matmul_v2_mkldnn_op.cc 35.6 KB
Newer Older
S
Sławomir Siwek 已提交
1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14
#include "paddle/fluid/operators/mkldnn/matmul_mkldnn_op.h"
15

16
namespace {
17
using dnnl::memory;
18
using paddle::framework::ExecutionContext;
19
using paddle::platform::MatMulV2MKLDNNHandler;
20 21 22
using paddle::platform::MKLDNNDeviceContext;
using paddle::platform::MKLDNNGetDataType;
using paddle::platform::to_void_cast;
23
using phi::vectorize;
24
using Tensor = phi::DenseTensor;
25
using paddle::framework::GradVarName;
26
using phi::make_ddim;
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

// Reshape a rank-3 tensor from P x M x N to (P * M) x N.
// Identity op if the tensor is not of rank 3.
static Tensor FoldOuterDims(const Tensor &input) {
  auto output = input;
  auto in_dims = input.dims();
  if (in_dims.size() == 3) {
    output.Resize({in_dims[0] * in_dims[1], in_dims[2]});
  }
  return output;
}

// Reshape a rank-3 tensor from P x M x N to M x (P * N).
// (Warning: This requires transposing data and writes into new memory.)
// Identity op if the tensor is not of rank 3.
template <typename T>
static Tensor FoldFirstAndLastDims(const MKLDNNDeviceContext &dev_ctx,
                                   const Tensor *input) {
  auto input_dims = vectorize(input->dims());
  if (input_dims.size() != 3) {
    return *input;
  }

  Tensor output;
  output.Resize({input_dims[1], input_dims[0], input_dims[2]});

  auto output_dims = vectorize(output.dims());

  memory::data_type input_type = paddle::framework::ToMKLDNNDataType(
      paddle::framework::TransToProtoVarType(input->dtype()));
  paddle::platform::ReorderMKLDNNHandler reorder_handler(
      output_dims,
      paddle::framework::TransToProtoVarType(input->dtype()),
      input_type,
      dev_ctx.GetEngine());

  auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
      memory::format_tag::abc,
      paddle::platform::to_void_cast(input->data<T>()));
  auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
      &output, memory::format_tag::bac, dev_ctx.GetPlace());
  auto reorder_p = reorder_handler.AcquireReorder(reorder_src_memory_p,
                                                  reorder_dst_memory_p);

  auto &astream = MKLDNNDeviceContext::tls().get_stream();
  reorder_p->execute(astream, *reorder_src_memory_p, *reorder_dst_memory_p);
  astream.wait();

  output.Resize({input_dims[1], input_dims[0] * input_dims[2]});
  return output;
}

template <typename T>
constexpr bool IsInt8() {
  return std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
}

template <typename T>
constexpr bool IsBfloat16() {
  return std::is_same<T, paddle::platform::bfloat16>::value;
}
88

89 90
// Get row matrix shape from a vector shape. If the rank of x_dim > 1, the
// original x_dim is returned.
91 92
static paddle::framework::DDim RowMatrixDimsFromVector(
    const paddle::framework::DDim &x_dim) {
93
  return x_dim.size() > 1 ? x_dim : phi::make_ddim({1, x_dim[0]});
94 95 96 97
}

// Get column matrix shape from a vector shape. If the ran of y_dim > 1, the
// original y_dim is returned.
98 99
static paddle::framework::DDim ColumnMatrixDimsFromVector(
    const paddle::framework::DDim &y_dim) {
100
  return y_dim.size() > 1 ? y_dim : phi::make_ddim({y_dim[0], 1});
101 102
}

J
Jacek Czaja 已提交
103 104 105
phi::DDim GetDimForInput(const ExecutionContext &ctx, std::string input_name) {
  auto shape = ctx.Attr<std::vector<int>>("fused_reshape_" + input_name);
  auto axis = ctx.Attr<std::vector<int>>("fused_transpose_" + input_name);
106
  auto input_dims = ctx.Input<phi::DenseTensor>(input_name)->dims();
J
Jacek Czaja 已提交
107 108 109 110 111 112
  if (!shape.empty() && !axis.empty()) {
    return input_dims.reshape(shape).transpose(axis);
  }
  return input_dims;
}

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
template <typename XT, typename YT, typename OT>
class MatMulMKLDNNHandler
    : public paddle::platform::MKLDNNHandlerNoCachingT<XT, dnnl::matmul> {
 public:
  MatMulMKLDNNHandler(const dnnl::engine engine,
                      paddle::platform::Place cpu_place,
                      Tensor *x,
                      bool trans_x,
                      Tensor *y,
                      bool trans_y,
                      Tensor *out,
                      float scale)
      : paddle::platform::MKLDNNHandlerNoCachingT<XT, dnnl::matmul>(engine,
                                                                    cpu_place) {
    auto mat_dim_x = phi::funcs::CreateMatrixDescriptor(x->dims(), 0, trans_x);
    auto mat_dim_y = phi::funcs::CreateMatrixDescriptor(y->dims(), 0, trans_y);

    memory::dim x_bs = mat_dim_x.batch_size_;
    memory::dim y_bs = mat_dim_y.batch_size_;

