAGS_selected_mlus=0,1,2`, the returned list would
        be [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].
        If :code:`FLAGS_selected_mlus` is not set, all visible
        mlu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of MLUs. For example, if :code:`device_ids=[0,1,2]`,
        the returned list would be
        [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].

    Parameters:
        device_ids (list or tuple of int, optional): list of MLU device ids.

    Returns:
        list of paddle.device.MLUPlace: Created MLU place list.

    Examples:
        .. code-block:: python

            # required: mlu

            import paddle
            import paddle.static as static

            paddle.enable_static()
            mlu_places = static.mlu_places()
    """
    assert core.is_compiled_with_mlu(), \
        "Not compiled with MLU"
    if device_ids is None:
        device_ids = _mlu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.MLUPlace(dev_id) for dev_id in device_ids]


928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
954
@signature_safe_contextmanager
955 956
def name_scope(prefix=None):
    """
957 958
    :api_attr: Static Graph

959
    Generate hierarchical name prefix for the operators in Static Graph.
960

T
Tao Luo 已提交
961 962 963
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
964
        Don't use it in dygraph, since it will cause memory leak.
965 966

    Args:
T
Tao Luo 已提交
967
        prefix(str, optional): prefix. Default is none.
968 969 970

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
971

972 973 974
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
975
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
976
             b = a + 1
977
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
978
                c = b * 1
979
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
980
                d = c / 1
981 982 983
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
984 985 986
                g = f - 1

          # Op are created in the default main program.  
987
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
1003 1004
    """
    # TODO(panyx0718): Only [0-9a-z].
1005
    # in dygraph we don't need namescope since it will cause mem leak
J
Jiabin Yang 已提交
1006
    if _non_static_mode():
L
Leo Chen 已提交
1007 1008
        yield
    else:
T
tianshuo78520a 已提交
1009
        assert prefix, "namescope prefix can not be empty."
1010 1011
        global _name_scope
        _name_scope = _name_scope.child(prefix)
1012 1013 1014 1015
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
1028 1029 1030
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
1031 1032 1033 1034


def grad_var_name(var_name):
    """
1035 1036
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
1037 1038 1039
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
1040

1041
def convert_np_dtype_to_dtype_(np_dtype):
1042 1043
    """
    Convert the data type in numpy to the data type in Paddle
1044

1045
    Args:
1046
        np_dtype(np.dtype): the data type in numpy.
1047

1048 1049
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
1050 1051

    """
1052 1053
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
1054
        return core.VarDesc.VarType.FP32
1055
    elif dtype == np.float64:
1056
        return core.VarDesc.VarType.FP64
1057
    elif dtype == np.float16:
1058
        return core.VarDesc.VarType.FP16
1059
    elif dtype == np.int32:
1060
        return core.VarDesc.VarType.INT32
1061
    elif dtype == np.int16:
1062
        return core.VarDesc.VarType.INT16
1063
    elif dtype == np.int64:
1064
        return core.VarDesc.VarType.INT64
1065
    elif dtype == np.bool:
1066
        return core.VarDesc.VarType.BOOL
1067
    elif dtype == np.uint16:
1068 1069 1070
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
1071 1072
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
1073 1074
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
1075 1076 1077 1078
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
1079
    else:
M
minqiyang 已提交
1080
        raise ValueError("Not supported numpy dtype %s" % dtype)
1081 1082 1083


def dtype_is_floating(dtype):
1084 1085 1086
    """
    Check the data type is floating or not.
    Args:
1087
        dtype(np.dtype|core.VarDesc.VarType): data type.
1088 1089 1090 1091 1092
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
1093
    if not isinstance(dtype, core.VarDesc.VarType):
1094 1095
        dtype = convert_np_dtype_to_dtype_(dtype)

1096 1097 1098 1099
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
1100 1101


Y
Yang Yang(Tony) 已提交
1102
def _debug_string_(proto, throw_on_error=True):
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
1114
    error_fields = list()
Y
Yang Yang(Tony) 已提交
1115
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
1116 1117
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
1118 1119 1120
    return proto.__str__()


1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

J
Jiabin Yang 已提交
1131
    if _in_eager_mode_:
1132
        eager_tensor = core.eager.Tensor(
1133 1134 1135 1136 1137 1138
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [], name, type
            if type else core.VarDesc.VarType.LOD_TENSOR, True
            if persistable else False)
        eager_tensor.retain_grads()
        return eager_tensor
J
Jiabin Yang 已提交
1139 1140 1141 1142 1143
    else:
        return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                            list(shape) if shape else [], name, type
                            if type else core.VarDesc.VarType.LOD_TENSOR, True
                            if persistable else False)
1144 1145 1146 1147 1148 1149 1150


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1151
            return issubclass(t, core.eager.Tensor)
1152
        else:
J
Jiabin Yang 已提交
1153 1154
            if _in_legacy_dygraph():
                return issubclass(t, core.VarBase)
1155 1156 1157 1158 1159 1160 1161 1162
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1163
            return issubclass(t, EagerParamBase)
1164
        else:
J
Jiabin Yang 已提交
1165 1166
            if _in_legacy_dygraph():
                return issubclass(t, ParamBase)
1167 1168 1169 1170
            return issubclass(t, Parameter)


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
1171
class Variable(object):
1172
    """
J
Jiabin Yang 已提交
1173
    **Notes**:
1174
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
1175

1176 1177
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
1178 1179 1180
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
1181
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1182 1183
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1184

1185
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
1186
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
1187

T
tianshuo78520a 已提交
1188
    Most of a Variable's member variables can be set to be None. It mean
1189
    it is not available or will be specified later.
1190

1191
    Examples:
1192 1193
        In Static Graph Mode:

1194 1195
        .. code-block:: python

1196
            import paddle.fluid as fluid
1197
            cur_program = fluid.Program()
1198 1199 1200 1201
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1202

J
Jiabin Yang 已提交
1203
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
1204 1205 1206 1207 1208 1209 1210 1211 1212

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1213 1214
    """

Y
Yu Yang 已提交
1215 1216
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1217
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
1218 1219 1220 1221
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
1222
                 capacity=None,
Q
QI JUN 已提交
1223
                 persistable=None,
F
fengjiayi 已提交
1224
                 error_clip=None,
Y
Yu Yang 已提交
1225
                 stop_gradient=False,
F
fengjiayi 已提交
1226
                 is_data=False,
H
Huihuang Zheng 已提交
1227
                 need_check_feed=False,
H
hong 已提交
1228
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
1229
                 **kwargs):
Y
Yu Yang 已提交
1230 1231
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1232
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1233

Y
Yu Yang 已提交
1234
        if dtype is not None:
1235
            if not isinstance(dtype, core.VarDesc.VarType):
1236
                dtype = convert_np_dtype_to_dtype_(dtype)
1237

S
Steffy-zxf 已提交
1238 1239 1240 1241
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

H
hong 已提交
1242 1243
        self.belong_to_optimizer = belong_to_optimizer

1244 1245 1246 1247 1248
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
1249

1250 1251 1252
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
1253

1254 1255 1256
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
L
Leo Chen 已提交
1257 1258
            raise ValueError("Variable '{0}' has been created before. The "
                             "previous type is {1}, the new type is {2}. They"
1259 1260
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
1261

1262
        if shape is not None:
1263
            if is_new_var:
1264 1265 1266 1267 1268 1269
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1270 1271
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1272 1273 1274 1275 1276 1277 1278
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
L
Leo Chen 已提交
1279 1280
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous data type is {1}, the new "
1281 1282 1283 1284 1285 1286 1287 1288 1289
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
L
Leo Chen 已提交
1290 1291
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous lod_level is {1}, the new "
1292 1293 1294 1295 1296 1297 1298 1299 1300
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1301 1302
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1303 1304
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
1305

1306 1307
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1308

1309 1310 1311 1312 1313 1314 1315
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1316

1317 1318
        self.block.vars[name] = self
        self.op = None
1319
        self.stop_gradient = stop_gradient
1320
        self.is_data = is_data
Y
Yu Yang 已提交
1321

1322 1323 1324
    def detach(self):
        """
        Returns a new Variable, detached from the current graph.
1325 1326
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1327

1328
        Returns:
J
Jiabin Yang 已提交
1329
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1330 1331 1332 1333

        Examples:
            .. code-block:: python

1334
                import paddle
1335

1336 1337 1338 1339
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1340

1341 1342
                # create a detached Variable
                y = x.detach()
1343
        """
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358

        assert self.type == core.VarDesc.VarType.SELECTED_ROWS or \
            self.type == core.VarDesc.VarType.LOD_TENSOR, \
            "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=True)

        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]})
        return output
1359

1360
    @fake_interface_only
1361
    def numpy(self):
1362
        """
J
Jiabin Yang 已提交
1363
        **Notes**:
T
tianshuo78520a 已提交
1364
            **This API is ONLY available in Dygraph mode**
1365

J
Jiabin Yang 已提交
1366
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1367 1368 1369 1370 1371

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1372
            ndarray: dtype is same as current Variable
1373 1374 1375 1376 1377 1378

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1379
                from paddle.fluid.dygraph import Linear
1380 1381 1382 1383
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1384
                    linear = Linear(32, 64)
1385
                    data = to_variable(data)
1386
                    x = linear(data)
1387 1388 1389
                    print(x.numpy())

        """
1390
        pass
1391

1392
    @fake_interface_only
1393
    def backward(self, retain_graph=False):
1394
        """
J
Jiabin Yang 已提交
1395
        **Notes**:
T
tianshuo78520a 已提交
1396
            **This API is ONLY available in Dygraph mode**
1397

1398
        Run backward of current Graph which starts from current Tensor.
1399

J
Jiabin Yang 已提交
1400
        Args:
1401 1402 1403 1404
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1405

J
Jiabin Yang 已提交
1406 1407
        Returns:
            NoneType: None
1408 1409 1410 1411 1412

        Examples:
            .. code-block:: python

                import numpy as np
1413 1414
                import paddle
                paddle.disable_static()
1415 1416

                x = np.ones([2, 2], np.float32)
1417 1418 1419 1420 1421 1422 1423
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1424 1425
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1426
                loss.backward()
1427 1428

        """
1429
        pass
1430

1431
    @fake_interface_only
1432
    def gradient(self):
1433
        """
J
Jiabin Yang 已提交
1434
        **Notes**:
T
tianshuo78520a 已提交
1435
            **This API is ONLY available in Dygraph mode**
1436 1437 1438

