one_hot_v2_op.cc 4.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
//   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/one_hot_v2_op.h"
#include <string>
#include <vector>
#include "paddle/fluid/framework/framework.pb.h"

namespace paddle {
namespace operators {

class OneHotV2Op : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      "Input(X) of OneHotOp should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      "Output(Out) of OneHotOp should not be null.");

    auto x_dims = ctx->GetInputDim("X");
    PADDLE_ENFORCE_GE(x_dims.size(), 1,
                      "Rank of Input(X) should be at least 1.");

    int depth = ctx->Attrs().Get<int>("depth");
    if (ctx->HasInput("depth_tensor")) {
      depth = -1;
    }

    auto out_dims_vec = framework::vectorize(x_dims);
    out_dims_vec.push_back(depth);
    auto out_dims = framework::make_ddim(out_dims_vec);
    ctx->SetOutputDim("Out", out_dims);
    ctx->ShareLoD("X", /* --> */ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
                                   ctx.device_context());
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "depth_tensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
};

class OneHotV2OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(LoDTensor, LoDTensor<int>) Input variable with rank at least 2. "
             "The last dimension of X should be 1. Each value of X is an index "
             "to indicate the position.");
    AddInput("depth_tensor", "(Tensor, Tensor<int>), Length of one-hot vector")
        .AsDispensable();
    AddOutput("Out",
              "(Tensor, Tensor<float>) Output tensor with same rank as X. "
              "The tensor consists of one-hot representations of values in X.");

    AddAttr<int>("depth",
                 "A positive integer to specify the length of one-hot vector.")
        .SetDefault(-1);
    AddAttr<int>("dtype",
                 "An integer to specify the data type of one-hot "
                 "vector. The default value is FP32.")
        .SetDefault(paddle::framework::proto::VarType::FP32);
    AddAttr<bool>("allow_out_of_range",
                  "If it is set true and the input data is out of range, "
                  "the output tensor will be filled zeros. The default value "
                  "is false.")
        .SetDefault(false);
    AddComment(R"DOC(
One Hot Operator. This operator creates the one-hot representations for input
index values. The following example will help to explain the function of this
operator:

X is a LoDTensor:
  X.lod = [[0, 1, 4]]
  X.shape = [4]
  X.data = [1, 1, 3, 0]

set depth = 4

Out is a LoDTensor:
  Out.lod = [[0, 1, 4]]
  Out.shape = [4, 4]
  Out.data = [[0., 1., 0., 0.],
              [0., 1., 0., 0.],
              [0., 0., 0., 1.],
              [1., 0., 0., 0.]]
)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(one_hot_v2, ops::OneHotV2Op, ops::OneHotV2OpMaker,
                  paddle::framework::EmptyGradOpMaker);
REGISTER_OP_CPU_KERNEL(
    one_hot_v2, ops::OneHotV2Kernel<paddle::platform::CPUDeviceContext, int>,
    ops::OneHotV2Kernel<paddle::platform::CPUDeviceContext, int64_t>);