    memory::dim out_bs = x_bs || y_bs ? std::max(x_bs, y_bs) : 1;
    const memory::dim M = mat_dim_x.height_;
    const memory::dim N = mat_dim_y.width_;
    const memory::dim K = mat_dim_x.width_;

    memory::dims x_dims = {x_bs > 0 ? x_bs : 1, M, K};
    memory::dims y_dims = {y_bs > 0 ? y_bs : 1, K, N};
    memory::dims out_dims = {out_bs, M, N};

    memory::dims x_strides =
        !trans_x ? memory::dims{M * K, K, 1} : memory::dims{M * K, 1, M};

    memory::dims y_strides =
        !trans_y ? memory::dims{N * K, N, 1} : memory::dims{N * K, 1, K};
    memory::dims out_strides = memory::dims{M * N, N, 1};

    auto x_md = memory::desc(x_dims, MKLDNNGetDataType<XT>(), x_strides);
    auto y_md = memory::desc(y_dims, MKLDNNGetDataType<YT>(), y_strides);
    auto out_md = memory::desc(out_dims, MKLDNNGetDataType<OT>(), out_strides);

    dnnl::primitive_attr attrs;
    if (scale != 1.0f) attrs.set_output_scales(0, {scale});

    this->AcquireForwardPrimitiveDescriptor(attrs, x_md, y_md, out_md);
  }

  std::shared_ptr<memory> AcquireWeightsMemory(const Tensor *input) {
    const YT *input_data = input->data<YT>();
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->weights_desc(),
                                            to_void_cast<YT>(input_data));
  }

 public:
166 167 168
  void Execute(const phi::DenseTensor *x,
               const phi::DenseTensor *y,
               phi::DenseTensor *out) {
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
    const auto src_memory_p = this->AcquireSrcMemory(x);
    const auto weights_memory_p = this->AcquireWeightsMemory(y);
    const auto dst_memory_p = this->AcquireDstMemory(out);

    auto matmul_p = this->AcquireForwardPrimitive();

    std::unordered_map<int, dnnl::memory> matmul_args = {
        {DNNL_ARG_SRC, *src_memory_p},
        {DNNL_ARG_WEIGHTS, *weights_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};

    auto &astream = paddle::platform::MKLDNNDeviceContext::tls().get_stream();

    // Simulate batch matmul by processing in loop
    void *x_ptr = src_memory_p->get_data_handle();
    void *y_ptr = weights_memory_p->get_data_handle();
    void *out_ptr = dst_memory_p->get_data_handle();
S
Sławomir Siwek 已提交
186 187
    auto offsets = std::make_tuple(x_offset_, y_offset_, out_offset_);
    for (uint16_t i = 0; i < batch_size_; ++i) {
188 189 190
      src_memory_p->set_data_handle(x_ptr);
      weights_memory_p->set_data_handle(y_ptr);
      dst_memory_p->set_data_handle(out_ptr);
191
      matmul_p->execute(astream, matmul_args);
192 193 194 195 196 197
      x_ptr = static_cast<char *>(x_ptr) + std::get<0>(offsets);
      y_ptr = static_cast<char *>(y_ptr) + std::get<1>(offsets);
      out_ptr = static_cast<char *>(out_ptr) + std::get<2>(offsets);
    }
    astream.wait();

198
    out->set_mem_desc(dst_memory_p->get_desc().reshape(out->dims()));
199 200
  }

201
  std::shared_ptr<dnnl::memory> AcquireDstMemory(phi::DenseTensor *output) {
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
    // We cannot use base AcquireDstMemory as it makes an allocation request
    // base on DST memory primitive size. This is fine in general, but in MatMul
    // we have primitive that covers only one batch of Data and then shift
    // pointer for every new batch. Hence Tensor size is bigger that dst memory
    // primitive size. So would we request less memory that is there and it
    // triggers an
    // assertion.  So as there is no 'any' format here we can leave default size
    // of Tensor as computed in ComputeInferShape
    OT *ptr = output->mutable_data<OT>(this->place_);
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->dst_desc(), ptr);
  }

 private:
  uint32_t x_offset_;
  uint32_t y_offset_;
  uint32_t out_offset_;
  uint16_t batch_size_;
};

/**
 * Reshape a tensor to 3-D or 2-D tensor by matrix descriptor.
 *
 * The shape would be [BatchSize, H, W] or [H, W].
 * If transposed, `H,W` will be swapped.
 */
static void ReshapeTensorToMatrixSequence(
    Tensor *x, const phi::funcs::MatDescriptor &descriptor) {
  int64_t h, w;
  h = descriptor.height_;
  w = descriptor.width_;
  if (descriptor.trans_) {
    std::swap(w, h);
  }
  if (descriptor.batch_size_) {
    x->Resize({descriptor.batch_size_, h, w});
  } else {
    x->Resize({h, w});
  }
}