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1439
        Returns:
1440
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1441 1442 1443 1444 1445 1446 1447

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1448
                # example1: return ndarray
1449 1450 1451 1452 1453 1454 1455 1456 1457
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1458
                    loss2.backward()
1459 1460
                    print(loss2.gradient())

1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1474
        """
1475
        pass
1476

1477
    @fake_interface_only
1478
    def clear_gradient(self):
1479
        """
J
Jiabin Yang 已提交
1480
        **Notes**:
T
tianshuo78520a 已提交
1481
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1482 1483

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1484

J
Jiabin Yang 已提交
1485
        Clear  (set to ``0`` ) the Gradient of Current Variable
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1504
                    loss2.backward()
1505 1506 1507 1508 1509
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1510
        pass
X
Xin Pan 已提交
1511

1512 1513 1514 1515
    @fake_interface_only
    def register_hook(self, hook):
        pass

1516
    def __str__(self):
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1533 1534
                import paddle
                import paddle.static as static
1535

1536 1537 1538
                paddle.enable_static()

                cur_program = static.Program()
1539 1540 1541 1542 1543 1544
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1545 1546
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1547
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
1548 1549
            dtype_str = str(self.dtype).split('.')[1]
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".\
T
tangwei12 已提交
1550 1551
                format(name=self.name, type=type_str, shape=self.shape,
                       dtype=dtype_str, stop_gradient=self.stop_gradient)
1552
        else:
1553 1554
            var_str = "{name} : {type})".\
                format(name=self.name, type=type_str)
1555

1556
        if self.is_parameter:
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1567
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
1568
        dist_context = get_default_distributed_context()
1569 1570
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1571
            var_str += ", {name} = {value}".format(
1572
                name="dist_attr", value=dist_tensor)
1573

1574
        return var_str
Y
Yang Yang(Tony) 已提交
1575

F
update  
fengjiayi 已提交
1576
    def to_string(self, throw_on_error, with_details=False):
1577 1578 1579
        """
        Get debug string.

J
Jiabin Yang 已提交
1580 1581 1582 1583 1584
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1585

1586 1587
        Returns:
            str: The debug string.
1588 1589 1590 1591 1592

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1593
                import paddle
1594

1595
                paddle.enable_static()
1596 1597 1598 1599 1600
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1601
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1602
                print("=============with detail===============")
1603
                print(new_variable.to_string(True, True))
1604
        """
F
update  
fengjiayi 已提交
1605 1606
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1607
        protostr = self.desc.serialize_to_string()
1608
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1609 1610
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1611
            additional_attr = ("error_clip", )
F
update  
fengjiayi 已提交
1612
            for attr_name in additional_attr:
1613 1614 1615
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1616
        return res_str
1617 1618 1619

    __repr__ = __str__

1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
        
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1647
    @property
1648
    def stop_gradient(self):
J
Jiabin Yang 已提交
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1664 1665
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1666 1667 1668
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1669 1670
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1671 1672 1673 1674
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1675
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1676 1677
                assert (out1.gradient() == 0).all()
        """
1678
        return self.desc.stop_gradient()
1679

1680 1681
    @stop_gradient.setter
    def stop_gradient(self, s):
1682
        self.desc.set_stop_gradient(s)
1683

1684 1685
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1707
        return self.desc.persistable()
1708

Y
Yu Yang 已提交
1709 1710
    @persistable.setter
    def persistable(self, p):
1711
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1712

1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1738 1739
    @property
    def name(self):
J
Jiabin Yang 已提交
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1756
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1757

1758 1759 1760 1761 1762 1763
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1764 1765
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1766

1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1778 1779
    @name.setter
    def name(self, new_name):
1780
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1781

Y
Yu Yang 已提交
1782 1783
    @property
    def shape(self):
J
Jiabin Yang 已提交
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1801
        # convert to tuple, make it as same as numpy API.
1802
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1803 1804

    @property
F
fengjiayi 已提交
1805
    def dtype(self):
J
Jiabin Yang 已提交
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1822
        return self.desc.dtype()
Y
Yu Yang 已提交
1823 1824 1825

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

1839
            import paddle
J
Jiabin Yang 已提交
1840
            import paddle.fluid as fluid
1841 1842

            paddle.enable_static()
J
Jiabin Yang 已提交
1843 1844 1845 1846 1847 1848 1849
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1850 1851
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")
1852 1853
        if self.type == core.VarDesc.VarType.STRINGS:
            return None
1854
        return self.desc.lod_level()
Y
Yu Yang 已提交
1855

Y
Yu Yang 已提交
1856 1857
    @property
    def type(self):
J
Jiabin Yang 已提交
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1874
        return self.desc.type()
Y
Yu Yang 已提交
1875

1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
    @property
    def T(self):
        """
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
            stop_gradient=False)
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=False)

        self.block.append_op(
            type='transpose2',
            inputs={'X': [self]},
            outputs={'Out': [out],
                     'XShape': [input_shape]},
            attrs={'axis': perm})
        return out

1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
        Variable. It remains in the current graph, that is, the cloned Variable 
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
            Variable: The cloned Variable.

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=self.stop_gradient)

        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]})
        return output

W
Wu Yi 已提交
1959
    def _set_error_clip(self, error_clip):
1960 1961 1962 1963 1964 1965 1966 1967 1968
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1969 1970
        self.error_clip = error_clip

1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
2011
            raise ValueError("slice step can not be zero")
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
2087
    def _cloneVar(self, copy=False):
2088 2089
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
2090 2091
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
2092 2093 2094 2095
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
2096
        new_var = self._cloneVar()
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
2107
        new_var = self._cloneVar()
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
2118
                return self._cloneVar(True)
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
2137
                return self._cloneVar(True)
2138
            index = int(item)
2139
            if (index > 0 and index >= self.shape[axis]) \
2140 2141 2142 2143 2144 2145 2146
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2147
        return _getitem_impl_(self, item)
2148

2149
    def __setitem__(self, item, value):
2150
        return _setitem_impl_(self, item, value)
2151

2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
    def get_value(self, scope=None):
        """
        Get the value of variable in given scope. 

        Args:
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            Tensor: the value in given scope.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
        # The 'framework' is a low-level module, and 'executor' 
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
        Set the value to the tensor in given scope. 

        Args:
            value(Tensor/ndarray) : The value to be set.
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        '''

        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".
                format(type(value)))

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
                    "{} expected a shape {}, but the received shape is {}.".
                    format(self.name, list(t.shape()), list(value_shape)))

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2298 2299 2300 2301
        elif p.is_npu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.NPUPlace(p.npu_device_id())
2302 2303 2304 2305
        elif p.is_mlu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.MLUPlace(p.mlu_device_id())
2306 2307 2308 2309 2310 2311 2312
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
    def size(self):
        """
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
            Variable: the number of elements for current Variable

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
            dtype=core.VarDesc.VarType.INT64)

        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]})
        return output

2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
    def _set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
            bool: True if has this attribute.
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

    def _get_attr(self, name):
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
            int|str|list: The attribute value. The return value
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Variable.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        from paddle.distributed.auto_parallel.interface import ProcessMesh
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.desc.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    @property
    def shard_mask(self):
        """
        Get shard_mask belonging to this Variable.
        """
        mask_attr_name = 'mask' + core.kAutoParallelSuffix()
        return self.desc.attr(mask_attr_name)

    @property
    def offload_device(self):
        """
        Get the offload device of this Variable.
        """
        offload_attr_name = 'offload_device' + core.kAutoParallelSuffix()
        return self.desc.attr(offload_attr_name)

Y
Yu Yang 已提交
2422

F
fengjiayi 已提交
2423 2424 2425
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2426

2427 2428
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2429 2430 2431 2432
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2433
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
2434 2435 2436 2437 2438
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
2439 2440 2441 2442
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2443 2444 2445 2446 2447 2448 2449 2450 2451
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
2452
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2453 2454 2455 2456 2457 2458
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2459 2460 2461 2462 2463 2464 2465 2466
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2467 2468
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2469 2470
        return self.op_proto_map[type]

2471 2472
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2473
        custom_op_names = []
2474 2475 2476
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2477 2478 2479
                custom_op_names.append(proto.type)

        return custom_op_names
2480

2481 2482 2483 2484
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2485
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2486
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2487 2488
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
2489 2490
        }

F
fengjiayi 已提交
2491

X
Xin Pan 已提交
2492
class Operator(object):
2493
    """
2494 2495 2496 2497 2498 2499 2500
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2501
        type(str): The type of operator. Default None.
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2522
        Block.append_op or Block._prepend_op instead.
2523 2524 2525 2526

    Examples:
        .. code-block:: python

2527
            import paddle.fluid as fluid
2528
            cur_program = fluid.Program()
2529 2530 2531 2532 2533
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2534
    """
2535
    OP_WITHOUT_KERNEL_SET = {
2536 2537
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
2538
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
2539 2540
        'gen_bkcl_id', 'c_gen_bkcl_id', 'gen_nccl_id', 'c_gen_nccl_id',
        'c_comm_init', 'c_sync_calc_stream', 'c_sync_comm_stream',
W
WangXi 已提交
2541
        'queue_generator', 'dequeue', 'enqueue', 'heter_listen_and_serv',
B
Baibaifan 已提交
2542
        'c_wait_comm', 'c_wait_compute', 'c_gen_hccl_id', 'c_comm_init_hccl',
2543
        'copy_cross_scope', 'c_gen_cncl_id'
2544
    }
2545

Y
Yu Yang 已提交
2546 2547
    def __init__(self,
                 block,
Y
Yu Yang 已提交
2548
                 desc,
Y
Yu Yang 已提交
2549 2550 2551
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
2552
                 attrs=None):
J
Jiabin Yang 已提交
2553
        if _non_static_mode():
2554 2555
            if type is None:
                raise ValueError(
2556
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
2557
            self._type = type
M
minqiyang 已提交
2558
            self.attrs = attrs if attrs else {}
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
2573
                )] = self.block.program._op_role
2574 2575 2576

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
2577 2578
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
2579 2580 2581 2582 2583

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2584 2585 2586 2587 2588
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2589 2590 2591
                return
            if type is None:
                raise ValueError(
2592
                    "`type` to initialized an Operator can not be None.")
2593 2594
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2595 2596 2597 2598 2599 2600 2601
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
2602 2603 2604 2605 2606 2607 2608