/**
 * Reshape the x,y,out tensor to 3-D or 2-D tensor by matrix descriptor
 * Out = matmul(x, y)
 *
 * This method will first calculate X,Y matrix sequence, and then calculate
 * the out shape.
 *
 * Assume X = [BatchSize, H1, W1], Y = [BatchSize, H2, W2]
 * The out = [BatchSize, H1, W2]
 *
 * If there is no batch size in `X` and `Y`, the out will be [H1, W2]
 * If any of `X` and `Y` has batch size BatchSize, the out will have the
 * BatchSize.
 */
static void ReshapeXYOutToMatrixSequence(
    Tensor *x, Tensor *y, Tensor *out, bool trans_x, bool trans_y) {
  auto x_dim = RowMatrixDimsFromVector(x->dims());
  auto y_dim = ColumnMatrixDimsFromVector(y->dims());
  auto mat_dim_x = phi::funcs::CreateMatrixDescriptor(x_dim, 0, trans_x);
  auto mat_dim_y = phi::funcs::CreateMatrixDescriptor(y_dim, 0, trans_y);
  if (mat_dim_x.batch_size_ == 0 && mat_dim_y.batch_size_ == 0) {
    out->Resize({mat_dim_x.height_, mat_dim_y.width_});
  } else {
    out->Resize({std::max(mat_dim_x.batch_size_, mat_dim_y.batch_size_),
                 mat_dim_x.height_,
                 mat_dim_y.width_});
  }

  ReshapeTensorToMatrixSequence(x, mat_dim_x);
  ReshapeTensorToMatrixSequence(y, mat_dim_y);
}

S
Sławomir Siwek 已提交
274 275
std::vector<int64_t> Transpose(const std::vector<int64_t> &x,
                               const std::vector<int> &axis) {
276 277 278 279
  size_t in_rank = x.size();
  size_t axis_size = axis.size();

  auto axis_set = std::set<int>(axis.begin(), axis.end());
280 281
  PADDLE_ENFORCE_EQ(axis_set.size(),
                    axis_size,
282 283 284
                    paddle::platform::errors::InvalidArgument(
                        "In an axis array, elements must be unique."));

285 286
  PADDLE_ENFORCE_EQ(in_rank,
                    axis_size,
287 288 289 290 291
                    paddle::platform::errors::InvalidArgument(
                        "The input dimension's size "
                        "should be equal to the axis's size. "
                        "But received dimension is %d, "
                        "axis's size is %d",
292 293
                        in_rank,
                        axis_size));
294

295 296
  PADDLE_ENFORCE_LT(*std::max_element(axis.begin(), axis.end()),
                    axis_size,
297 298 299 300 301 302 303 304 305 306
                    paddle::platform::errors::InvalidArgument(
                        "Axis values must be ranging from 0 to (dims - 1)."));

  std::vector<int64_t> new_x(x.size());
  for (size_t i = 0; i < x.size(); i++) {
    new_x[i] = x[axis[i]];
  }
  return new_x;
}

307
std::vector<int64_t> GetInputStrides(const ExecutionContext &ctx,
308 309 310
                                     const std::string input_name) {
  auto shape = ctx.Attr<std::vector<int>>("fused_reshape_" + input_name);
  auto axis = ctx.Attr<std::vector<int>>("fused_transpose_" + input_name);
311
  auto input_dims = ctx.Input<phi::DenseTensor>(input_name)->dims();
312 313 314 315 316
  auto new_dims = input_dims;
  if (!shape.empty() && !axis.empty()) {
    new_dims = input_dims.reshape(shape).transpose(axis);
  }

317
  auto &MatrixDimsFromVector =
318
      input_name == "X" ? RowMatrixDimsFromVector : ColumnMatrixDimsFromVector;
319
  phi::funcs::MatDescriptor mat_dim = phi::funcs::CreateMatrixDescriptor(
320 321
      MatrixDimsFromVector(new_dims),
      0,
322 323 324 325
      ctx.HasAttr("trans_x")
          ? ctx.Attr<bool>(std::string("trans_") +
                           static_cast<char>(std::tolower(input_name[0])))
          : ctx.Attr<bool>(std::string("transpose_") + input_name[0]));
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344

  std::vector<int64_t> strides;
  if (!shape.empty()) {
    auto shape2 = input_dims.reshape(shape);
    strides.push_back(1);
    for (auto i = shape2.size() - 1; i > 0; --i) {
      strides.insert(strides.begin(),
                     strides.front() * static_cast<int64_t>(shape2[i]));
    }
    strides = Transpose(strides, axis);
    if (shape.size() == 2)
      strides.insert(strides.begin(),
                     static_cast<int64_t>(shape[0] * shape[1]));
    mat_dim.stride_ = strides[0];
    if (mat_dim.trans_) std::swap(*strides.rbegin(), *(++strides.rbegin()));
  }
  return strides;
}

345 346 347
bool IsOutputFused(const ExecutionContext &ctx) {
  auto &fused_reshape_Out = ctx.Attr<std::vector<int>>("fused_reshape_Out");
  auto &fused_transpose_Out = ctx.Attr<std::vector<int>>("fused_transpose_Out");
348 349 350
  return !fused_reshape_Out.empty() && !fused_transpose_Out.empty();
}

351
template <typename T, typename T_out>
352 353
void ExecuteMatMulV2(const ExecutionContext &ctx,
                     const MKLDNNDeviceContext &dev_ctx,
354
                     const dnnl::engine onednn_engine,
355
                     paddle::platform::Place cpu_place,
356 357
                     const Tensor *x,
                     const std::vector<int64_t> &x_dims,
358
                     bool trans_x,
359 360
                     const Tensor *y,
                     const std::vector<int64_t> &y_dims,
361
                     bool trans_y,
362 363
                     Tensor *out,
                     const std::vector<int64_t> &out_dims,
364
                     int execution_number = 0) {
365 366
  std::vector<int64_t> x_strides_override = GetInputStrides(ctx, "X");
  std::vector<int64_t> y_strides_override = GetInputStrides(ctx, "Y");
367 368 369 370 371 372 373 374 375 376
  MatMulV2MKLDNNHandler<T, T, T_out> handler(ctx,
                                             onednn_engine,
                                             ctx.GetPlace(),
                                             x_dims,
                                             trans_x,
                                             y_dims,
                                             trans_y,
                                             IsOutputFused(ctx),
                                             x_strides_override,
                                             y_strides_override);
377

378 379 380
  const auto src_memory_p = handler.AcquireSrcMemory(x);
  const auto weights_memory_p = handler.AcquireWeightsMemory(y);
  const auto dst_memory_p = handler.AcquireDstMemory(out);
381

382
  auto matmul_p = handler.AcquireForwardPrimitive();
383

384 385 386 387
  std::unordered_map<int, memory> matmul_args = {
      {DNNL_ARG_SRC, *src_memory_p},
      {DNNL_ARG_WEIGHTS, *weights_memory_p},
      {DNNL_ARG_DST, *dst_memory_p}};
388

389
  if (ctx.HasInput("ResidualData")) {
390
    auto *residual_data = ctx.Input<phi::DenseTensor>("ResidualData");
391 392 393 394 395
    const auto residual_data_memory_p = handler.AcquireSrcMemory(residual_data);
    matmul_args.insert({DNNL_ARG_ATTR_MULTIPLE_POST_OP(0) | DNNL_ARG_SRC_1,
                        *residual_data_memory_p});
  }

396
  auto &astream = MKLDNNDeviceContext::tls().get_stream();
397 398
  matmul_p->execute(astream, matmul_args);
  astream.wait();
399 400 401 402 403 404 405 406 407 408 409 410

  // TODO(jczaja): Explain why int8 format of dst is ABCD and do not need
  // permute
  if (IsOutputFused(ctx) && !IsInt8<T_out>()) {
    auto axis = ctx.Attr<std::vector<int>>("fused_transpose_Out");
    auto permuted_md = dst_memory_p->get_desc().permute_axes(axis);
    out->set_mem_desc(
        permuted_md.reshape(phi::vectorize<int64_t>(out->dims())));
  } else {
    out->set_mem_desc(
        dst_memory_p->get_desc().reshape(phi::vectorize<int64_t>(out->dims())));
  }
411 412 413 414 415
}

template <typename T>
class MatMulV2MKLDNNKernel : public paddle::framework::OpKernel<T> {
 public:
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
  void Compute(const ExecutionContext &ctx) const override {
    if (ctx.HasAttr("head_number")) {
      PADDLE_ENFORCE_EQ(
          ctx.Attr<int>("head_number"),
          1,
          paddle::platform::errors::Unimplemented(
              "oneDNN matmul doesn't support multiple heads. Expected "
              "head_number=1. But received `head_number` is %d",
              ctx.Attr<int>("head_number")));
    }
    constexpr bool is_int8 = IsInt8<T>();
    constexpr bool is_bfloat16 = IsBfloat16<T>();
    const bool force_fp32_output = ctx.HasAttr("force_fp32_output")
                                       ? ctx.Attr<bool>("force_fp32_output")
                                       : false;
    constexpr bool fuse_relu = false;  // TODO(intel): Enable eltwise fuses
    if (force_fp32_output || ((!is_int8) && (!is_bfloat16))) {
      RunKernel<float>(ctx);
    } else if (is_bfloat16) {
      RunKernel<paddle::platform::bfloat16>(ctx);
    } else if (fuse_relu) {
      RunKernel<uint8_t>(ctx);
    } else {
      RunKernel<int8_t>(ctx);
    }
  }
442

443
 private:
444 445 446 447 448 449 450
  void CalculateMatrixDims(const ExecutionContext &ctx,
                           const std::vector<int64_t> &x_dims,
                           const std::vector<int64_t> &y_dims,
                           std::vector<int64_t> *x_bd_dims,
                           std::vector<int64_t> *y_bd_dims,
                           std::vector<int64_t> *out_dims,
                           Tensor *out) const {
451
    if (x_dims.size() == 1) {
452
      (*x_bd_dims)[(*x_bd_dims).size() - 1] = x_dims[0];
453
    } else if (x_dims.size() == 2) {
454 455
      (*x_bd_dims)[(*x_bd_dims).size() - 1] = x_dims[1];
      (*x_bd_dims)[(*x_bd_dims).size() - 2] = x_dims[0];
456 457
    } else {
      for (size_t i = 0; i < x_dims.size(); ++i) {
458
        (*x_bd_dims)[(*x_bd_dims).size() - x_dims.size() + i] = x_dims[i];
459 460 461
      }
    }
    if (y_dims.size() == 1) {
462
      (*y_bd_dims)[(*x_bd_dims).size() - 2] = y_dims[0];
463
    } else if (y_dims.size() == 2) {
464 465
      (*y_bd_dims)[(*y_bd_dims).size() - 1] = y_dims[1];
      (*y_bd_dims)[(*y_bd_dims).size() - 2] = y_dims[0];
466 467
    } else {
      for (size_t i = 0; i < y_dims.size(); ++i) {
468
        (*y_bd_dims)[(*y_bd_dims).size() - y_dims.size() + i] = y_dims[i];
469 470 471
      }
    }