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
2620
                    if (type == 'less_than' and op_attrs['force_cpu'] != None
2621 2622 2623 2624 2625
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)
2626 2627 2628 2629 2630
            if _current_pipeline_stage is not None:
                pipeline_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix(
                )
                self._update_desc_attr(pipeline_attr_name,
                                       _current_pipeline_stage)
2631

2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2645
                        if not isinstance(in_args, (list, tuple)):
2646 2647 2648 2649 2650 2651
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2652
                        for index, arg in enumerate(in_args):
2653 2654 2655 2656
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2657
                            elif isinstance(arg, (Variable, core.VarBase)):
2658
                                in_arg_names.append(cpt.to_text(arg.name))
2659
                            else:
2660 2661 2662 2663
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2664 2665
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
2690 2691 2692 2693
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2694
                        # TODO(minqiyang): could we remove variable's op in static mode?
J
Jiabin Yang 已提交
2695
                        if not _non_static_mode():
2696 2697 2698 2699
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

J
jianghaicheng 已提交
2713 2714 2715 2716 2717 2718 2719 2720 2721
            # proto.attrs doesn't include ipu_index
            if core.is_compiled_with_ipu():
                if global_ipu_index is not None:
                    self._update_desc_attr(ipu_index_attr_name,
                                           global_ipu_index)
                if global_ipu_stage is not None:
                    self._update_desc_attr(ipu_stage_attr_name,
                                           global_ipu_stage)

2722 2723 2724 2725 2726
            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2727
    def _has_kernel(self, op_type):
2728 2729
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2730
    def to_string(self, throw_on_error):
2731
        """
2732 2733
        Get debug string.

2734
        Args:
2735 2736
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2737

2738 2739
        Returns:
            str: The debug string.
2740 2741

        """
2742
        protostr = self.desc.serialize_to_string()
2743
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2744 2745
        return _debug_string_(proto, throw_on_error)

2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2778
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

2831
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
2832
        dist_context = get_default_distributed_context()
2833 2834
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
2835
            attrs_str += ", {name} = {value}".format(
2836
                name="dist_attr", value=dist_op)
2837

2838 2839
        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
T
tangwei12 已提交
2840 2841
                format(outputs=outputs_str, op_type=self.type,
                       inputs=inputs_str, attrs=attrs_str)
2842 2843 2844 2845 2846
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2847
    def __str__(self):
2848
        return self._to_readable_code()
2849 2850 2851

    __repr__ = __str__

F
fengjiayi 已提交
2852 2853
    @property
    def type(self):
2854
        return self.desc.type()
F
fengjiayi 已提交
2855 2856

    def input(self, name):
2857
        r"""
2858
        Get the input arguments according to the input parameter name.
2859

2860 2861
        Args:
            name(str): The input parameter name.
2862

2863 2864 2865
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2866
        """
F
fengjiayi 已提交
2867 2868
        return self.desc.input(name)

W
Wu Yi 已提交
2869
    def _rename_input(self, old_name, new_name):
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2880
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2881

W
Wu Yi 已提交
2882
    def _rename_output(self, old_name, new_name):
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2893
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2894

F
fengjiayi 已提交
2895 2896 2897 2898
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2899 2900 2901 2902 2903 2904 2905 2906
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2907
    def output(self, name):
2908
        r"""
2909
        Get output arguments by the output parameter name.
2910

2911 2912
        Args:
            name(str): The output parameter name.
2913

2914 2915 2916
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2917
        """
F
fengjiayi 已提交
2918 2919 2920 2921 2922 2923
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2924 2925 2926 2927 2928 2929 2930 2931
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2932
    def has_attr(self, name):
2933
        """
2934 2935
        Whether this Operator has the attribute with name or not.

2936
        Args:
2937
            name(str): the attribute name.
2938

2939 2940
        Returns:
            bool: True if has this attribute.
2941 2942

        """
F
fengjiayi 已提交
2943 2944 2945
        return self.desc.has_attr(name)

    def attr_type(self, name):
2946
        """
2947
        Get the type of attribute by attribute's name.
2948

2949 2950
        Args:
            name(str): the attribute name.
2951

2952 2953
        Returns:
            core.AttrType: the attribute type.
2954
        """
F
fengjiayi 已提交
2955 2956
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2957
    def _set_attr(self, name, val):
2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2968 2969
        self._update_desc_attr(name, val)

2970 2971 2972
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2984 2985
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2986 2987
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2988
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2989 2990 2991 2992
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2993
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2994

F
fengjiayi 已提交
2995 2996 2997 2998 2999
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
3000
        """
3001 3002
        Get the attribute by name.

3003
        Args:
3004
            name(str): the attribute name.
3005

3006 3007
        Returns:
            bool|int|str|float|list: The attribute value. The return value
3008 3009
            can be any valid attribute type.
        """
F
fengjiayi 已提交
3010
        return self.desc.attr(name)
Y
Yu Yang 已提交
3011

W
Wu Yi 已提交
3012
    def _block_attr_id(self, name):
3013
        """
G
gongweibao 已提交
3014
        Get the block attribute's id by name.
3015

3016 3017
        Args:
            name(str): the attribute name.
3018

3019 3020
        Returns:
            int: the block index.
3021
        """
W
Wu Yi 已提交
3022
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
3023

W
Wu Yi 已提交
3024
    def _block_attr(self, name):
G
gongweibao 已提交
3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
3035
        id = self._block_attr_id(name)
G
gongweibao 已提交
3036 3037 3038
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
3039
    def _blocks_attr(self, name):
G
gongweibao 已提交
3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
3050
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
3051 3052 3053 3054 3055
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
3056
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
3067
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
3068

J
JiayiFeng 已提交
3069
    def all_attrs(self):
F
fengjiayi 已提交
3070
        """
3071 3072 3073
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
3074
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
3075 3076 3077 3078
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
3079 3080
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
3081
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
3082 3083 3084
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
3085
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
3086 3087 3088 3089
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
3090 3091
        return attr_map

3092 3093 3094
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
3095 3096 3097 3098

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

3099 3100 3101
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
3102 3103 3104 3105 3106 3107 3108 3109

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
3110 3111
            return False

3112 3113 3114 3115 3116 3117
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Operator.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    def dims_mapping(self, name):
        """
        Get the dims_mapping for the op's var named `name`.
        """
        dims_mapping_attr_name = name + core.kAutoParallelSuffix()
        return self.attr(dims_mapping_attr_name)

    @property
    def pipeline_stage(self):
        """
        Get pipeline stage of the Operator.
        """
        pipeline_stage_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix()
        return self.desc.attr(pipeline_stage_attr_name)

Y
Yu Yang 已提交
3143

Y
Yu Yang 已提交
3144
class Block(object):
3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3159
        use `Program._create_block()` to create a block.
3160 3161 3162 3163

    Examples:
        .. code-block:: python

3164 3165 3166
            import paddle.fluid as fluid

            cur_program = fluid.Program()
3167 3168 3169 3170 3171 3172 3173 3174 3175
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3176
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3177
        self.desc = program.desc.block(idx)
3178
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3179
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3180
        self.program = program
3181
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
3182

3183
    def __str__(self):
3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3218
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3230

F
fengjiayi 已提交
3231 3232
    def to_string(self, throw_on_error, with_details=False):
        """
3233 3234
        Get debug string.

F
fengjiayi 已提交
3235 3236
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3237
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3238
            with_details(bool): more details about variables and parameters
3239 3240
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3241

3242 3243
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3244 3245 3246 3247
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
3248
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3249 3250
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
3251
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3252
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
3253
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
3254
            for op in self.ops:
F
fengjiayi 已提交
3255 3256
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
3257 3258 3259
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3260 3261
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3262 3263
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3264 3265 3266

    __repr__ = __str__

Y
Yu Yang 已提交
3267 3268
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3269
        return self.desc.parent
Y
Yu Yang 已提交
3270

Y
Yu Yang 已提交
3271 3272 3273 3274
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3275
    def _set_forward_block_idx(self, idx):
3276 3277 3278 3279 3280 3281 3282 3283 3284
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3285
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3286

3287 3288 3289 3290 3291 3292 3293 3294
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3295 3296
    @property
    def idx(self):
Y
Yu Yang 已提交
3297
        return self.desc.id
Y
Yu Yang 已提交
3298

Q
Qiao Longfei 已提交
3299
    def var(self, name):
3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3313
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
3314 3315 3316
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
3317 3318
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3319
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3320
        return v
Q
Qiao Longfei 已提交
3321

X
Xin Pan 已提交
3322
    def _find_var_recursive(self, name):
3323 3324 3325 3326 3327 3328 3329
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3330
            Variable: the Variable with the giving name. Or None if not found.
3331
        """
Y
Yu Yang 已提交
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3356
        return None
Y
Yu Yang 已提交
3357

X
Xin Pan 已提交
3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3377

Q
Qiao Longfei 已提交
3378
    def all_parameters(self):
3379
        return list(self.iter_parameters())
3380

3381
    def iter_parameters(self):
M
minqiyang 已提交
3382
        return (item[1] for item in six.iteritems(self.vars)
3383
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
3384

Y
Yu Yang 已提交
3385
    def create_var(self, *args, **kwargs):
J
Jiabin Yang 已提交
3386
        if _non_static_mode():
L
Leo Chen 已提交
3387 3388
            var = _varbase_creator(*args, **kwargs)
        else:
3389 3390 3391
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3392
        return var
Y
Yu Yang 已提交
3393

Q
Qiao Longfei 已提交
3394 3395 3396
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3397
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3398 3399
        """
        Rename variable in vars and ops' inputs and outputs
3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3412
        """
M
minqiyang 已提交
3413 3414
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
3415