472
    if (!IsOutputFused(ctx) && x_dims.size() > 2 && y_dims.size() > 2) {
473
      for (size_t i = 0; i < (*x_bd_dims).size() - 2; ++i) {
474
        PADDLE_ENFORCE_EQ(
475 476
            (*x_bd_dims)[i] == (*y_bd_dims)[i] || (*x_bd_dims)[i] == 1 ||
                (*y_bd_dims)[i] == 1,
477 478 479 480 481
            true,
            paddle::platform::errors::InvalidArgument(
                "Tensor dimensions are incorrect for broadcasting."
                "Dimensions in X and Y must be same or equal to 1, but "
                "received x_dim[%d]=%d and y_dims[%d]= %d",
482 483 484 485 486
                i,
                (*x_bd_dims)[i],
                i,
                (*y_bd_dims)[i]));
        (*out_dims)[i] = std::max((*x_bd_dims)[i], (*y_bd_dims)[i]);
487
      }
488
      out->Resize(phi::make_ddim((*out_dims)));
489 490 491
    }
  }

492
  template <typename T_out>
493 494 495
  void RunKernel(const ExecutionContext &ctx) const {
    const auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const auto &onednn_engine = dev_ctx.GetEngine();
496

497 498 499
    auto *x = ctx.Input<phi::DenseTensor>("X");
    auto *y = ctx.Input<phi::DenseTensor>("Y");
    auto *out = ctx.Output<phi::DenseTensor>("Out");
500 501 502 503
    bool trans_x = ctx.HasAttr("trans_x") ? ctx.Attr<bool>("trans_x")
                                          : ctx.Attr<bool>("transpose_X");
    bool trans_y = ctx.HasAttr("trans_y") ? ctx.Attr<bool>("trans_y")
                                          : ctx.Attr<bool>("transpose_Y");
504

505 506
    auto x_dims = vectorize(GetDimForInput(ctx, "X"));
    auto y_dims = vectorize(GetDimForInput(ctx, "Y"));
507
    auto out_dims = vectorize(out->dims());
508

509
    int ndims = std::max(x_dims.size(), y_dims.size());
510 511 512 513 514
    ndims = std::max(ndims, 3);

    std::vector<int64_t> x_bd_dims(ndims, 1);
    std::vector<int64_t> y_bd_dims(ndims, 1);

515 516 517
    CalculateMatrixDims(
        ctx, x_dims, y_dims, &x_bd_dims, &y_bd_dims, &out_dims, out);

518 519 520 521 522 523 524 525 526 527 528 529
    ExecuteMatMulV2<T, T_out>(ctx,
                              dev_ctx,
                              onednn_engine,
                              ctx.GetPlace(),
                              x,
                              x_bd_dims,
                              trans_x,
                              y,
                              y_bd_dims,
                              trans_y,
                              out,
                              out_dims);
530 531
  }
};
532

533
template <typename T>
534
class MatMulV2GradMKLDNNKernel : public paddle::framework::OpKernel<T> {
535
 public:
536
  void Compute(const ExecutionContext &ctx) const override { RunKernel(ctx); }
537

538
 private:
539 540 541 542 543 544 545
  void CalculateGradMatrixDims(const ExecutionContext &ctx,
                               Tensor *dx_tmp,
                               Tensor *dy_tmp,
                               const std::vector<int64_t> &dx_dims,
                               const std::vector<int64_t> &dy_dims,
                               std::vector<int64_t> *dx_bd_dims,
                               std::vector<int64_t> *dy_bd_dims) const {
546 547 548
    for (size_t i = 0; i < dx_dims.size() - 2; ++i) {
      if (dx_dims[i] != dy_dims[i]) {
        if (dx_dims[i] == 1) {
549
          (*dx_bd_dims)[i] = dy_dims[i];
550
        } else {
551
          (*dy_bd_dims)[i] = dx_dims[i];
552 553 554
        }
      }
    }
555

556
    dx_tmp->Resize(phi::make_ddim((*dx_bd_dims)));
557
    dx_tmp->mutable_data<T>(ctx.GetPlace());
558
    dy_tmp->Resize(phi::make_ddim((*dy_bd_dims)));
559 560 561
    dy_tmp->mutable_data<T>(ctx.GetPlace());
  }

562
  void ReduceSumForMatmulGradOutput(
563 564
      const ExecutionContext &ctx,
      const MKLDNNDeviceContext &dev_ctx,
565
      const dnnl::engine onednn_engine,
566 567 568 569
      const Tensor *dx_tmp,
      Tensor *dx,
      const std::vector<int64_t> &dx_dims,
      const std::vector<int64_t> &squeezed_dims) const {
570
    paddle::platform::ReductionMKLDNNHandler<T> handler(
571 572 573 574 575 576 577 578
        dnnl::algorithm::reduction_sum,
        0.0f,
        0.0f,
        onednn_engine,
        ctx.GetPlace(),
        dx_tmp,
        dx,
        dx_dims);
579 580 581 582 583 584

    auto src_memory_p = handler.AcquireSrcMemory(dx_tmp);
    auto dst_memory_p = handler.AcquireDstMemory(dx);

    std::unordered_map<int, dnnl::memory> reduction_args = {
        {DNNL_ARG_SRC, *src_memory_p}, {DNNL_ARG_DST, *dst_memory_p}};
585

586
    auto &astream = MKLDNNDeviceContext::tls().get_stream();
587 588 589
    auto reduction_p = handler.AcquireForwardPrimitive();

    reduction_p->execute(astream, reduction_args);
590
    astream.wait();
591

592
    dx->set_mem_desc(dst_memory_p->get_desc().reshape(squeezed_dims));
593 594
  }

595
  std::vector<int64_t> ExtendDimsWithOnes(const std::vector<int64_t> &dims,
596 597 598 599 600 601 602
                                          int new_size) const {
    std::vector<int64_t> new_dims(new_size, 1);
    for (size_t i = 0; i < dims.size(); ++i) {
      new_dims[new_size - dims.size() + i] = dims[i];
    }

    return new_dims;
603
  }
604

605 606 607
  void RunKernel(const ExecutionContext &ctx) const {
    const auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const auto &onednn_engine = dev_ctx.GetEngine();
608

609 610
    auto *x = ctx.Input<phi::DenseTensor>("X");
    auto *y = ctx.Input<phi::DenseTensor>("Y");
611 612 613 614 615 616 617 618 619 620

    auto x_dims = vectorize(x->dims());
    auto y_dims = vectorize(y->dims());

    bool is_broadcast = true;
    if (x_dims.size() <= 2 || y_dims.size() <= 2) {
      is_broadcast = false;
    } else if (x_dims.size() != y_dims.size()) {
      is_broadcast = true;
    } else {
621 622 623
      is_broadcast = !std::equal(x_dims.cbegin(),
                                 x_dims.cbegin() + x_dims.size() - 2,
                                 y_dims.cbegin());
624 625 626 627 628
    }

    // if no broadcasting is needed, we can simply use matmul's grad and avoid
    // using reduce_sum
    if (!is_broadcast) {
629
      matmul_v1_grad_mkldnn_kernel.Compute(ctx);
630 631 632
      return;
    }

633 634 635
    auto *dout = ctx.Input<phi::DenseTensor>(GradVarName("Out"));
    auto *dx = ctx.Output<phi::DenseTensor>(GradVarName("X"));
    auto *dy = ctx.Output<phi::DenseTensor>(GradVarName("Y"));
636

637 638 639 640
    bool trans_x = ctx.HasAttr("trans_x") ? ctx.Attr<bool>("trans_x")
                                          : ctx.Attr<bool>("transpose_X");
    bool trans_y = ctx.HasAttr("trans_y") ? ctx.Attr<bool>("trans_y")
                                          : ctx.Attr<bool>("transpose_Y");
641 642
    auto dout_dims = vectorize(dout->dims());

643 644 645 646 647 648 649 650
    size_t ndims = std::max(x->dims().size(), y->dims().size());
    ndims = std::max<size_t>(ndims, 3);

    if (x_dims.size() != ndims) {
      x_dims = ExtendDimsWithOnes(x_dims, ndims);
    } else if (y_dims.size() != ndims) {
      y_dims = ExtendDimsWithOnes(y_dims, ndims);
    }
651 652 653 654 655 656 657 658

    // in broadcasting scenario new memory is required because
    // reduce sum must be calculated upon broadcasted dims
    Tensor dx_tmp, dy_tmp;

    std::vector<int64_t> dx_bd_dims(x_dims);
    std::vector<int64_t> dy_bd_dims(y_dims);

659 660
    CalculateGradMatrixDims(
        ctx, &dx_tmp, &dy_tmp, x_dims, y_dims, &dx_bd_dims, &dy_bd_dims);
661 662