T
typhoonzero 已提交
3416
        if not self.has_var(name):
3417
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3418 3419
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3420
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3421 3422 3423 3424 3425 3426
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3427
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3428 3429 3430 3431
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3432
        orig_var_type = v.type
M
minqiyang 已提交
3433
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
3434
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
3435
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
3436
        if var_type == "Parameter":
L
Leo Chen 已提交
3437
            if in_dygraph_mode():
J
Jiabin Yang 已提交
3438
                var = EagerParamBase(
3439 3440 3441 3442 3443 3444 3445 3446 3447 3448
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
J
Jiabin Yang 已提交
3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
                if _in_legacy_dygraph():
                    var = ParamBase(
                        d.shape(),
                        d.dtype(),
                        type=orig_var_type,
                        name=new_name,
                        stop_gradient=stop_gradient,
                        trainable=trainable,
                        optimize_attr=optimize_attr,
                        regularizer=regularizer,
                        error_clip=error_clip)
                else:
                    var = Parameter(
                        self,
                        d.shape(),
                        d.dtype(),
                        type=orig_var_type,
                        name=new_name,
                        stop_gradient=stop_gradient,
                        trainable=trainable,
                        optimize_attr=optimize_attr,
                        regularizer=regularizer,
                        error_clip=error_clip)
T
typhoonzero 已提交
3472
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
3473 3474
            var = Variable(
                self,
T
typhoonzero 已提交
3475
                type=orig_var_type,
T
wip  
typhoonzero 已提交
3476 3477 3478 3479
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
3480
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3481 3482 3483
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3484
        self._sync_with_cpp()
3485
        return var
T
typhoonzero 已提交
3486

3487 3488 3489
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
3490
        self.desc._remove_var(cpt.to_bytes(name))
3491 3492
        del self.vars[name]

Y
Yu Yang 已提交
3493 3494
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3495
        param = None
L
Leo Chen 已提交
3496
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3497
            param = EagerParamBase(*args, **kwargs)
L
Leo Chen 已提交
3498
        else:
J
Jiabin Yang 已提交
3499 3500 3501 3502
            if _in_legacy_dygraph():
                param = ParamBase(*args, **kwargs)
            else:
                param = Parameter(global_block, *args, **kwargs)
3503

3504
        if 'initializer' in kwargs:
3505 3506 3507 3508 3509

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3510
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3511
                        # are treated as initialization ops that cause error.
3512
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3513 3514 3515 3516 3517
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
                                "c_broadcast", "c_sync_comm_stream",
                                "coalesce_tensor"
                        ]:
3518
                            continue
3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
3530
                # TODO already inited, do nothing, should log a warning
3531 3532 3533
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
3534
        return param
Y
Yu Yang 已提交
3535

Y
Yu Yang 已提交
3536
    def append_op(self, *args, **kwargs):
3537 3538 3539 3540 3541 3542
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
J
Jiabin Yang 已提交
3543
        if _non_static_mode():
3544
            attrs = kwargs.get("attrs", {})
Z
zyfncg 已提交
3545
            inplace_map = kwargs.get("inplace_map", None)
J
Jiabin Yang 已提交
3546
            type = kwargs.get("type", None)
3547 3548 3549
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
3550
                type=type,
M
minqiyang 已提交
3551 3552
                inputs=None,
                outputs=None,
3553
                attrs=attrs)
3554

M
minqiyang 已提交
3555 3556 3557
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
3558
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
3559 3560

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3561
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3562 3563
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
Z
zyfncg 已提交
3564 3565
                                       kwargs.get("stop_gradient", False),
                                       inplace_map)
M
minqiyang 已提交
3566
        else:
3567 3568
            from paddle.fluid.dygraph.base import param_guard

3569
            op_desc = self.desc.append_op()
3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
                op = Operator(
                    block=self,
                    desc=op_desc,
                    type=kwargs.get("type", None),
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None))
3583

M
minqiyang 已提交
3584
            self.ops.append(op)
M
minqiyang 已提交
3585

3586 3587
        return op

W
Wu Yi 已提交
3588
    def _insert_op(self, index, *args, **kwargs):
3589 3590 3591 3592 3593 3594 3595 3596 3597
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
3598
        self._sync_with_cpp()
F
fangshuixun007 已提交
3599
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
3600

3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
        Insert an Operator according to the giving arguments, 
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
3618 3619 3620 3621 3622 3623 3624 3625 3626
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
3627 3628
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
3629
        self.desc._remove_op(index, index + 1)
3630 3631
        del self.ops[index]

W
Wu Yi 已提交
3632
    def _slice_ops(self, start, end):
3633 3634 3635 3636 3637 3638 3639 3640 3641 3642
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
3643
        return self.ops[start:end]
Y
Yancey1989 已提交
3644

W
Wu Yi 已提交
3645
    def _prepend_op(self, *args, **kwargs):
J
Jiabin Yang 已提交
3646
        if _non_static_mode():
J
Jiabin Yang 已提交
3647 3648
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
3649
            op = Operator(
J
Jiabin Yang 已提交
3650
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
3651

J
Jiabin Yang 已提交
3652
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3653
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3654 3655
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
3656
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3657
        else:
3658 3659 3660 3661 3662 3663 3664 3665
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
3666
            self.ops.insert(0, op)
3667

Y
Yu Yang 已提交
3668 3669
        return op

W
Wu Yi 已提交
3670
    def _sync_with_cpp(self):
3671
        """
3672 3673
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
3674
        """
Q
Qiao Longfei 已提交
3675 3676 3677
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient)
                else:
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient)
Q
Qiao Longfei 已提交
3695

3696
        # sync variables removed from c++ end
3697
        for var in list(self.vars.keys()):
M
minqiyang 已提交
3698
            if not self.desc.find_var(cpt.to_bytes(var)):
3699 3700
                self.vars.pop(var)

Q
Qiao Longfei 已提交
3701
        # sync operators from cpp
3702 3703 3704 3705
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3722 3723 3724 3725 3726

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3727
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3728 3729 3730 3731 3732 3733 3734

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3748 3749 3750 3751
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3752
    def _copy_param_info_from(self, other):
3753
        """
3754 3755
        Copy the information of parameters from the other block.

3756
        Args:
3757 3758 3759 3760 3761
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3762 3763 3764 3765 3766

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3767 3768
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3769
        for p in other.iter_parameters():
3770 3771 3772
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3773 3774
                # if the Parameter is pruned, v may be None
                continue
3775
            assert isinstance(v, Variable)
3776
            new_p = None
L
Leo Chen 已提交
3777
            if in_dygraph_mode():
J
Jiabin Yang 已提交
3778
                new_p = EagerParamBase(
3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
J
Jiabin Yang 已提交
3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815
                if _in_legacy_dygraph():
                    new_p = ParamBase(
                        shape=v.shape,
                        dtype=v.dtype,
                        type=v.type,
                        lod_level=v.lod_level,
                        stop_gradient=p.stop_gradient,
                        trainable=p.trainable,
                        optimize_attr=p.optimize_attr,
                        regularizer=p.regularizer,
                        error_clip=p.error_clip,
                        name=v.name)
                else:
                    new_p = Parameter(
                        block=self,
                        shape=v.shape,
                        dtype=v.dtype,
                        type=v.type,
                        lod_level=v.lod_level
                        if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
                        stop_gradient=p.stop_gradient,
                        trainable=p.trainable,
                        optimize_attr=p.optimize_attr,
                        regularizer=p.regularizer,
                        error_clip=p.error_clip,
                        name=v.name)
3816 3817
            self.vars[new_p.name] = new_p

3818
    def _clone_variable(self, var, force_persistable=True):
3819 3820
        """
        Clone a variable into current block.
3821

3822 3823
        Args:
            var: the variable to be cloned.
3824 3825 3826
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3827 3828

        Returns:
3829
            Variable: the new  variable cloned from 'var' in current block.
3830 3831
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3832 3833 3834 3835 3836
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3837 3838
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3839
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3840 3841 3842 3843 3844 3845
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3846
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3847 3848
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3849 3850 3851 3852 3853 3854 3855
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3856
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3857 3858
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3859
        return ret_var
3860

Y
Yu Yang 已提交
3861

3862 3863 3864 3865 3866 3867
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
# of some old Python Variables(all old Python Operators) may have 
# been destructed.
3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883
def _apply_pass(main_program,
                startup_program,
                pass_name,
                pass_attrs={},
                pass_attr_types={}):
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
    attrs = core.apply_pass(tmp_main_program, tmp_startup_program, pass_name,
                            pass_attrs, pass_attr_types)
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3979
    def remove_input_by_id(self, node_id):
3980 3981 3982 3983 3984 3985
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3986
        self.node.remove_input(node_id)
3987

3988
    def remove_input(self, node):
3989 3990 3991 3992
        """
        Remove a node from inputs.

        Args:
3993
            node(IrNode): the node being removed.
3994
        """
3995
        self.node.remove_input(node.node)
3996

3997
    def append_input(self, node):
3998 3999 4000 4001
        """
        Append a node in inputs.

        Args:
4002
            node(IrNode): the node being appended.
4003
        """
4004
        self.node.append_input(node.node)
4005 4006 4007 4008 4009 4010 4011 4012

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

4013
    def remove_output_by_id(self, node_id):
4014 4015 4016 4017 4018 4019
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4020
        self.node.remove_output(node_id)
4021

4022
    def remove_output(self, node):
4023 4024 4025 4026
        """
        Remove a node from outputs.

        Args:
4027
            node(IrNode): the node being removed.
4028
        """
4029
        self.node.remove_output(node.node)
4030

4031
    def append_output(self, node):
4032 4033 4034 4035
        """
        Append a node in outputs.

        Args:
4036
            node(IrNode): the node being appended.
4037
        """
4038
        self.node.append_output(node.node)
4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4086
            "The node variable description can not be None."
4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4097
            "The node variable description can not be None."
4098 4099
        return self.node.var().persistable()

4100 4101 4102 4103 4104 4105 4106 4107
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4108
            "The node variable description can not be None."
4109 4110 4111 4112 4113 4114 4115 4116 4117 4118
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4119
            "The node variable description can not be None."
4120 4121 4122 4123 4124 4125 4126 4127 4128 4129
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4130
            "The node variable description can not be None."
4131 4132
        return self.node.var().shape()

4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4180
            "The node operator description can not be None."
4181 4182
        self.node.op()._rename_input(old_input_name, new_input_name)

4183 4184 4185 4186 4187 4188 4189 4190 4191
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4192
            "The node operator description can not be None."
4193 4194
        self.node.op()._rename_output(old_output_name, new_output_name)

4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4206
            "The node operator description can not be None."
4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4220
            "The node operator description can not be None."
4221 4222 4223 4224 4225 4226 4227 4228 4229 4230
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4231
            "The node operator description can not be None."
4232 4233
        return self.node.op().set_type(new_type)

4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4249
            "The node operator description can not be None."
4250 4251 4252 4253
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
4254
                all(isinstance(v, Block) for v in val):
4255 4256
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
4257
                isinstance(val, core.ProgramDesc):
4258 4259 4260 4261
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

4262 4263 4264 4265 4266 4267 4268 4269
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4270
            "The node operator description can not be None."
4271 4272 4273 4274 4275 4276 4277 4278 4279 4280
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4281
            "The node operator description can not be None."
4282 4283
        return self.node.op().output_arg_names()

4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


4305 4306
class IrGraph(object):
    """
4307
    Python IrGraph. Beneath it is a core.Graph, which is used for
4308
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
4309 4310
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4311 4312 4313 4314
    """

    def __init__(self, graph, for_test=False):
        """
4315 4316
        Construct an IrGraph using core.Graph.

4317 4318 4319 4320 4321 4322 4323 4324 4325
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

4326 4327 4328 4329
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4330 4331 4332
        Warns:
            The method only clones the graph structure, not its attributes.

4333 4334 4335
        Returns:
            IrGraph: A new and duplicated graph.
        """
4336
        g = self.graph.clone()
4337 4338
        return IrGraph(g, self._for_test)

4339
    def is_test(self):
4340 4341 4342
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4343 4344
        return self._for_test

W
WangZhen 已提交
4345
    def all_nodes(self):
4346 4347 4348
        """
        Return all nodes included in the graph as a set.
        """
4349
        return {IrNode(node) for node in self.graph.nodes()}
4350

4351
    def all_var_nodes(self):
4352 4353 4354
        """
        Return all variable nodes included in the graph as a set.
        """
4355
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4356

4357
    def all_persistable_nodes(self):
4358 4359 4360
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4361 4362 4363 4364 4365
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
4366
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4367

4368
    def all_op_nodes(self):
4369 4370 4371
        """
        Return all operator nodes included in the graph as a set.
        """
4372
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4373

4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
            IrGraph(
                self.graph.get_sub_graph(i), for_test=for_test)
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4391
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4403
            IrVarNode: the created persistable variable node.
4404
        """
4405 4406 4407 4408 4409
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4410
        return IrVarNode(self.graph.create_var_node(var_desc))
4411 4412

    def create_var_node(self, name, var_type, shape, var_dtype):
4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4424
            IrVarNode: the created variable node.
4425 4426
        """

4427 4428 4429 4430
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4431
        return IrVarNode(self.graph.create_var_node(var_desc))
4432

4433 4434 4435 4436 4437 4438
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4439
    def create_var_node_from_desc(self, var_desc):
4440 4441 4442 4443 4444 4445 4446 4447
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4448
            IrVarNode: the created variable node.
4449
        """
4450
        return IrVarNode(self.graph.create_var_node(var_desc))
4451 4452

    def create_op_node(self, op_type, attrs, inputs, outputs):
4453 4454 4455 4456 4457 4458 4459
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4460
            outputs(dict): the outputs of the operator node.
4461 4462

        Returns:
4463
            IrOpNode: the created operator node.
4464
        """
4465 4466
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4467
        for attr, value in six.iteritems(attrs):
4468
            self._update_desc_attr(op_desc, attr, value)
4469
        for input_name, var_nodes in six.iteritems(inputs):
4470 4471 4472 4473
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
4474
        for output_name, var_nodes in six.iteritems(outputs):
4475 4476 4477 4478
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
4479
        return IrOpNode(self.graph.create_op_node(op_desc))
4480 4481

    def create_op_node_from_desc(self, op_desc):
4482 4483 4484 4485 4486 4487 4488
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
4489
            IrOpNode: the created operator node.
4490
        """
4491
        return IrOpNode(self.graph.create_op_node(op_desc))
4492 4493

    def update_input_link(self, old_input_node, new_input_node, op_node):
4494 4495 4496 4497
        """
        Update the input's link of a operator node.

        Args:
4498 4499 4500
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
4501
        """
4502
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
T
tangwei12 已提交
4503
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4504
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
4505 4506 4507 4508
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
4509
        op_node.rename_input(old_input_node.name(), new_input_node.name())
4510

4511 4512 4513 4514 4515 4516 4517 4518 4519 4520
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
T
tangwei12 已提交
4521
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4522
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
4523 4524 4525 4526 4527 4528
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

4529
    def link_to(self, node_in, node_out):
4530 4531 4532 4533
        """
        Connect two nodes.

        Args:
4534 4535
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
4536
        """
4537 4538 4539 4540
        assert node_in.node in self.graph.nodes(), (
            'node_in(%s) must be in the graph nodes.' % node_in.node.name())
        assert node_out.node in self.graph.nodes(), (
            'node_out(%s) must be in the graph nodes.' % node_out.node.name())
4541 4542
        node_in.append_output(node_out)
        node_out.append_input(node_in)
4543 4544

    def safe_remove_nodes(self, remove_nodes):
4545 4546 4547 4548 4549 4550 4551
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
4552
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
4553 4554 4555 4556
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
4557 4558
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
4559

Z
Zhen Wang 已提交
4560 4561 4562 4563 4564 4565 4566 4567
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4568
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
4569 4570 4571 4572
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4573
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
4574 4575 4576
                        ]
                    else:
                        var_nodes[each_var_name].append(
4577 4578
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
4579 4580
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
4581
    def has_circle(self):
4582 4583 4584 4585 4586 4587
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
4588 4589 4590
        return core.has_circle(self.graph)

    def graph_num(self):
4591 4592 4593 4594 4595 4596
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
4597 4598 4599
        return core.graph_num(self.graph)

    def topology_sort(self):
4600 4601 4602
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
4603
        Notes: the `graph` can not contain a circle.
4604 4605

        Returns:
Z
Zhen Wang 已提交
4606
            list(IrNode): nodes in topology order.
4607
        """
4608
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
4609
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
4610 4611

    def build_adjacency_list(self):
4612 4613 4614 4615
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
4616
            dict{IrNode: set(IrNode)}: the adjacency list.
4617
        """
4618 4619 4620 4621 4622
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
4623

4624 4625 4626 4627 4628 4629 4630 4631
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
4632
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
4633 4634 4635 4636 4637
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

4638 4639
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
T
tangwei12 已提交
4640 4641 4642
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True)
4643 4644 4645 4646 4647
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

4648
        remove_ctr_vars = set()
4649
        if remove_ctr_var:
4650
            for node in self.all_var_nodes():
4651 4652 4653
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
4654 4655
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

4656 4657
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
4658 4659 4660 4661 4662 4663
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
4664 4665 4666 4667
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
4668 4669
        if not os.path.exists(save_path):
            os.makedirs(save_path)
4670 4671 4672 4673 4674 4675 4676
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
4677 4678 4679
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
4680
        WARN: When the graph includes backward operator nodes, the
4681 4682 4683 4684 4685 4686
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
4687
        convert_pass = core.get_pass('graph_to_program_pass')
4688 4689
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
4690 4691 4692 4693
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

4694 4695 4696 4697 4698 4699 4700 4701
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
4702 4703
        assert target_node is not None, (
            "Cannot find the target node (%s)in the giving set." % node_name)
4704 4705
        return target_node

4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
4722
class Program(object):
D
dzhwinter 已提交
4723
    """
4724
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
4725
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
4726
    it will contain nested block.
4727

J
Jiabin Yang 已提交
4728 4729 4730
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
4731

J
Jiabin Yang 已提交
4732
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
4733
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
4734 4735 4736 4737 4738 4739 4740
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
4741
    **Notes**:
4742 4743 4744
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
4745 4746

    Returns:
J
Jiabin Yang 已提交
4747
        Program: An empty Program.
D
dzhwinter 已提交
4748 4749

    Examples:
4750 4751
        .. code-block:: python

4752 4753 4754 4755
            import paddle
            import paddle.static as static

            paddle.enable_static()
4756

4757 4758 4759 4760 4761
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
4762
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
4763 4764 4765

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
4766 4767 4768

    """

4769 4770
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
4771 4772
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
4773 4774
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
4775
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
4776
        self.__op_role_var = []
T
tangwei12 已提交
4777

4778 4779
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
4780
        self._is_distributed = False
4781
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
4782
        self._is_chief = False
4783 4784 4785
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
4786
        self._endpoints = []
4787 4788 4789
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
4790
        self._trainers_endpoints = []
4791
        # the distributed lookup table names
T
tangwei12 已提交
4792
        self._distributed_lookup_table = None
4793 4794 4795

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
4796 4797
        self._use_lamb = False

4798 4799 4800
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
4801

4802 4803 4804
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4805
        self._program_config = None
4806

H
hutuxian 已提交
4807 4808 4809
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4810 4811 4812
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

4813 4814 4815
        # appending gradients times
        self._appending_grad_times = 0

4816 4817 4818 4819
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4820 4821
        # compiled program, i.e. Graph
        self._graph = None
4822 4823
        # to tag whether is startup_program
        self._is_start_up_program_ = False
4824

4825
    def _find_var_class_kwargs(self, new_desc):
4826 4827 4828 4829 4830 4831 4832 4833
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864
                    'shape': get_var_desc_attr_or_none(new_var_desc, "shape", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'dtype': get_var_desc_attr_or_none(new_var_desc, "dtype", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'lod_level':
                    get_var_desc_attr_or_none(new_var_desc, "lod_level", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902
                    'error_clip': old_var.error_clip
                    if old_var is not None else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None else False,
                    'is_data': old_var.is_data
                    if old_var is not None else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None else False,
                }

                if isinstance(old_var, Parameter):
                    kwargs.update({
                        'trainable': old_var.trainable,
                        'optimize_attr': old_var.optimize_attr,
                        'regularizer': old_var.regularizer,
                        'do_model_average': old_var.do_model_average,
                        'need_clip': old_var.need_clip,
                        'is_distributed': old_var.is_distributed,
                        'is_parameter': old_var.is_parameter,
                    })
                    block_new_vars.append({
                        'class': Parameter,
                        'kwargs': copy.deepcopy(kwargs),
                    })
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
                    block_new_vars.append({
                        'class': Variable,
                        'kwargs': copy.deepcopy(kwargs),
                    })

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
4903
        assert block_num == self.desc.num_blocks()
4904 4905

        # clear old blocks and desc
4906 4907 4908 4909 4910 4911 4912 4913 4914
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
4915

4916
        del desc
4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

4936 4937 4938 4939 4940 4941 4942 4943 4944 4945
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

4946 4947
                import paddle
                import paddle.static as static
4948