    if (trans_x && trans_y) {
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
      ExecuteMatMulV2<T, T>(ctx,
                            dev_ctx,
                            onednn_engine,
                            ctx.GetPlace(),
                            y,
                            y_dims,
                            true,
                            dout,
                            dout_dims,
                            true,
                            &dx_tmp,
                            dx_bd_dims,
                            1);
      ExecuteMatMulV2<T, T>(ctx,
                            dev_ctx,
                            onednn_engine,
                            ctx.GetPlace(),
                            dout,
                            dout_dims,
                            true,
                            x,
                            x_dims,
                            true,
                            &dy_tmp,
                            dy_bd_dims,
                            2);
689
    } else if (trans_x) {
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
      ExecuteMatMulV2<T, T>(ctx,
                            dev_ctx,
                            onednn_engine,
                            ctx.GetPlace(),
                            y,
                            y_dims,
                            false,
                            dout,
                            dout_dims,
                            true,
                            &dx_tmp,
                            dx_bd_dims,
                            1);
      ExecuteMatMulV2<T, T>(ctx,
                            dev_ctx,
                            onednn_engine,
                            ctx.GetPlace(),
                            x,
                            x_dims,
                            false,
                            dout,
                            dout_dims,
                            false,
                            &dy_tmp,
                            dy_bd_dims,
                            2);
716
    } else if (trans_y) {
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
      ExecuteMatMulV2<T, T>(ctx,
                            dev_ctx,
                            onednn_engine,
                            ctx.GetPlace(),
                            dout,
                            dout_dims,
                            false,
                            y,
                            y_dims,
                            false,
                            &dx_tmp,
                            dx_bd_dims,
                            1);
      ExecuteMatMulV2<T, T>(ctx,
                            dev_ctx,
                            onednn_engine,
                            ctx.GetPlace(),
                            dout,
                            dout_dims,
                            true,
                            x,
                            x_dims,
                            false,
                            &dy_tmp,
                            dy_bd_dims,
                            2);
743
    } else {
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
      ExecuteMatMulV2<T, T>(ctx,
                            dev_ctx,
                            onednn_engine,
                            ctx.GetPlace(),
                            dout,
                            dout_dims,
                            false,
                            y,
                            y_dims,
                            true,
                            &dx_tmp,
                            dx_bd_dims,
                            1);
      ExecuteMatMulV2<T, T>(ctx,
                            dev_ctx,
                            onednn_engine,
                            ctx.GetPlace(),
                            x,
                            x_dims,
                            true,
                            dout,
                            dout_dims,
                            false,
                            &dy_tmp,
                            dy_bd_dims,
                            2);
770 771 772
    }

    if (x_dims != dx_bd_dims) {
773 774 775 776 777 778 779
      ReduceSumForMatmulGradOutput(ctx,
                                   dev_ctx,
                                   onednn_engine,
                                   &dx_tmp,
                                   dx,
                                   x_dims,
                                   phi::vectorize(x->dims()));
780 781 782 783
    } else {
      *dx = std::move(dx_tmp);
    }
    if (y_dims != dy_bd_dims) {
784 785 786 787 788 789 790
      ReduceSumForMatmulGradOutput(ctx,
                                   dev_ctx,
                                   onednn_engine,
                                   &dy_tmp,
                                   dy,
                                   y_dims,
                                   phi::vectorize(y->dims()));
791 792 793 794
    } else {
      *dy = std::move(dy_tmp);
    }

795 796
    dx->Resize(x->dims());
    dy->Resize(y->dims());
797
  }
798 799 800

 private:
  paddle::operators::MatMulGradMKLDNNKernel<T> matmul_v1_grad_mkldnn_kernel;
801
};
802
}  // anonymous namespace
803

804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
namespace paddle {
namespace operators {

template <typename T>
void MatMulGradMKLDNNKernel<T>::Compute(const ExecutionContext &ctx) const {
  if (ctx.HasAttr("head_number")) {
    PADDLE_ENFORCE_EQ(
        ctx.Attr<int>("head_number"),
        1,
        platform::errors::Unimplemented(
            "oneDNN matmul doesn't support multiple heads. Expected "
            "head_number=1. But received `head_number` is %d",
            ctx.Attr<int>("head_number")));
  }
  RunKernel(ctx);
}

template <typename T>
void MatMulGradMKLDNNKernel<T>::ExecuteMatMulGrad(
    const ExecutionContext &ctx,
    const MKLDNNDeviceContext &dev_ctx,
    const dnnl::engine &engine,
    Tensor *x,
    bool trans_x,
    bool is_fold_init_dims_x,
    Tensor *y,
    bool trans_y,
    bool is_fold_init_dims_y,
    Tensor *out) const {
  // gradient is calculated in a different way when broadcasting is used
  bool need_combine = (x->dims().size() == 3 || y->dims().size() == 3) &&
                      out->dims().size() == 2;

  Tensor x_combined, y_combined;
  if (!need_combine) {
    x_combined = *x;
    y_combined = *y;
  } else {
    x_combined = is_fold_init_dims_x ? FoldOuterDims(*x)
                                     : FoldFirstAndLastDims<T>(dev_ctx, x);
    y_combined = is_fold_init_dims_y ? FoldOuterDims(*y)
                                     : FoldFirstAndLastDims<T>(dev_ctx, y);
  }

  float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 1.0f;

  MatMulMKLDNNHandler<T, T, T> handler(engine,
                                       ctx.GetPlace(),
                                       &x_combined,
                                       trans_x,
                                       &y_combined,
                                       trans_y,
                                       out,
                                       alpha);

  const auto src_memory_p = handler.AcquireSrcMemory(&x_combined);
  const auto weights_memory_p = handler.AcquireWeightsMemory(&y_combined);
  const auto dst_memory_p = handler.AcquireDstMemory(out);

  auto matmul_p = handler.AcquireForwardPrimitive();

  std::unordered_map<int, dnnl::memory> matmul_args = {
      {DNNL_ARG_SRC, *src_memory_p},
      {DNNL_ARG_WEIGHTS, *weights_memory_p},
      {DNNL_ARG_DST, *dst_memory_p}};

  auto &astream = platform::MKLDNNDeviceContext::tls().get_stream();
  matmul_p->execute(astream, matmul_args);
  astream.wait();

874 875
  out->set_mem_desc(
      dst_memory_p->get_desc().reshape(vectorize<int64_t>(out->dims())));
876 877 878 879 880 881 882 883
}

template <typename T>
void MatMulGradMKLDNNKernel<T>::RunKernel(const ExecutionContext &ctx) const {
  const auto &dev_ctx =
      ctx.template device_context<platform::MKLDNNDeviceContext>();
  const auto &onednn_engine = dev_ctx.GetEngine();

884 885 886 887 888
  auto x = *ctx.Input<phi::DenseTensor>("X");
  auto y = *ctx.Input<phi::DenseTensor>("Y");
  auto dout = *ctx.Input<phi::DenseTensor>(framework::GradVarName("Out"));
  auto *dx = ctx.Output<phi::DenseTensor>(framework::GradVarName("X"));
  auto *dy = ctx.Output<phi::DenseTensor>(framework::GradVarName("Y"));
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937

  bool transpose_x = ctx.HasAttr("transpose_X") ? ctx.Attr<bool>("transpose_X")
                                                : ctx.Attr<bool>("trans_x");
  bool transpose_y = ctx.HasAttr("transpose_Y") ? ctx.Attr<bool>("transpose_Y")
                                                : ctx.Attr<bool>("trans_y");

  ReshapeXYOutToMatrixSequence(&x, &y, &dout, transpose_x, transpose_y);

  framework::DDim dx_dims;
  if (dx) {
    dx_dims = dx->dims();
    if (dx_dims != x.dims()) {
      dx->Resize(x.dims());
    }
  }

  framework::DDim dy_dims;
  if (dy) {
    dy_dims = dy->dims();
    if (dy_dims != y.dims()) {
      dy->Resize(y.dims());
    }
  }

  if (transpose_x && transpose_y) {
    this->ExecuteMatMulGrad(
        ctx, dev_ctx, onednn_engine, &y, true, true, &dout, true, false, dx);
    this->ExecuteMatMulGrad(
        ctx, dev_ctx, onednn_engine, &dout, true, true, &x, true, false, dy);
  } else if (transpose_x) {
    this->ExecuteMatMulGrad(
        ctx, dev_ctx, onednn_engine, &y, false, false, &dout, true, false, dx);
    this->ExecuteMatMulGrad(
        ctx, dev_ctx, onednn_engine, &x, false, false, &dout, false, true, dy);
  } else if (transpose_y) {
    this->ExecuteMatMulGrad(
        ctx, dev_ctx, onednn_engine, &dout, false, false, &y, false, true, dx);
    this->ExecuteMatMulGrad(
        ctx, dev_ctx, onednn_engine, &dout, true, true, &x, false, true, dy);
  } else {
    this->ExecuteMatMulGrad(
        ctx, dev_ctx, onednn_engine, &dout, false, false, &y, true, false, dx);
    this->ExecuteMatMulGrad(
        ctx, dev_ctx, onednn_engine, &x, true, true, &dout, false, true, dy);
  }

  if (dx) {
    if (dx_dims != x.dims()) {
      dx->Resize(dx_dims);
938
      dx->set_mem_desc(x.mem_desc());
939 940 941 942 943
    }
  }
  if (dy) {
    if (dy_dims != y.dims()) {
      dy->Resize(dy_dims);
944
      dy->set_mem_desc(y.mem_desc());
945 946 947 948 949 950 951 952 953 954 955 956
    }
  }
}

template class MatMulGradMKLDNNKernel<float>;
template class MatMulGradMKLDNNKernel<paddle::platform::bfloat16>;

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

957 958 959 960 961 962 963
REGISTER_OP_KERNEL(matmul,
                   MKLDNN,
                   ::paddle::platform::CPUPlace,
                   MatMulV2MKLDNNKernel<float>,
                   MatMulV2MKLDNNKernel<paddle::platform::bfloat16>,
                   MatMulV2MKLDNNKernel<int8_t>,
                   MatMulV2MKLDNNKernel<uint8_t>);
964 965 966 967 968 969 970

REGISTER_OP_KERNEL(matmul_grad,
                   MKLDNN,
                   ::paddle::platform::CPUPlace,
                   ops::MatMulGradMKLDNNKernel<float>,
                   ops::MatMulGradMKLDNNKernel<paddle::platform::bfloat16>);

971 972 973
REGISTER_OP_KERNEL(matmul_v2,
                   MKLDNN,
                   ::paddle::platform::CPUPlace,
974
                   MatMulV2MKLDNNKernel<float>,
975 976 977
                   MatMulV2MKLDNNKernel<paddle::platform::bfloat16>,
                   MatMulV2MKLDNNKernel<int8_t>,
                   MatMulV2MKLDNNKernel<uint8_t>);
978

979 980 981
REGISTER_OP_KERNEL(matmul_v2_grad,
                   MKLDNN,
                   ::paddle::platform::CPUPlace,
982 983
                   MatMulV2GradMKLDNNKernel<float>,
                   MatMulV2GradMKLDNNKernel<paddle::platform::bfloat16>);