4949 4950 4951
                paddle.enable_static()

                prog = static.default_main_program()
4952 4953 4954 4955 4956
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
4957
                prog1 = static.default_main_program()
4958 4959 4960 4961 4962 4963 4964 4965
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
4966
    @property
4967
    def _op_role(self):
Y
yuyang18 已提交
4968 4969 4970 4971 4972 4973 4974 4975
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
4976
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
4977 4978 4979 4980
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
4981 4982
        return self._current_role

4983 4984
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
4985 4986 4987
        self._current_role = role

    @property
4988
    def _op_role_var(self):
Y
yuyang18 已提交
4989
        """
4990
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
4991

4992
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
4993 4994 4995

        Notes: This is a very low-level API. Users should not use it directly.
        """
4996
        return self.__op_role_var
Y
yuyang18 已提交
4997

4998
    @signature_safe_contextmanager
4999 5000 5001 5002 5003
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
5004 5005 5006 5007
        try:
            yield
        finally:
            self._current_role = tmp_role
5008

S
rename  
sneaxiy 已提交
5009
    @signature_safe_contextmanager
W
Wu Yi 已提交
5010
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
5011 5012 5013 5014 5015 5016 5017
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
5018
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
5019 5020 5021

        Examples:

5022
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
5023
            >>> p, g = backward(...)
W
Wu Yi 已提交
5024
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
5025 5026
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
5027
        tmp_role = self._current_role
5028
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
5029

Y
yuyang18 已提交
5030 5031
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
5032
        self.__op_role_var = [
5033 5034 5035
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
5036 5037 5038 5039 5040
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
5041

S
rename  
sneaxiy 已提交
5042
    @signature_safe_contextmanager
X
Xin Pan 已提交
5043
    def _lr_schedule_guard(self, is_with_opt=False):
5044 5045 5046 5047 5048 5049 5050
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
5051 5052 5053 5054
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
5055 5056 5057

        Examples:

5058
            >>> import paddle.fluid as fluid
5059 5060 5061 5062
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
5063 5064

        tmp_role = self._current_role
5065
        tmp_var = self.__op_role_var
5066

5067 5068
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
5069 5070
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
5071
        # TODO(typhoonzero): how to set target learning rate var
5072
        self.__op_role_var = []
5073 5074 5075 5076 5077
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
5078

5079
    def __str__(self):
Y
yuyang18 已提交
5080 5081 5082 5083 5084 5085 5086 5087 5088
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

5109 5110
            import paddle
            import paddle.static as static
5111

5112 5113 5114
            paddle.enable_static()

            cur_program = static.Program()
5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
5126
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
5127 5128 5129 5130
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
5131
            program_str += '\n'
5132
        return program_str
Y
Yang Yang(Tony) 已提交
5133

F
fengjiayi 已提交
5134 5135 5136
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
5137

J
Jiabin Yang 已提交
5138 5139 5140
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
5141

J
Jiabin Yang 已提交
5142
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
5143

H
haowang101779990 已提交
5144
        Returns:
J
Jiabin Yang 已提交
5145
            str: The debug string describe current Program.
Y
yuyang18 已提交
5146 5147

        Raises:
J
Jiabin Yang 已提交
5148
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
5149

5150 5151 5152
        Examples:
            .. code-block:: python

5153 5154 5155 5156
                import paddle
                import paddle.static as static

                paddle.enable_static()
5157

5158 5159 5160
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
5161
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
5162
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
5163
                print("program string without detail: {}".format(prog_string))
5164
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
5165
        """
5166 5167 5168 5169 5170 5171 5172 5173 5174
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
5175 5176 5177 5178 5179 5180
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
5181 5182
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
5183 5184
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
5185

W
Wu Yi 已提交
5186
    def _get_desc(self):
Y
yuyang18 已提交
5187 5188 5189 5190 5191 5192 5193
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
5194 5195
        return self.desc

X
version  
Xin Pan 已提交
5196 5197 5198
    def _version(self):
        return self.desc._version()

5199
    def clone(self, for_test=False):
Y
yuyang18 已提交
5200
        """
5201 5202 5203 5204
        .. note:::
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` . 
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` . 
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
5205

5206
        Create a new Program with forward content of original one when ``for_test=True``.
5207
        Create a new Program as same as the original one when ``for_test=False``.
5208

5209
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
5210 5211 5212
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
5213

5214 5215
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
5216 5217
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
5218
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
5219

J
Jiabin Yang 已提交
5220
        For Example:
5221
          ::
L
Luo Tao 已提交
5222

5223 5224 5225 5226 5227 5228
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
5229
            pred = static.nn.fc(x=img, size=10, actvation='relu')
5230
            loss = paddle.mean(pred)
5231
            # Here we use clone before Momentum
5232 5233
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
5234
            optimizer.minimize(loss)
5235

J
Jiabin Yang 已提交
5236
        Args:
5237

5238 5239
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
5240

J
Jiabin Yang 已提交
5241
        Returns:
5242
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
5243

Y
yuyang18 已提交
5244 5245 5246

        Examples:

5247 5248 5249 5250 5251 5252 5253
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


5270
            1. To clone a test program, the sample code is:
5271 5272 5273
                .. code-block:: python

                    import six
5274 5275 5276 5277 5278 5279
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

5292 5293
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
5294 5295 5296

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
5297 5298 5299
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
5300
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
5301 5302
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
5303
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5304 5305
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
5306
                            test_program = train_program.clone(for_test=True)
5307
                    print_prog(test_program)
J
Jiabin Yang 已提交
5308 5309 5310 5311

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5312
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5313 5314 5315 5316
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5317 5318 5319
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5320 5321 5322
                            sgd.minimize(avg_loss)


5323
            2. The clone method can be avoid if you create program for training and program for testing individually.
5324 5325 5326
                .. code-block:: python

                    import six
5327 5328 5329 5330 5331 5332
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5344

5345
                    def network():
5346
                        img = static.data(name='image', shape=[None, 784])
5347
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5348 5349
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5350
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5351 5352
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5353 5354
                        return avg_loss

5355 5356 5357 5358 5359
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5360
                            avg_loss = network()
5361
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5362
                            sgd.minimize(avg_loss)
5363
                    # the test startup program is not used.
5364 5365
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5366 5367
                            avg_loss = network()
                    print_prog(test_program_2)
5368

5369
            The two code snippets above will generate and print same programs.
5370
        """
5371

T
tangwei12 已提交
5372
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5373 5374 5375
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5376
        pruned_origin_block_id_map = None
5377
        if for_test:
5378 5379 5380 5381 5382 5383 5384 5385 5386
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5387
        else:
5388
            p = Program()
G
gongweibao 已提交
5389 5390
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5391
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
5392 5393 5394
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
5395 5396

            p._current_role = self._current_role
5397
            p.__op_role_var = self.__op_role_var
5398
            p._appending_grad_times = self._appending_grad_times
5399 5400
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
5401

T
tangwei12 已提交
5402
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5403
            # its desc.
W
Wu Yi 已提交
5404
            p._sync_with_cpp()
5405

W
Wu Yi 已提交
5406
        p._copy_param_info_from(self)
5407
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5408
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5409
        return p
5410

5411
    def _prune(self, targets):
Y
yuyang18 已提交
5412 5413 5414 5415 5416 5417 5418 5419
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
5420
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
5421 5422 5423 5424
                need to be pruned

        Returns:
            Program:  A new, pruned program.
5425
        """
5426
        return self._prune_with_input([], targets)
5427 5428

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
5429
        """
5430 5431 5432 5433 5434 5435 5436 5437 5438 5439
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
5440
            targets(list|Variable|Operator): A list of variables, operators, or variable names
5441 5442 5443 5444 5445 5446
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
5447
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5448 5449 5450
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5451 5452
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
5453 5454
        if not isinstance(targets, list):
            targets = [targets]
5455 5456 5457

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
5458 5459 5460
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
5461

5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

5478 5479 5480 5481
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
5482 5483 5484
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
5485
                else:
5486 5487 5488
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
5489 5490 5491 5492 5493 5494

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
5495 5496 5497
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
5498

5499 5500 5501 5502 5503 5504 5505 5506 5507
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
5508
                        # Skip optimize op except for optimize op in targets,
5509 5510 5511 5512 5513
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
5514

5515
                if target_op is not None:
5516 5517 5518
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
5519

5520
        res = Program()
5521 5522 5523
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
5524 5525 5526
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5527
        res._sync_with_cpp()
5528 5529 5530 5531 5532

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

5533 5534
        return res

X
Xin Pan 已提交
5535
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
5536
        """
F
fengjiayi 已提交
5537 5538 5539 5540 5541
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

5542
        3. change the :code:`is_test`
Y
yuyang18 已提交
5543 5544 5545
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

5546
        Args:
X
Xin Pan 已提交
5547 5548
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
5549

Y
yuyang18 已提交
5550 5551 5552 5553 5554 5555
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
5556
        res = Program()
5557
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
5558 5559 5560 5561

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
5562
        if prune_read_op:
5563 5564 5565 5566 5567 5568 5569 5570 5571
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
5572
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
5573 5574

        # change all `is_test` attributes to True
M
minqiyang 已提交
5575
        for i in six.moves.range(res.desc.num_blocks()):
5576
            block = res.desc.block(i)
M
minqiyang 已提交
5577
            for j in six.moves.range(block.op_size()):
5578 5579
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
5580
                    op._set_attr('is_test', True)
5581 5582 5583
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
M
minqiyang 已提交
5584 5585 5586
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5587
        res._sync_with_cpp()
5588 5589
        return res

5590
    def _remove_training_info(self, clip_extra=True):
5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()

        for i in six.moves.range(res.desc.num_blocks()):
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679
            if not clip_extra:
                continue
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
                for name in remove_input_list:
                    op.remove_input(name)

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
                for name in remove_output_list:
                    op.remove_output(name)

                remove_attr_list = []
                op_quant_name = core.op_proto_and_checker_maker.kOpWithQuantAttrName(
                )
                quant = bool(op.attr(op_quant_name)
                             ) if op_quant_name in op.attr_names() else False
                quant_attrs = [
                    op_quant_name, "quantization_type", "skip_quant",
                    "activation_bits", "bit_length", "quantize_weight_bits",
                    "weight_quant_scale"
                ]
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        if attr_proto.extra:
                            remove_attr_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
5680 5681
        return res

5682 5683
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
5684
        """
5685 5686 5687
        .. note::
            1. All information about parameters will be lost after serialization; 
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5688

5689 5690
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
5691

J
Jiabin Yang 已提交
5692
        Args:
Y
yuyang18 已提交
5693

J
Jiabin Yang 已提交
5694
            binary_str_type (str): the binary prootbuf string.
5695

J
Jiabin Yang 已提交
5696 5697
        Returns:
            Program: A deserialized Program.
5698 5699 5700 5701

        Examples:
            .. code-block:: python

5702 5703 5704 5705
                import paddle
                import paddle.static as static

                paddle.enable_static()
5706

5707 5708 5709 5710
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
5711

5712
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
5713

5714
                    z = paddle.matmul(x=x, y=y)
5715

5716 5717
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
5718

5719
                    print(static.default_main_program())
5720
                    print(prog_restored)
Y
yuyang18 已提交
5721
        """
5722 5723
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
5724
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
5725
        p._sync_with_cpp()
5726
        return p
Y
Yu Yang 已提交
5727

5728
    @staticmethod
5729
    def _construct_from_desc(desc):
5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
5745 5746
    @property
    def random_seed(self):
Y
yuyang18 已提交
5747
        """
J
Jiabin Yang 已提交
5748
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
5749 5750
        the random seed from random device.

5751 5752
        .. note:: 
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
5753 5754 5755

        Returns:
            int64: Random seed in current Program
5756

5757 5758 5759 5760

        Examples:
            .. code-block:: python

5761 5762 5763
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
5764

5765 5766 5767
                paddle.enable_static()

                prog = static.default_main_program()
5768
                random_seed = prog.random_seed
5769
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
5770 5771 5772
                print(random_seed)
                ## 0
                ## the default random seed is 0
5773

5774
                # Here we need to set random seed before we use paddle.nn.functional.dropout
5775
                prog.random_seed = 1
5776
                z_var = F.dropout(x_var, 0.7)
5777

5778
                print(prog.random_seed)
5779 5780
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
5781
        """
D
dzhwinter 已提交
5782 5783
        return self._seed

Q
qiaolongfei 已提交
5784 5785
    @property
    def num_blocks(self):
Y
yuyang18 已提交
5786
        """
5787 5788
        The number of :ref:`api_guide_Block_en`  in this Program.

5789 5790
        .. note:: 
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
5791 5792 5793

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
5794

5795 5796 5797 5798

        Examples:
            .. code-block:: python

5799 5800 5801 5802
                import paddle
                import paddle.static as static

                paddle.enable_static()
5803

5804
                prog = static.default_main_program()
5805 5806
                num_blocks = prog.num_blocks
                print(num_blocks)
5807

5808 5809
                # print result:
                # 1
Y
yuyang18 已提交
5810
        """
Q
qiaolongfei 已提交
5811 5812
        return self.desc.num_blocks()

D
dzhwinter 已提交
5813 5814 5815
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
5816 5817 5818
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
5819 5820
        self._seed = seed

Y
Yu Yang 已提交
5821
    def __repr__(self):
5822
        return self.__str__()
5823

Y
Yu Yang 已提交
5824
    def global_block(self):
Y
yuyang18 已提交
5825
        """
5826 5827
        .. note::
            This API has no effect in Dygraph mode.
5828 5829 5830

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
5831 5832
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
5833

5834 5835 5836 5837

        Examples:
            .. code-block:: python

5838 5839 5840 5841
                import paddle
                import paddle.static as static

                paddle.enable_static()
5842

5843
                prog = static.default_main_program()
5844 5845
                gb_block = prog.global_block()
                print(gb_block)
5846

Y
yuyang18 已提交
5847
        """
Y
Yu Yang 已提交
5848 5849
        return self.blocks[0]

Q
Qiao Longfei 已提交
5850
    def block(self, index):
Y
yuyang18 已提交
5851
        """
5852 5853
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5854

5855 5856
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
5857 5858
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
5859

J
Jiabin Yang 已提交
5860 5861
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
5862 5863 5864 5865

        Examples:
            .. code-block:: python

5866 5867 5868 5869
                import paddle
                import paddle.static as static

                paddle.enable_static()
5870

5871
                prog = static.default_main_program()
5872 5873
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
5874
        """
Q
Qiao Longfei 已提交
5875 5876
        return self.blocks[index]

Y
Yu Yang 已提交
5877
    def current_block(self):
Y
yuyang18 已提交
5878
        """
5879 5880
        .. note::
            This API has no effect in Dygraph mode.
5881

J
Jiabin Yang 已提交
5882 5883
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
5884

J
Jiabin Yang 已提交
5885 5886
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
5887

5888 5889 5890
        Examples:
            .. code-block:: python

5891 5892 5893 5894
                import paddle
                import paddle.static as static

                paddle.enable_static()
5895

5896
                prog = static.default_main_program()
5897 5898
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
5899
        """
Y
Yu Yang 已提交
5900 5901
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
5902
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
5903 5904 5905 5906 5907
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
5908

Y
yuyang18 已提交
5909 5910 5911 5912 5913
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
5914
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
5915 5916 5917
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
5918 5919 5920 5921
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
5922
    def _rollback(self):
Y
yuyang18 已提交
5923 5924 5925 5926 5927
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
5928 5929
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
5930
    def _sync_with_cpp(self):
Y
yuyang18 已提交
5931 5932 5933 5934 5935 5936 5937 5938 5939 5940
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
5941 5942 5943
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
5944
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
5945

W
Wu Yi 已提交
5946
    def _copy_param_info_from(self, other):
5947
        """
5948
        Copy the information of parameters from other program.
D
dzhwinter 已提交
5949

Y
yuyang18 已提交
5950 5951 5952
        Notes: This is a very low level API. Users should not invoke it
        directly.

5953 5954 5955 5956 5957 5958 5959
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5960 5961 5962
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5963

W
Wu Yi 已提交
5964
        self.global_block()._copy_param_info_from(other.global_block())
5965

5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5977 5978 5979
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5980 5981
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
5982
        self._parameters_on_pservers = other._parameters_on_pservers
5983
        self._endpoints = other._endpoints
5984
        self._ps_endpoint = other._ps_endpoint
5985 5986
        self._distributed_lookup_table = other._distributed_lookup_table

5987
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
5988 5989
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
5990

Y
yuyang18 已提交
5991 5992 5993
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
5994 5995
        Args:
            other(Program): Other program
5996 5997 5998 5999
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
6000 6001 6002 6003 6004

        Returns:
            None
        """
        if not isinstance(other, Program):
6005 6006 6007
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
6008

6009 6010 6011 6012 6013
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
6014 6015 6016

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
6017 6018
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
6019
            for var in list(block.vars.values()):
6020 6021 6022 6023 6024 6025 6026
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
6027

6028
    def list_vars(self):
Y
yuyang18 已提交
6029
        """
6030
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
6031

J
Jiabin Yang 已提交
6032
        Returns:
6033
            iterable Tensors: The Generator will yield every Tensor in this program.
6034 6035 6036 6037

        Examples:
            .. code-block:: python

6038 6039
                import paddle
                import paddle.static as static
6040

6041 6042 6043 6044 6045
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
6046 6047
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
6048

6049 6050
                # var img : paddle.VarType.LOD_TENSOR.shape(-1, 1, 28, 28).astype(VarType.FP32)
                # var label : paddle.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)
Y
yuyang18 已提交
6051
        """
6052
        for each_block in self.blocks:
6053
            for each_var in list(each_block.vars.values()):
6054 6055
                yield each_var

6056 6057 6058 6059 6060 6061 6062 6063 6064 6065
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

6066 6067 6068 6069
                import paddle
                import paddle.static as static

                paddle.enable_static()
6070

6071 6072
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
6073
                hidden = static.nn.fc(x=data, size=10)
6074 6075
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
6076 6077 6078 6079 6080 6081 6082

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
6083 6084
                # persist trainable param fc_0.w_0 : paddle.VarType.LOD_TENSOR.shape(13, 10).astype(VarType.FP32)
                # persist trainable param fc_0.b_0 : paddle.VarType.LOD_TENSOR.shape(10,).astype(VarType.FP32)
6085 6086 6087 6088 6089 6090 6091 6092 6093 6094
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
            mode(str, optional): Source of the obtained parameters and buffers. 
                    'opt' :  The return value only contains the variable in the optimizer. 
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.  
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
            raise TypeError("Type of `mode` should be string, but received {}.".
                            format(type(mode)))

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".
                    format(mode))

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".
                    format(var.name))
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
        Set parameters and persistable buffers in state_dict to program. 
        An exception will throw if shape or dtype of the parameters is not match.
        
        .. note::
            This function MUST called after run start_up_program

        Args:
            state_dict(dict): the dict store parameters and persistable buffers. 
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
        
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
                    type(state_dict)))

        vars_dict = {var.name: var for var in self.list_vars()}
        condition = True if 'StructuredToParameterName@@' in state_dict else False
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
                except TypeError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
            else:
                warnings.warn((
                    "Skip loading for '{0}'. Because '{0}' not in the program.".
                    format(name)))

Y
Yu Yang 已提交
6262

6263
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
6264
class Parameter(Variable):
6265
    """
6266
    Parameter is derived from Variable. A parameter is a persistable
6267
    Variable, and will be updated by optimizers after each iteration.
6268
    The training of a neural network is essentially the updating of
6269 6270
    its parameters.

6271
    Relative to a general Variable, a Parameter has several its own
6272 6273
    member variables:

6274 6275 6276 6277 6278 6279 6280 6281 6282 6283
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
6284 6285
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
6286 6287
    """

6288 6289 6290 6291 6292 6293
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
6294 6295 6296 6297 6298
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
6299
        if len(shape) == 0:
6300 6301
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
6302 6303 6304

        for each in shape:
            if each < 0:
6305 6306 6307
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
6308 6309

        Variable.__init__(
6310 6311 6312 6313 6314 6315 6316
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
6317 6318 6319 6320
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

6321 6322
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
6323
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
6324

6325 6326
        self.need_clip = kwargs.get('need_clip', True)

6327 6328
        self.is_distributed = False

6329 6330
        self.is_parameter = True

F
fengjiayi 已提交
6331
    def __str__(self):
6332
        return self._to_readable_code()
F
fengjiayi 已提交
6333

F
update  
fengjiayi 已提交
6334 6335 6336
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
6337

F
update  
fengjiayi 已提交
6338 6339 6340 6341 6342 6343 6344 6345
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

6346 6347 6348 6349 6350 6351 6352 6353 6354
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6355 6356 6357 6358 6359 6360
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
6361
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
6362
            for attr_name in additional_attr:
6363 6364
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
6365 6366
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6367 6368 6369 6370
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
6371

6372 6373
class ParamBase(core.VarBase):
    """
6374 6375 6376
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
6377 6378 6379
    The training of a neural network is essentially the updating of
    its ParamBase.

6380
    Relative to a general Tensor, a ParamBase has several its own
6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
6393 6394
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

6425 6426
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
6427 6428 6429 6430 6431 6432 6433

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

6434 6435
        self.need_clip = kwargs.get('need_clip', True)

6436
        self.is_distributed = kwargs.get('is_distributed', False)
6437
        # self.block = default_main_program().global_block()
6438

6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

6452
    def __str__(self):
6453
        """
6454
        Convert a ParamBase object to a readable string.
6455

6456
        Returns(str): A readable string.
6457 6458 6459 6460

        Examples:
            .. code-block:: python

6461
                import paddle
6462 6463 6464 6465 6466 6467 6468
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
6469
        """
6470 6471
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
6472

6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
6484

6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

6503 6504 6505 6506
    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
6507 6508 6509 6510 6511 6512
        return new_param

    __repr__ = __str__


if hasattr(core, "eager"):
6513
    _core_eager_eagertensor = core.eager.Tensor
6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653
else:
    _core_eager_eagertensor = object


class EagerParamBase(_core_eager_eagertensor):
    """
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode). 
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

        super(EagerParamBase, self).__init__(
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape)
            if shape else [], name, core.VarDesc.VarType.LOD_TENSOR, True)
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
        # self.block = default_main_program().global_block()

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
            tensor=super(EagerParamBase, self).__str__())

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
6654 6655
        return new_param

6656 6657 6658
    __repr__ = __str__


Y
Yu Yang 已提交
6659
# program is a global instance.
Y
Yu Yang 已提交
6660 6661
_main_program_ = Program()
_startup_program_ = Program()
6662
_startup_program_._is_start_up_program_ = True
6663

6664

6665
def default_startup_program():
Y
Yu Yang 已提交
6666
    """
Y
yuyang18 已提交
6667 6668
    Get default/global startup program.

6669 6670
    The :code:`paddle.nn` function will append the initialization operators into startup program.
    The :code:`startup_program` will initialize the parameters by the OPs. 
T
tangwei12 已提交
6671

6672 6673
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
6674

6675 6676
    Returns:
        Program: current default startup program.
6677

6678
    Returns type: 
6679 6680 6681 6682

    Examples:
        .. code-block:: python

6683
            import paddle
6684

6685
            paddle.enable_static()
6686 6687 6688 6689
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
6690
    """
Y
Yu Yang 已提交
6691
    return _startup_program_
6692

6693

6694
def default_main_program():
Y
Yu Yang 已提交
6695
    """
6696
    This API can be used to get ``default main program`` which store the 
6697
    descriptions of Ops and tensors.
T
tangwei12 已提交
6698

6699
    For example ``z = paddle.add(x, y)`` will create a new ``add`` 
6700
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` . 
Y
yuyang18 已提交
6701

6702 6703
    The ``default main program`` is the default value for ``Program`` parameter in 
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
6704
    :code:`default_main_program` when the program is not specified.
6705

6706
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
6707

Y
Yu Yang 已提交
6708
    Returns:
6709
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
6710 6711 6712 6713

    Examples:
        ..  code-block:: python

6714
            import paddle
6715

6716
            paddle.enable_static()
6717
            # Sample Network:
6718 6719 6720
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
6721

6722 6723 6724
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
6725
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
6726
    """
Y
Yu Yang 已提交
6727
    return _main_program_
Y
Yu Yang 已提交
6728 6729 6730 6731 6732


def switch_main_program(program):
    """
    Switch the main program to a new program.
6733

Y
Yu Yang 已提交
6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
6748
    Switch the startup program to a new program
Y
Yu Yang 已提交
6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
6761
@signature_safe_contextmanager
Y
Yu Yang 已提交
6762 6763
def program_guard(main_program, startup_program=None):
    """
6764 6765
    :api_attr: Static Graph

6766 6767 6768
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
6769

G
guofei 已提交
6770
    Args:
6771 6772
        main_program(Program): New main program inside ``with`` statement.
        startup_program(Program, optional): New startup program inside ``with`` 
G
guofei 已提交
6773 6774 6775 6776
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
6777
    Examples:
6778
       .. code-block:: python
T
tangwei12 已提交
6779

6780
          import paddle
Y
yuyang18 已提交
6781

6782 6783 6784 6785 6786
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
6787
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
6788 6789 6790

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
6791

Y
Yu Yang 已提交
6792
    Examples:
6793
       .. code-block:: python
Y
yuyang18 已提交
6794

6795
          import paddle
6796

6797 6798 6799 6800 6801
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
6802

Y
Yu Yang 已提交
6803
    """
6804
    from .data_feeder import check_type
6805 6806
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
6807 6808
    main_program = switch_main_program(main_program)
    if startup_program is not None:
6809
        check_type(startup_program, 'startup_program', Program,
6810
                   'paddle.static.program_guard')
6811 6812
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
6813
        startup_program = switch_startup_program(startup_program)
6814 6815 6816 6817 6818 6819
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
6820 6821


W
Wu Yi 已提交
6822
def _get_var(name, program=None):
X
xuwei06 已提交
6823
    """
Y
yuyang18 已提交
6824
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
6825

X
xuwei06 已提交
6826 6827 6828
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
6829
        If None, default_global_program() will be used.
X
xuwei06 已提交
6830 6831 6832 6833 6834 6835 6836

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
6837
    assert isinstance(program, Program)
X
xuwei06 已提交
6838 6839

    return program.global_block().var(name)
6840 6841


S
rename  
sneaxiy 已提交
6842
@signature_safe_contextmanager
L
lujun 已提交
6843 6844
def _dygraph_guard(tracer):
    global _dygraph_tracer_
6845
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
6846
    _dygraph_tracer_ = tracer
6847
    core._switch_tracer(tracer)
M
minqiyang 已提交
6848

6849 6850 6851
    try:
        yield
    finally:
6852 6853
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
6854 6855


S
rename  
sneaxiy 已提交
6856
@signature_safe_contextmanager
L
lujun 已提交
6857
def _dygraph_place_guard(place):
6858 6859 6860
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
6861 6862
    _set_dygraph_tracer_expected_place(place)

6863 6864 6865
    try:
        yield
    finally:
6866
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
6867
        _set_dygraph_tracer_expected_place(_global_expected_place_)
6868 6869


6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
6886 6887
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs. 
6888 6889 6890 6891 6892 6893 6894 6895 6896
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

Z
Zhang Ting 已提交
6897
            import paddle
6898

Z
Zhang Ting 已提交
6899 6900 6901
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
6902
            if support_gpu:
Z
Zhang Ting 已提交
6903
                place = paddle.CUDAPlace(0)
6904 6905

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
6906 6907 6908
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
6909

Z
Zhang Ting 已提交
6910
            with paddle.static.device_guard("cpu"):
6911
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
6912 6913
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
6914
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
6915
                out = paddle.reshape(data1, shape=shape)
6916

Z
Zhang Ting 已提交
6917 6918
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
6919 6920 6921
            result = exe.run(fetch_list=[out])
    """

6922 6923 6924 6925 6926
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
6927
    if device not in ['cpu', 'gpu', 'npu', '', None]:
6928
        raise ValueError(
6929
            "The Attr(device) should be 'cpu' 'npu' or 'gpu', and it can also be empty string or None "
6930
            "when there is no need to specify device. But received %s" % device)
6931 6932
    if index:
        device = ":".join([device, index])
6933
    pre_device = switch_device(device)
6934 6935 6936 6937
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
6938 6939 6940 6941 6942


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
6943
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
6944 6945 6946 6947 6948 6949 6950

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

6951 6952
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
6953 6954 6955 6956
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
6957 6958
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
6959 6960 6961 6962 6963 6964 6965 6966
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
6967
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
6968 6969 6970 6971 6972 6973 6974 6975 6976 6977

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

6978
            import paddle
G
guofei 已提交
6979 6980

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
6981
            res = paddle.get_flags(flags)
G
guofei 已提交
6982 6983 6984 6985 6986 6987
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
6988 6989
            if (_global_flags().is_public(key)):
                value = _global_flags()[key]
G
guofei 已提交
6990 6991 6992 6993 6994 6995 6996
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
6997 6998
        if (_global_flags().is_public(flags)):
            value = _global_flags()[flags]
G
guofei 已提交
6999 7000 7001 7002 7003 7004 7005 7006
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
7007 7008 7009 7010 7011 7012 7013


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
    if isinstance(place, (core.Place, core.XPUPlace, core.CPUPlace,
7014
                          core.CUDAPinnedPlace, core.CUDAPlace, core.NPUPlace,
7015
                          core.IPUPlace, core.MLUPlace, core.CustomPlace)):
7016 7017 7018 7019 7020 7021 7022 7023 7024
        return place

    if not isinstance(place, str):
        raise ValueError(
            "place only support string which is 'Place' and so on.")

    place = place.lower()
    if (place == "cpu"):
        return core.CPUPlace()
7025

7026 7027 7028
    if (place == "device"):
        return core.Place()

7029
    # GPU
7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with CUDA".format(avaliable_gpu_place))
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
7045 7046

    # XPU
7047 7048 7049 7050 7051 7052 7053 7054 7055 7056
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with XPU".format(avaliable_xpu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with NPU".format(avaliable_npu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

J
jianghaicheng 已提交
7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081
    # IPU
    avaliable_ipu_place = re.match(r'ipu:\d+', place)
    if avaliable_ipu_place:
        if not core.is_compiled_with_ipu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with IPU".format(avaliable_ipu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.IPUPlace(device_id)

7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093
    # MLU
    avaliable_mlu_place = re.match(r'mlu:\d+', place)
    if avaliable_mlu_place:
        if not core.is_compiled_with_mlu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with MLU".format(avaliable_mlu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.MLUPlace(device_id)

7094
    raise ValueError(
J
jianghaicheng 已提交
7095
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace, IPUPlace, MLUPlace and NPUPlace, but received {}.".
7096
        format(place))
7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret