io.py 61.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import pickle
import numpy as np

19
import paddle
20 21 22
from paddle.fluid import core
from paddle.fluid import framework
from paddle.fluid import backward
23
from paddle.fluid import unique_name
24 25
from paddle.fluid.dygraph import layers
from paddle.fluid.layers import nn
26
from paddle.fluid.layers.utils import _hash_with_id
27
from paddle.fluid.dygraph.base import switch_to_static_graph
28
from paddle.fluid.framework import _non_static_mode, OpProtoHolder
29 30 31 32 33 34 35 36
from paddle.fluid.executor import (
    _is_enable_standalone_executor,
    _is_dy2st_enable_standalone_executor,
)
from paddle.fluid.dygraph.dygraph_to_static.partial_program import (
    add_build_strategy_for,
    LazyInitialized,
)
37
from paddle import _C_ops, _legacy_C_ops
38 39 40

__all__ = ['TranslatedLayer']

41 42 43
INFER_MODEL_SUFFIX = ".pdmodel"
INFER_PARAMS_SUFFIX = ".pdiparams"
INFER_PARAMS_INFO_SUFFIX = ".pdiparams.info"
44
INFER_PROPERTY_SUFFIX = '.meta'
45

46 47 48
LOADED_VAR_SUFFIX = "load"
PARAMETER_NAME_PREFIX = "param"
BUFFER_NAME_PREFIX = "buffer"
49 50 51 52 53 54 55 56 57


def _load_program_desc(model_file_path):
    # 1. parse program desc
    with open(model_file_path, "rb") as f:
        program_desc_str = f.read()

    program_desc = core.ProgramDesc(program_desc_str)
    if not core._is_program_version_supported(program_desc._version()):
58 59 60
        raise ValueError(
            "Unsupported program version: %d\n" % program_desc._version()
        )
61 62 63 64 65

    return program_desc


def _is_persistable(var_desc):
66 67 68 69 70 71
    if (
        var_desc.type() == core.VarDesc.VarType.FEED_MINIBATCH
        or var_desc.type() == core.VarDesc.VarType.FETCH_LIST
        or var_desc.type() == core.VarDesc.VarType.READER
        or var_desc.type() == core.VarDesc.VarType.RAW
    ):
72 73 74 75 76 77 78
        return False
    return var_desc.persistable()


def _is_parameter(persistable_var_desc, program_desc):
    # 1. firstly, param should be input of op
    input_ops = []  # op can be repeated
79
    for block_idx in range(program_desc.num_blocks()):
80
        block = program_desc.block(block_idx)
81
        for op_idx in range(block.op_size()):
82 83 84 85 86
            op = block.op(op_idx)
            # NOTE: parameter is the input of a certain op
            if persistable_var_desc.name() in op.input_arg_names():
                input_ops.append(op)
    # 2. secondly, param should not be output of op or be same op's output
87
    for block_idx in range(program_desc.num_blocks()):
88
        block = program_desc.block(block_idx)
89
        for op_idx in range(block.op_size()):
90 91 92 93 94 95 96 97 98 99 100 101
            op = block.op(op_idx)
            if persistable_var_desc.name() in op.output_arg_names():
                # such as batch_norm_op
                if op in input_ops:
                    continue
                else:
                    return False
    return True


def _get_persistable_vars(program_desc):
    persistable_vars = []
102
    for i in range(program_desc.num_blocks()):
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
        block = program_desc.block(i)
        persistable_vars.extend(list(filter(_is_persistable, block.all_vars())))
    return persistable_vars


def _get_persistable_var_names(program_desc):
    """
    Get all persistable variable names in ProgramDesc.
    """
    var_names = []
    persistable_vars = _get_persistable_vars(program_desc)
    for var in persistable_vars:
        var_names.append(var.name())
    return var_names


def _get_all_var_names(program_desc):
    all_var_names = set()
121
    for i in range(program_desc.num_blocks()):
122 123 124 125 126 127
        block = program_desc.block(i)
        for var in block.all_vars():
            all_var_names.add(var.name())
    return all_var_names


128
@switch_to_static_graph
129 130 131
def _append_loaded_suffix(name):
    """
    Append loaded suffix to the given variable name
132
    e.g. x ==> x.load_0, x.load_0 ==> x.load_0.load_0
133
    """
134 135 136
    suffix = LOADED_VAR_SUFFIX
    new_name = unique_name.generate_with_ignorable_key('.'.join((name, suffix)))
    return new_name
137 138


139 140 141
@switch_to_static_graph
def _generate_unique_var_name(prefix):
    return unique_name.generate_with_ignorable_key(prefix)
142 143 144


def _append_loaded_suffix_to_var(program_desc):
145
    suffix_varname_dict = dict()
146 147 148 149
    persistable_vars = _get_persistable_vars(program_desc)
    for var_desc in persistable_vars:
        old_name = var_desc.name()
        new_name = _append_loaded_suffix(var_desc.name())
150
        suffix_varname_dict[new_name] = old_name
151
        var_desc.set_name(new_name)
152
        for block_idx in range(program_desc.num_blocks()):
153
            block = program_desc.block(block_idx)
154
            block._rename_var(old_name.encode(), new_name.encode())
155
            for op_idx in range(block.op_size()):
156 157 158
                op = block.op(op_idx)
                op._rename_input(old_name, new_name)
                op._rename_output(old_name, new_name)
159
    return suffix_varname_dict
160 161


162 163 164 165 166 167 168 169 170 171 172 173 174 175
@switch_to_static_graph
def _generate_unique_var_name_sync_with_main_program(prefix):
    return unique_name.generate(prefix)


def _get_loaded_var_new_old(program_desc, all_new_old_dict_all):
    new_old_dict = dict()
    persistable_vars = _get_persistable_vars(program_desc)
    for var_desc in persistable_vars:
        name_new = var_desc.name()
        new_old_dict[name_new] = all_new_old_dict_all[name_new]
    return new_old_dict


W
WeiXin 已提交
176
def _rename_var_program_desc(program_desc, include=None, exclude=None):
177
    """
178 179 180 181 182 183 184 185
    Change the name of the loaded variables.Use 'unique_name.generate' to avoid duplication.
    It is used when loading multiple program during inference.

    e.g. linear_0.tmp_3 ==> linear_0.tmp_1, x ==> x_0. For double grad, x@GRAD ==> x_0@GRAD
    If 'include' is not `None`,variables in include and the corresponding
      double grad variables (if exist) are renamed.
    If 'exclude' is not `None`,variables that are in exclude and the
      corresponding double grad variables (if exist) are not renamed.
W
WeiXin 已提交
186 187 188 189 190

    Args:
        program_desc(ProgramDesc):the variables in it will be modified.
        include(List):list of names of variables.
        exclude(List):list of names of variables.
191 192 193 194 195

    Returns:
        tuple of (dict_rename_var_new_old, dict_rename_var_old_new)
        dict_rename_var_new_old is a dict mapping from new name to old name
        dict_rename_var_old_new is a dict mapping from old name to new name
196 197 198 199
    """
    dict_rename_var_old_new = dict()
    dict_rename_var_new_old = dict()
    old_names = []
200
    # Store all old names
201
    for b_idx in range(program_desc.num_blocks()):
202 203 204
        cur_block = program_desc.block(b_idx)
        for var in cur_block.all_vars():
            old_names.append(var.name())
205 206 207 208

    # Create dict_rename_var_new_old and dict_rename_var_old_new for non double
    # grad variables
    has_double_grad = False
209
    for b_idx in range(program_desc.num_blocks()):
210 211 212
        cur_block = program_desc.block(b_idx)
        for var_idx, var in enumerate(cur_block.all_vars()):
            name_old = var.name()
213 214
            is_double_grad_var = "@GRAD" in name_old
            has_double_grad = has_double_grad or is_double_grad_var
215 216 217 218 219
            should_rename = (
                (include is None or name_old in include)
                and (exclude is None or name_old not in exclude)
                and not is_double_grad_var
            )
W
WeiXin 已提交
220
            if should_rename:
221 222 223 224
                temp_name = name_old.split('_')
                if len(temp_name) > 1 and temp_name[-1].isnumeric():
                    temp_name = "_".join(temp_name[:-1])
                else:
W
WeiXin 已提交
225 226 227
                    temp_name = name_old
                while True:
                    name_new = _generate_unique_var_name_sync_with_main_program(
228 229 230 231 232 233
                        temp_name
                    )
                    if (
                        name_new
                        not in old_names[:var_idx] + old_names[var_idx + 1 :]
                    ):
W
WeiXin 已提交
234 235 236
                        break
            else:
                name_new = name_old
237
            if name_old != name_new:
238
                cur_block._rename_var(name_old.encode(), name_new.encode())
239 240 241 242 243 244 245 246
            if not is_double_grad_var:
                dict_rename_var_old_new[name_old] = name_new
                dict_rename_var_new_old[name_new] = name_old

    # Handle double grad names
    if has_double_grad:
        double_grad_rename_dict = {}
        for name_old in dict_rename_var_old_new:
247
            for b_idx in range(program_desc.num_blocks()):
248 249 250 251 252
                cur_block = program_desc.block(b_idx)
                for var_idx, var in enumerate(cur_block.all_vars()):
                    var_name = var.name()
                    if "@GRAD" in var_name and name_old in var_name:
                        new_var_name = var_name.replace(
253 254
                            name_old, dict_rename_var_old_new[name_old]
                        )
255 256 257
                        double_grad_rename_dict[var_name] = new_var_name
        for var_name in double_grad_rename_dict:
            dict_rename_var_old_new[var_name] = double_grad_rename_dict[
258 259
                var_name
            ]
260
            dict_rename_var_new_old[
261 262
                double_grad_rename_dict[var_name]
            ] = var_name
263 264

    # Rename on program desc
265
    for b_idx in range(program_desc.num_blocks()):
266
        cur_block = program_desc.block(b_idx)
267
        for op_idx in range(cur_block.op_size()):
268 269 270
            op = cur_block.op(op_idx)
            for input_arg_name in op.input_arg_names():
                if input_arg_name in dict_rename_var_old_new:
271 272 273 274
                    if (
                        input_arg_name
                        != dict_rename_var_old_new[input_arg_name]
                    ):
275 276
                        op._rename_input(
                            input_arg_name,
277 278
                            dict_rename_var_old_new[input_arg_name],
                        )
279
                        if cur_block.has_var(input_arg_name.encode()):
280
                            cur_block._rename_var(
281
                                input_arg_name.encode(),
282 283 284 285
                                dict_rename_var_old_new[
                                    input_arg_name
                                ].encode(),
                            )
286 287
            for output_arg_name in op.output_arg_names():
                if output_arg_name in dict_rename_var_old_new:
288 289 290 291
                    if (
                        output_arg_name
                        != dict_rename_var_old_new[output_arg_name]
                    ):
292 293
                        op._rename_output(
                            output_arg_name,
294 295
                            dict_rename_var_old_new[output_arg_name],
                        )
296
                        if cur_block.has_var(output_arg_name.encode()):
297
                            cur_block._rename_var(
298
                                output_arg_name.encode(),
299 300 301 302
                                dict_rename_var_old_new[
                                    output_arg_name
                                ].encode(),
                            )
303 304 305 306
    program_desc.flush()
    return dict_rename_var_new_old, dict_rename_var_old_new


307 308 309 310 311
@switch_to_static_graph
def _build_program_by_desc(program_desc):
    prog = framework.Program()
    prog.desc = program_desc
    prog.blocks = [
312
        framework.Block(prog, i) for i in range(prog.desc.num_blocks())
313 314 315 316 317 318 319
    ]
    prog._sync_with_cpp()
    return prog


def _change_is_test_status(program_desc, is_test):
    # change all `is_test` attributes
320
    for i in range(program_desc.num_blocks()):
321
        block = program_desc.block(i)
322
        for j in range(block.op_size()):
323 324 325 326 327
            op = block.op(j)
            if op.has_attr('is_test'):
                op._set_attr('is_test', is_test)


328
class _ProgramHolder:
329 330 331
    """
    Holds the execution information of a Program.

332 333
    _ProgramHolder is the execution unit of TranslatedLayer,
    if TranslatedLayer contains multiple _ProgramHolder,
334 335 336 337 338 339
    it can execute multiple methods

    _ProgramHolder is an internal concept.
    """

    def __init__(self, program_desc):
340
        super().__init__()
341

342
        # input, output, persistable, double_grads var info
343
        self._input_descs = []
344
        self._output_descs = []
345
        self._double_grad_descs = []
346
        self._persistable_names = []
347 348 349 350

        # execution scope
        self._inner_scope = core.Scope()

351 352
        # append suffix var name dict
        self._suffix_varname_dict = None
353 354 355 356
        # forward program
        self._infer_program_desc = self._preprocess(program_desc)
        # forward + backward program
        self._train_program_desc = self._append_backward_desc(
357 358
            self._infer_program_desc
        )
359

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
    # forward:
    @switch_to_static_graph
    def _create_forward_train_program(self):
        whole_program = _build_program_by_desc(self._train_program_desc)
        end_op_index = self._infer_program_desc.block(0).op_size()
        if end_op_index > 0:
            return add_build_strategy_for(whole_program, 0, end_op_index)
        else:
            return whole_program

    @LazyInitialized
    def _forward_program_desc(self):
        return self._create_forward_train_program().desc

    # backward
    @switch_to_static_graph
    def _create_backward_train_program(self):
        whole_program = _build_program_by_desc(self._train_program_desc)
        start_op_index = self._infer_program_desc.block(0).op_size() + 2 * len(
379 380
            self._output_descs
        )
381
        end_op_index = whole_program.desc.block(0).op_size()
382 383 384 385
        if start_op_index < end_op_index:
            return add_build_strategy_for(
                whole_program, start_op_index, end_op_index
            )
386 387 388 389 390 391 392
        else:
            return paddle.static.Program()

    @LazyInitialized
    def _backward_program_desc(self):
        return self._create_backward_train_program().desc

393 394 395 396 397 398 399 400
    @property
    def infer_program(self):
        return self._infer_program_desc

    @property
    def train_program(self):
        return self._train_program_desc

401 402 403 404 405 406 407 408
    @property
    def forward_program(self):
        return self._forward_program_desc

    @property
    def backward_program(self):
        return self._backward_program_desc

409
    @property
410 411
    def input_descs(self):
        return self._input_descs
412 413

    @property
414
    def output_descs(self):
415 416 417 418 419 420
        return self._output_descs

    @property
    def persistable_names(self):
        return self._persistable_names

421 422 423 424
    @property
    def double_grad_descs(self):
        return self._double_grad_descs

425 426 427 428 429
    @property
    def scope(self):
        return self._inner_scope

    def _preprocess(self, program_desc):
W
WeiXin 已提交
430 431
        # rename persistable variables of 'program_desc'
        list_persistable_var = _get_persistable_var_names(program_desc)
432
        rename_new_old_dict, _ = _rename_var_program_desc(
433 434
            program_desc, list_persistable_var
        )
435 436 437 438
        # 1. Prune original program
        # remove feed, fetch and scale-1 op, remove op_callstack attr
        ops_to_remove = []
        root_block = program_desc.block(0)
439
        for i in range(root_block.op_size()):
440 441 442
            op = root_block.op(i)
            if op.type() == 'feed':
                ops_to_remove.append(i)
443
                feed_var_name = op.input('X')[0].encode()
444
                root_block._remove_var(feed_var_name)
445
                self._input_descs.append(
446 447
                    root_block.find_var(op.output('Out')[0].encode())
                )
448
            elif op.type() == 'scale' and op.output('Out')[0].startswith(
449 450
                'save_infer_model/scale_'
            ):
451
                ops_to_remove.append(i)
452
                out_var_name = op.output('Out')[0].encode()
453 454
                root_block._remove_var(out_var_name)
                self._output_descs.append(
455 456
                    root_block.find_var(op.input('X')[0].encode())
                )
457 458
            elif op.type() == 'fetch':
                ops_to_remove.append(i)
459
                fetch_var_name = op.output('Out')[0].encode()
460 461 462 463
                root_block._remove_var(fetch_var_name)
                # NOTE: some old pre-train models have no extra scale_op
                if not op.input('X')[0].startswith('save_infer_model/scale_'):
                    self._output_descs.append(
464 465
                        root_block.find_var(op.input('X')[0].encode())
                    )
466 467 468 469 470 471 472
            else:
                if op.has_attr("op_callstack"):
                    op.remove_attr("op_callstack")

        for op_idx in reversed(ops_to_remove):
            root_block._remove_op(op_idx, op_idx + 1)

473 474 475 476 477 478
        for i in range(program_desc.num_blocks()):
            block_desc = program_desc.block(i)
            for var_desc in block_desc.all_vars():
                if "@GRAD" in var_desc.name():
                    self._double_grad_descs.append(var_desc)

479
        # 2. Input processing, reverse feed vars
480
        self._input_descs.reverse()
481 482 483 484

        # 3. Output processing, add scale for outputs
        tmp_program = _build_program_by_desc(program_desc)
        # NOTE: [why need append scale for outputs]
485 486 487 488 489
        # When dealing with some more complex pre-training models, there
        # will be situations where the pre-training model has multiple
        # fetch outputs. In the scenario of multiple fetch outputs,
        # there is a special case where multiple outputs of the model
        # may be on the same branch. According to the user's subsequent
490
        # use, multiple outputs may be associated with multiple branches.
491 492 493 494
        # These subsequent operations are added in TranslatedLayer is
        # agnostic during initialization, which results in subsequent
        # gradient accumulation operations that are required on the
        # output node in the middle of the branch will not be performed,
495 496 497 498 499
        # resulting in error, details see pull request:
        # [https://github.com/PaddlePaddle/Paddle/pull/24627]
        self._append_scale_to_output(tmp_program)

        # 4. Persistable vars processing
500
        # - append loaded suffix to persistable vars
501
        # NOTE: [why need to append suffix to persistable vars]
502 503 504 505 506 507
        # Dygraph and static graph mode use the same naming mechanism.
        # If users want to load the model fine-tune, it is possible
        # to add the existing Layer in the loaded model to enhance
        # the network. For example, the original saved model has linear,
        # and later after loading, a new linear is added. At this time,
        # there will be a problem of duplicate names, so here is unified
508
        # to add the LOADED suffix to the parameters of the model loaded
509
        self._suffix_varname_dict = _get_loaded_var_new_old(
510 511
            program_desc, rename_new_old_dict
        )
512

513 514 515 516 517 518 519 520 521 522 523 524
        # - get persistable var
        self._persistable_names = _get_persistable_var_names(program_desc)

        return program_desc

    @switch_to_static_graph
    def _append_scale_to_output(self, program):
        # 1. append scale & save var
        scale_output_vars = []
        with framework.program_guard(program):
            for i, out in enumerate(self._output_descs):
                var = program.global_block().var(out.name())
525 526 527
                var = nn.scale(
                    var, 1.0, name="translated_layer/scale_{}".format(i)
                )
528 529 530 531 532 533
                scale_output_vars.append(var)
        # 2. update output names & descs
        for i, var in enumerate(scale_output_vars):
            self._output_descs[i] = var.desc

    @switch_to_static_graph
534
    def _get_train_forward_program(self, infer_program_desc):
535 536 537 538 539 540 541 542
        program_desc_copy = core.ProgramDesc(infer_program_desc)

        # 1. set all `is_test` attributes to False
        _change_is_test_status(program_desc_copy, False)

        # 2. prepare program and related var
        # NOTE: To reuse backward interfaces, build Program firstly.
        # Originally, there is no need to build a program, but need to almost
543
        # rewrite a series of methods for append_backward for program_desc.
544 545
        # Therefore, in order to reuse the method of backward.py, build the program here.
        program = _build_program_by_desc(program_desc_copy)
546 547
        # 3. Add the outputs which is only used for training and not saved in
        # inference program.
548
        for block_idx in range(program.num_blocks):
549 550 551
            block = program.block(block_idx)
            for op in block.ops:
                if op.type == "batch_norm":
552 553 554 555
                    if (
                        "ReserveSpace" not in op.output_names
                        or len(op.output("ReserveSpace")) == 0
                    ):
556 557
                        reserve_space = block.create_var(
                            name=unique_name.generate_with_ignorable_key(
558 559
                                ".".join(["reserve_space", 'tmp'])
                            ),
560 561 562
                            dtype=block.var(op.input("X")[0]).dtype,
                            type=core.VarDesc.VarType.LOD_TENSOR,
                            persistable=False,
563 564
                            stop_gradient=True,
                        )
565
                        op.desc.set_output("ReserveSpace", [reserve_space.name])
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
                    continue

                proto = OpProtoHolder.instance().get_op_proto(op.type)
                has_create_intermediate_out = False
                for output_proto in proto.outputs:
                    if output_proto.intermediate:
                        intermediate_name = output_proto.name
                        if intermediate_name not in op.output_names:
                            has_create_intermediate_out = True
                            intermediate_var = block.create_var(
                                name=unique_name.generate_with_ignorable_key(
                                    ".".join(
                                        [
                                            op.type + '_' + intermediate_name,
                                            'tmp',
                                        ]
                                    )
                                ),
                                type=core.VarDesc.VarType.LOD_TENSOR,
                                persistable=False,
                                stop_gradient=True,
                            )
                            op.desc.set_output(
                                intermediate_name, [intermediate_var.name]
                            )
                if has_create_intermediate_out:
                    op.desc.infer_var_type(block.desc)
                    op.desc.infer_shape(block.desc)

595 596 597 598 599
        return program

    @switch_to_static_graph
    def _append_backward_desc(self, infer_program_desc):
        program = self._get_train_forward_program(infer_program_desc)
600

601 602 603 604 605 606 607 608 609 610
        targets = []
        for out in self._output_descs:
            targets.append(program.global_block().var(out.name()))

        # 3. append backward
        backward.gradients(targets=targets, inputs=[])
        return program.desc


# [ TranslatedLayer : Run program in imperative mode ]
611
#
612 613 614 615 616 617 618
# DESIGN IDEA: using an special operator `RunProgram`, execute program inside operator.
#
# Op's Inputs:
#   - the input variable of the user feed
#   - the necessary parameters of the network
# Op's Outputs:
#   - the output variable of fetch
619
#
620 621 622
# This op receives a complete program desc, internally creates scope
# and executor, executes this program. Key points:
#
623
# 1. Data Sharing:
624 625 626 627
#   The varBase of the dynamic graph is not in the scope, so before the op
#   executes the program internally, create persistent variables with the
#   same name as feed, parameters, and fetch in the scope, and share the
#   LoDTensor of the op input.
628
#
629 630 631 632
# 2. Forward and Backward Separation:
#   Because the dynamic graph op performs the forward and backward separately,
#   in the forward op RunProgram, we only execute the forward part of whole program,
#   and in the backward op RunProgramGrad, we execute the backward part of program.
633
#   We can not separate the program into forward and backward part, which will
634 635 636 637 638
#   make some control flow execution logic wrong.


# NOTE: [compatible] deal with model saved by save_inference_model,
# which need get var info from program desc
639 640 641
def _load_persistable_vars_by_program(
    model_path, program_holder, params_filename=None
):
642 643 644 645
    # make sure the path has been checked
    persistable_vars = _get_persistable_vars(program_holder.infer_program)
    load_var_dict = {}
    for each_var in persistable_vars:
646
        orig_each_name = program_holder._suffix_varname_dict[each_var.name()]
647 648
        if _is_parameter(each_var, program_holder.infer_program):
            # create output varbase
J
Jiabin Yang 已提交
649
            if framework._in_eager_without_dygraph_check():
650 651 652 653 654 655 656
                new_var = framework.EagerParamBase(
                    shape=each_var.shape(),
                    dtype=each_var.dtype(),
                    name=each_var.name(),
                    type=each_var.type(),
                    persistable=True,
                )
657
            else:
658 659 660 661 662 663 664
                new_var = framework.ParamBase(
                    shape=each_var.shape(),
                    dtype=each_var.dtype(),
                    name=each_var.name(),
                    type=each_var.type(),
                    persistable=True,
                )
665
        else:
666 667 668 669 670 671 672
            new_var = framework._varbase_creator(
                type=each_var.type(),
                name=each_var.name(),
                shape=each_var.shape(),
                dtype=each_var.dtype(),
                persistable=True,
            )
673 674 675 676 677
        if params_filename is None:
            framework._dygraph_tracer().trace_op(
                type='load',
                inputs={},
                outputs={'Out': new_var},
678 679
                attrs={'file_path': os.path.join(model_path, orig_each_name)},
            )
680 681 682 683 684
        new_var.stop_gradient = False
        load_var_dict[each_var.name()] = new_var

    if params_filename is not None:
        load_var_list = []
685
        dict_name_old_new = {
686
            v: k for k, v in program_holder._suffix_varname_dict.items()
687 688 689
        }
        for name in sorted(dict_name_old_new.keys()):
            load_var_list.append(load_var_dict[dict_name_old_new[name]])
690 691 692 693 694

        framework._dygraph_tracer().trace_op(
            type='load_combine',
            inputs={},
            outputs={'Out': load_var_list},
695 696
            attrs={'file_path': os.path.join(model_path, params_filename)},
        )
697 698 699 700 701 702 703 704

        for each_var in persistable_vars:
            if not _is_parameter(each_var, program_holder.infer_program):
                continue
            param = load_var_dict[each_var.name()]
            param.stop_gradient = False

    # NOTE: [Recovery stop gradient information based on the program]
705
    # After loading the model, the stop_gradient information
706 707 708 709 710 711 712 713 714 715 716 717
    # of the original variable is lost, but if a parameter does not
    # have a corresponding @GRAD variable in the backward program,
    # it can be said that it is also stop_gradient
    all_var_names = _get_all_var_names(program_holder.train_program)
    for var_name in load_var_dict:
        grad_var_name = var_name + core.grad_var_suffix()
        if grad_var_name not in all_var_names:
            load_var_dict[var_name].stop_gradient = True

    return load_var_dict


718 719 720
def _load_persistable_vars(
    model_path, var_info_path, program_holder, params_filename
):
721 722
    # 1. load extra var info
    with open(var_info_path, 'rb') as f:
723
        extra_var_info = pickle.load(f)
724 725 726 727

    # 2. construct var dict
    load_var_dict = dict()
    load_var_list = []
728
    inv_suffix_varname_dict = {
729
        value: key for key, value in program_holder._suffix_varname_dict.items()
730
    }
731 732 733

    # NOTE(chenweihang): we need load persistable vars based the program,
    # because the program may be pruned when `save_inference_model`, some
734
    # var in `extra_var_info` may have been pruned
735 736 737 738 739
    for name in sorted(inv_suffix_varname_dict):
        if name not in extra_var_info:
            raise RuntimeError(
                "The model to be loaded is not complete."
                "The variable `%s` of program cannot be found in loaded model.",
740 741
                name,
            )
742 743
        # get suffix var name, see [why need to append suffix to persistable vars]
        new_name = inv_suffix_varname_dict[name]
744 745 746
        # create output varbase
        if extra_var_info[name].get('trainable', None) is not None:
            # use default shape and dtype
J
Jiabin Yang 已提交
747
            if framework._in_eager_without_dygraph_check():
748 749 750 751 752 753
                new_var = framework.EagerParamBase(
                    shape=[
                        1
                    ],  # only to pass check, this shape is not meaningful
                    dtype=core.VarDesc.VarType.FP32,
                    name=new_name,
754 755
                    persistable=True,
                )
756 757 758 759 760 761 762
            else:
                new_var = framework.ParamBase(
                    shape=[
                        1
                    ],  # only to pass check, this shape is not meaningful
                    dtype=core.VarDesc.VarType.FP32,
                    name=new_name,
763 764
                    persistable=True,
                )
765
        else:
766 767 768
            new_var = framework._varbase_creator(
                name=new_name, persistable=True
            )
769 770 771 772 773 774

        new_var.stop_gradient = extra_var_info[name]['stop_gradient']
        load_var_dict[new_name] = new_var
        load_var_list.append(new_var)

    # 3. load all vars
775 776 777 778 779 780
    assert params_filename is not None, "params_filename should not be None."
    var_file_path = os.path.join(model_path, params_filename)
    if not os.path.exists(var_file_path):
        if len(extra_var_info) != 0:
            raise ValueError("The model to be loaded is incomplete.")
    else:
781 782 783 784 785 786
        framework._dygraph_tracer().trace_op(
            type='load_combine',
            inputs={},
            outputs={'Out': load_var_list},
            attrs={'file_path': var_file_path},
        )
787 788 789 790

    return load_var_dict


791 792 793 794 795 796 797 798 799
# NOTE(chenweihang): to adapt paddle.load to get state_dict
def _remove_varname_suffix(var_dict, program_holder):
    no_suffix_var_dict = dict()
    for var_name in var_dict:
        no_suffix_name = program_holder._suffix_varname_dict[var_name]
        no_suffix_var_dict[no_suffix_name] = var_dict[var_name]
    return no_suffix_var_dict


800 801 802 803 804 805 806 807
def _construct_program_holders(model_path, model_filename=None):
    # make sure the path has been checked
    program_holder_dict = dict()

    if model_filename is not None:
        # [compatible] if assign model_filename, only can load one program as Layer.forward
        model_filename = os.path.basename(model_filename)
        model_file_path = os.path.join(model_path, model_filename)
808 809
        model_name = model_filename[: -len(INFER_MODEL_SUFFIX)]
        # Load every file that meets the requirements in the directory model_path.
810 811 812 813 814
        for filename in os.listdir(model_path):
            if model_filename == filename:
                func_name = 'forward'
                model_file_path = os.path.join(model_path, model_filename)
            elif filename.endswith(INFER_MODEL_SUFFIX) and filename.startswith(
815 816 817 818 819
                model_name
            ):
                parsing_names = filename[
                    len(model_name) : -len(INFER_MODEL_SUFFIX) + 1
                ].split('.')
820 821 822 823 824
                if len(parsing_names) == 3 and len(parsing_names[1]) > 0:
                    func_name = parsing_names[1]
                    model_file_path = os.path.join(model_path, filename)
                else:
                    continue
825 826 827
            else:
                continue
            program_holder_dict[func_name] = _ProgramHolder(
828 829
                _load_program_desc(model_file_path)
            )
830 831 832 833 834 835 836 837 838 839 840
    else:
        for _, _, file_names in os.walk(model_path):
            for name in file_names:
                if 'model' in name:
                    model_file_path = os.path.join(model_path, name)
                    method_name = name.strip('_')
                    if method_name == 'model':
                        method_name = 'forward'
                    else:
                        method_name.replace('model', '')
                    program_holder_dict[method_name] = _ProgramHolder(
841 842
                        _load_program_desc(model_file_path)
                    )
843 844 845 846

    return program_holder_dict


847 848 849
def _construct_params_and_buffers(
    model_path, programs, params_filename=None, append_suffix=True
):
850 851
    var_info_filename = str(params_filename) + ".info"
    var_info_path = os.path.join(model_path, var_info_filename)
852
    params_path = os.path.join(model_path, str(params_filename))
853

854
    if os.path.exists(var_info_path):
855 856 857 858 859
        var_dict = _load_persistable_vars(
            model_path, var_info_path, programs['forward'], params_filename
        )
        model_name = params_filename[: -len(INFER_PARAMS_SUFFIX)]
        # Load every file that meets the requirements in the directory model_path.
860
        for file_name in os.listdir(model_path):
861
            if file_name.startswith(model_name) and file_name.endswith(
862 863 864 865 866
                INFER_PARAMS_SUFFIX
            ):
                parsing_names = file_name[
                    len(model_name) : -len(INFER_PARAMS_SUFFIX) + 1
                ].split('.')
867 868 869 870
                if len(parsing_names) == 3 and len(parsing_names[1]) > 0:
                    func_name = parsing_names[1]
                else:
                    continue
871 872 873 874
            else:
                continue
            var_info_path = os.path.join(model_path, var_info_filename)
            var_dict.update(
875 876 877 878
                _load_persistable_vars(
                    model_path, var_info_path, programs[func_name], file_name
                )
            )
879 880 881
    elif params_filename is not None and not os.path.exists(params_path):
        # When saving XX, there is only '*.pdmodel'
        return dict()
882
    else:
883 884 885
        var_dict = _load_persistable_vars_by_program(
            model_path, programs['forward'], params_filename
        )
886 887 888 889

    if not append_suffix:
        var_dict = _remove_varname_suffix(var_dict, programs['forward'])

890 891 892
    return var_dict


0
0x45f 已提交
893 894 895
def _valid_vars(vars):
    if vars:
        return vars
J
Jiabin Yang 已提交
896
    if framework._in_eager_without_dygraph_check():
0
0x45f 已提交
897
        return [
898 899 900 901 902 903 904
            core.eager.Tensor(
                core.VarDesc.VarType.FP32,
                [],
                "Fake_var",
                core.VarDesc.VarType.RAW,
                False,
            )
0
0x45f 已提交
905 906 907
        ]
    else:
        return [
908 909 910 911 912 913 914
            core.VarBase(
                core.VarDesc.VarType.FP32,
                [],
                "Fake_var",
                core.VarDesc.VarType.RAW,
                False,
            )
0
0x45f 已提交
915 916 917
        ]


W
WeiXin 已提交
918 919 920 921 922
def _run_dygraph(instance, input, program_holder):

    # 1. prepare inputs, outputs, attrs
    input_vars = []
    for i, value in enumerate(input):
923
        if not isinstance(value, (np.ndarray, core.VarBase, core.eager.Tensor)):
W
WeiXin 已提交
924 925
            raise TypeError(
                "The type of input in TranslatedLayer must be numpy array or Variable(VarBase), but received %s."
926 927
                % type(value)
            )
W
WeiXin 已提交
928 929
        # NOTE: In order to unify the API, firstly convert the input to VarBase
        if isinstance(value, np.ndarray):
J
Jiabin Yang 已提交
930
            if framework._in_eager_without_dygraph_check():
931 932 933 934 935
                var = core.eager.Tensor(
                    value=value,
                    name=program_holder.input_descs[i].name(),
                    persistable=False,
                    place=framework._current_expected_place(),
936 937
                    zero_copy=True,
                )
938
            else:
939 940 941 942 943 944 945
                var = core.VarBase(
                    value=value,
                    name=program_holder.input_descs[i].name(),
                    persistable=False,
                    place=framework._current_expected_place(),
                    zero_copy=True,
                )
W
WeiXin 已提交
946 947
        else:
            var = value
948
            # NOTE: we changed var name here,
W
WeiXin 已提交
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
            # but it may be an important name set by user
            var.name = program_holder.input_descs[i].name()
        input_vars.append(var)
    if instance._input_args_names is None:
        instance._input_args_names = [
            ins.name() for ins in program_holder.input_descs
        ]

    persistable_vars = []
    for var_name in program_holder.persistable_names:
        dy_var_name = instance._persistable_var_name_dict[var_name]
        if dy_var_name in instance._parameters:
            persistable_vars.append(instance._parameters[dy_var_name])
        elif dy_var_name in instance._buffers:
            persistable_vars.append(instance._buffers[dy_var_name])
        else:
            raise ValueError(
                "The persistable variable %s does not exist in current TranslatedLayer."
967 968
                % var_name
            )
W
WeiXin 已提交
969 970 971

    output_vars = []
    for var_desc in program_holder.output_descs:
J
Jiabin Yang 已提交
972
        if framework._in_eager_without_dygraph_check():
973 974 975 976 977 978 979
            var = core.eager.Tensor(
                dtype=var_desc.dtype(),
                dims=var_desc.shape(),
                name=var_desc.name(),
                type=var_desc.type(),
                persistable=False,
            )
980
        else:
981 982 983 984 985 986 987
            var = core.VarBase(
                var_desc.dtype(),
                var_desc.shape(),
                var_desc.name(),
                var_desc.type(),
                False,
            )
W
WeiXin 已提交
988 989 990
        output_vars.append(var)

    # hold forward variables
J
Jiabin Yang 已提交
991
    if framework._in_eager_without_dygraph_check():
0
0x45f 已提交
992
        tmp_scope_vec = [program_holder.scope]
993
    else:
994 995 996 997 998 999 1000
        tmp_scope_vec = core.VarBase(
            core.VarDesc.VarType.FP32,
            [],
            "program_out_scope",
            core.VarDesc.VarType.STEP_SCOPES,
            True,
        )
0
0x45f 已提交
1001
        tmp_scope_vec.value().set_scope(program_holder.scope)
W
WeiXin 已提交
1002

1003 1004
    double_grad_vars = []
    for var_desc in program_holder.double_grad_descs:
J
Jiabin Yang 已提交
1005
        if framework._in_eager_without_dygraph_check():
1006 1007 1008 1009 1010 1011 1012
            var = core.eager.Tensor(
                dtype=var_desc.dtype(),
                dims=var_desc.shape(),
                name=var_desc.name(),
                type=var_desc.type(),
                persistable=False,
            )
1013
        else:
1014 1015 1016 1017 1018 1019 1020
            var = core.VarBase(
                var_desc.dtype(),
                var_desc.shape(),
                var_desc.name(),
                var_desc.type(),
                False,
            )
1021 1022
        double_grad_vars.append(var)

W
WeiXin 已提交
1023
    # 2. run program by op
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
    trace_program = (
        program_holder.infer_program
        if instance._is_test
        else program_holder.train_program
    )
    forward_program = (
        program_holder._infer_program_desc
        if instance._is_test
        else program_holder.forward_program
    )
W
WeiXin 已提交
1034
    end_op_index = program_holder.infer_program.block(0).op_size()
1035 1036 1037

    attrs = [
        'global_block',
1038 1039 1040 1041 1042 1043 1044 1045 1046
        trace_program.block(0),
        'start_op_index',
        0,
        'end_op_index',
        end_op_index,
        'is_test',
        instance._is_test,
        'program_id',
        _hash_with_id(trace_program, instance),
1047 1048
    ]

1049 1050 1051 1052
    use_interpretorcore = (
        _is_enable_standalone_executor()
        and _is_dy2st_enable_standalone_executor()
    )
1053 1054 1055
    attrs.extend(('use_interpretorcore', use_interpretorcore))
    if use_interpretorcore:
        attrs.extend(
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
            (
                'forward_global_block',
                forward_program.block(0),
                'backward_global_block',
                program_holder.backward_program.block(0),
            )
        )

    _legacy_C_ops.run_program(
        _valid_vars(input_vars),
        _valid_vars(persistable_vars),
        _valid_vars(output_vars),
        tmp_scope_vec,
        _valid_vars(double_grad_vars),
        None,
        *attrs
    )
1073

W
WeiXin 已提交
1074 1075 1076 1077 1078 1079 1080 1081
    # NOTE: [ why need set param's gradient type here ]
    # if user set sparse gradient mode, the param's gradient
    # will be SelectedRows, not LoDTensor. But tracer will just
    # set param grad VarBase by forward VarBase(LoDTensor)
    # If we don't change grad_var type here, RunProgramOp need
    # transform SelectedRows to LoDTensor forcibly, it may not
    # be user wanted result.
    for persistable_var in persistable_vars:
0
0x45f 已提交
1082
        grad_var_name = persistable_var.name + core.grad_var_suffix()
1083
        grad_var = trace_program.block(0).find_var(grad_var_name.encode())
1084
        # NOTE: cannot find var desc maybe not problem,
W
WeiXin 已提交
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
        # such as in batch_norm
        if grad_var is None:
            continue
        persistable_var._set_grad_type(grad_var.type())

    # 3. prepare output, keep same form with inputs
    outs = output_vars
    if len(output_vars) == 1:
        outs = output_vars[0]
    return outs


def _run_static_graph(input, program_holder, trace_program):
    main_program = framework.default_main_program()
    param_var_names = _get_persistable_var_names(trace_program)
    _, dict_rename_var_old_new = _rename_var_program_desc(
1101 1102
        trace_program, exclude=param_var_names
    )
W
WeiXin 已提交
1103 1104 1105
    trace_program.flush()
    output_names = [var.name() for var in program_holder.output_descs]
    # append blocks from 'trace_program'
1106 1107 1108 1109 1110 1111 1112
    _append_block(
        main_program,
        trace_program,
        program_holder,
        input,
        dict_rename_var_old_new,
    )
W
WeiXin 已提交
1113
    main_program._sync_with_cpp()
1114 1115 1116
    outs = _get_output_from_program(
        main_program, program_holder, dict_rename_var_old_new
    )
W
WeiXin 已提交
1117 1118 1119 1120 1121 1122 1123 1124
    if len(outs) == 1:
        outs = outs[0]
    return outs


def _collect_current_and_parent_var(program, block_idx):
    '''
    Get variables in current block and its parent block.
1125

W
WeiXin 已提交
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
    Args:
        program(Program): The program containing the current block.
        block_idx(int): index of current block.

    Returns:
        List: list of variables.
    '''
    vars = []
    if block_idx < 0:
        return vars
    for var in program.block(block_idx).vars:
        vars.append(var)
    parent_idx = program.block(block_idx).parent_idx
    if parent_idx > -1:
        vars += _collect_current_and_parent_var(program, parent_idx)
    return vars


1144 1145 1146 1147 1148 1149 1150
def _append_block(
    dest_program,
    src_program_desc,
    program_holder,
    input_variables,
    dict_rename_var_old_new=None,
):
W
WeiXin 已提交
1151 1152
    '''
    Append Variables and Operators in 'src_program_desc' to dest_program.
1153

W
WeiXin 已提交
1154 1155 1156 1157 1158
    Args:
        dest_program(Program): Variables and Operators are appended to it.
        src_program_desc(ProgramDesc): Variables in it will be appended to 'dest_program'.
        program_holder(_ProgramHolder): program_holder of TranslatedLayer
        input_variables(list): list of input variables
1159
        dict_rename_var_old_new(None|dict): When using '_rename_var_program_desc',
W
WeiXin 已提交
1160 1161 1162 1163
        use it to map the name of the variable before it was modified and the new name.
    '''

    origin_block_idx = dest_program.current_block_idx
1164 1165 1166 1167 1168 1169 1170 1171
    param_var_names = _collect_current_and_parent_var(
        dest_program, origin_block_idx
    )
    append_var_from_block_desc_static(
        dest_program.block(origin_block_idx),
        src_program_desc.block(0),
        exclude=param_var_names,
    )
W
WeiXin 已提交
1172 1173 1174 1175 1176

    name_inp_desc = [inp.name() for inp in program_holder.input_descs]
    input_names = [inp.name for inp in input_variables]
    if len(name_inp_desc) != len(input_names):
        raise ValueError(
1177 1178 1179 1180
            "The number of input is invalid, expected {}, but received {}.".format(
                len(name_inp_desc), len(input_names)
            )
        )
W
WeiXin 已提交
1181 1182 1183 1184 1185 1186
    for i, out_name in enumerate(name_inp_desc):
        if dict_rename_var_old_new:
            out_name = dict_rename_var_old_new[out_name]
        dest_program.block(origin_block_idx).append_op(
            type='assign',
            inputs={'X': [input_names[i]]},
1187 1188
            outputs={'Out': [out_name]},
        )
W
WeiXin 已提交
1189 1190

    append_ops = append_op_from_block_desc_static(
1191 1192
        dest_program.block(origin_block_idx), src_program_desc.block(0)
    )
W
WeiXin 已提交
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
    dest_program._sync_with_cpp()

    offset_block_idx = dest_program.num_blocks - 1

    if src_program_desc.num_blocks() > 1:
        for src_block_idx in range(1, src_program_desc.num_blocks()):
            src_block = src_program_desc.block(src_block_idx)
            src_parent_idx = src_block.parent
            if src_parent_idx > 0:
                parent_idx = offset_block_idx + parent_idx
            else:
                parent_idx = origin_block_idx
            dest_block = dest_program._create_block(parent_idx=parent_idx)
1206 1207 1208
            append_var_from_block_desc_static(
                dest_block, src_block, exclude=param_var_names
            )
1209
            append_ops += append_op_from_block_desc_static(
1210 1211
                dest_block, src_block
            )
W
WeiXin 已提交
1212 1213 1214 1215 1216 1217 1218 1219 1220

    dest_program._sync_with_cpp()
    for op in append_ops:
        if op.has_attr('sub_block'):
            sub = op.attr('sub_block')
            if isinstance(sub, framework.core.BlockDesc):
                origin_id = sub.id
            if isinstance(sub, framework.Block):
                origin_id = sub.idx
1221 1222 1223
            op._set_attr(
                'sub_block', dest_program.block(offset_block_idx + origin_id)
            )
W
WeiXin 已提交
1224 1225 1226 1227
    dest_program._sync_with_cpp()
    dest_program.current_block_idx = origin_block_idx


1228 1229 1230
def _get_output_from_program(
    program, program_holder, dict_rename_var_old_new=None
):
W
WeiXin 已提交
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
    """
    Get output name of 'program' according to program_holder
    """
    outs = list()
    for var in program_holder.output_descs:
        for idx in range(program.num_blocks):
            vars = program.block(idx).vars
            var_name = var.name()
            if dict_rename_var_old_new:
                var_name = dict_rename_var_old_new[var_name]
            if var_name in vars:
                out = vars[var_name]
                if out not in outs:
                    outs.append(out)
    return outs


def append_op_from_block_desc_static(block, src_block_desc):
    """
    Append Operators of 'src_block_desc' to current block.

    Args:
        block(Block): append OP of  'src_block_desc' to it.
        src_block_desc(BlockDesc): append var of  'src_block_desc'

    Returns:
        List: list of the OP that are append to current block.
    """
    ops = []
    for i in range(src_block_desc.op_size()):
        ops.append(append_op_from_desc_static(block, src_block_desc.op(i)))
    return ops


def append_op_from_desc_static(block, op_desc):
    """
    Append Operators to 'block' according to 'op_desc'.

    Args:
        block(Block): append OP of  'src_block_desc' to it.
        op_desc(OpDesc): create OP according to it.

    Returns:
        Operator: OP appended to 'block'.
    """
    op_type = op_desc.type()
    op_append = block.desc.append_op()
    op_append.copy_from(op_desc)
1279 1280 1281 1282 1283 1284 1285 1286
    op = framework.Operator(
        block=block,
        desc=op_append,
        type=op_type,
        inputs=None,
        outputs=None,
        attrs=None,
    )
W
WeiXin 已提交
1287 1288 1289 1290
    block.ops.append(op)
    return op


1291 1292 1293
def append_var_from_block_desc_static(
    block, src_block_desc, include=None, exclude=None
):
W
WeiXin 已提交
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
    """
    Append Variables of 'src_block_desc' to current block.
    If 'include' is not `None`,variables that are not in include are not append.
    If 'exclude' is not `None`,variables that are in exclude will are not append.

    Args:
        block(Block): append Variables of  'src_block_desc' to it.
        src_block_desc(BlockDesc): append var of  'src_block_desc'
        include(List):list of names of variables
        exclude(List):list of names of variables

    Returns:
        List: list of the variables that are append to current block.
    """
    vars_append = []
    for var_desc in src_block_desc.all_vars():
        var_desc_name = var_desc.name()
        should_append = (include is None or var_desc_name in include) and (
1312 1313
            exclude is None or var_desc_name not in exclude
        )
W
WeiXin 已提交
1314 1315 1316
        if not block.has_var(var_desc_name) and should_append:
            var_type = var_desc.type()
            if var_type in [
1317 1318 1319
                core.VarDesc.VarType.SELECTED_ROWS,
                core.VarDesc.VarType.LOD_TENSOR,
                core.VarDesc.VarType.LOD_TENSOR_ARRAY,
W
WeiXin 已提交
1320 1321 1322 1323 1324 1325 1326
            ]:
                data_type = var_desc.dtype()
                var_shape = var_desc.shape()
            else:
                data_type = None
                var_shape = None
            if var_type in [
1327 1328
                core.VarDesc.VarType.LOD_TENSOR,
                core.VarDesc.VarType.LOD_TENSOR_ARRAY,
W
WeiXin 已提交
1329 1330 1331 1332 1333
            ]:
                lod_level = var_desc.lod_level()
            else:
                lod_level = None

1334 1335 1336 1337 1338
            if var_desc.persistable():
                current_block = block.program.global_block()
            else:
                current_block = block

W
WeiXin 已提交
1339
            vars_append.append(
1340
                current_block.create_var(
W
WeiXin 已提交
1341 1342 1343 1344 1345 1346
                    name=var_desc.name(),
                    dtype=data_type,
                    type=var_type,
                    shape=var_shape,
                    lod_level=lod_level,
                    persistable=var_desc.persistable(),
1347 1348 1349
                    set_need_check_feed=var_desc.need_check_feed(),
                )
            )
W
WeiXin 已提交
1350 1351 1352
    return vars_append


1353 1354
class TranslatedLayer(layers.Layer):
    """
1355 1356
    TranslatedLayer is a ``paddle.nn.Layer`` for holding the model
    loaded by :ref:`api_paddle_jit_load` . It can be used like a
1357
    general Layer object in eval or train mode.
1358

1359
    .. note:
1360
        The TranslatedLayer objects should not be created by constructor, it only can be loaded and constructed by :ref:`api_paddle_jit_load` .
1361 1362 1363 1364 1365

    Examples:
        .. code-block:: python

            import numpy as np
1366 1367 1368
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
1369

1370 1371 1372
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
1373

1374 1375 1376 1377 1378 1379 1380
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
1381

1382 1383 1384 1385
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
1386

1387 1388
                def __len__(self):
                    return self.num_samples
1389

1390 1391
            class LinearNet(nn.Layer):
                def __init__(self):
1392
                    super().__init__()
1393
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
1394

1395
                @paddle.jit.to_static
1396 1397 1398
                def forward(self, x):
                    return self._linear(x)

1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

1410 1411
            # 1. train & save model.

1412 1413 1414 1415
            # create network
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())
1416

1417 1418 1419 1420 1421 1422 1423
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
1424

1425 1426
            # train
            train(layer, loader, loss_fn, adam)
1427

1428
            # save
1429
            model_path = "linear.example.model"
1430
            paddle.jit.save(layer, model_path)
1431 1432

            # 2. load model as TranslatedLayer
1433 1434 1435 1436

            # load
            translated_layer = paddle.jit.load(model_path)

1437 1438
            # inference
            translated_layer.eval()
1439
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
1440
            pred = translated_layer(x)
1441

1442 1443
            # fine-tune
            translated_layer.train()
1444 1445
            adam = opt.Adam(learning_rate=0.001, parameters=translated_layer.parameters())
            train(translated_layer, loader, loss_fn, adam)
1446 1447 1448 1449

    """

    def __init__(self, programs, persistable_vars):
1450
        super().__init__()
1451 1452 1453 1454 1455 1456 1457

        if not isinstance(programs, dict):
            raise TypeError(
                "TranslatedLayer need to use _ProgramHolder's dict for initialization."
            )
        if not isinstance(persistable_vars, dict):
            raise TypeError(
1458
                "TranslatedLayer need to use persistable variable dict for initialization."
1459 1460 1461 1462
            )

        self._program_holder_dict = programs

1463 1464 1465 1466 1467 1468 1469 1470
        # NOTE(chenweihang): [ why not use var name directly? ]
        # When add parameter or buffer to Layer by follow apis,
        # the variable name can't contain `.`, beccause which may cause
        # AttributeError when access the newly added parameter or buffer
        # in the form of `self.**.**``, but the ParamBase or BarBase
        # name contains `.` originally, such as `linear_0.w_0`, so here
        # need to generate new var name for each var
        self._persistable_var_name_dict = dict()
1471 1472 1473
        # the TranslatedLayer object holded var names count started from 0
        with unique_name.guard():
            for name, var in persistable_vars.items():
1474 1475 1476
                if isinstance(
                    var, (framework.ParamBase, framework.EagerParamBase)
                ):
1477 1478 1479
                    dy_name = _generate_unique_var_name(PARAMETER_NAME_PREFIX)
                    self._persistable_var_name_dict[name] = dy_name
                    self.add_parameter(dy_name, var)
1480
                elif isinstance(var, (core.VarBase, core.eager.Tensor)):
1481 1482 1483 1484 1485 1486 1487
                    dy_name = _generate_unique_var_name(BUFFER_NAME_PREFIX)
                    self._persistable_var_name_dict[name] = dy_name
                    self.register_buffer(dy_name, var)
                else:
                    raise TypeError(
                        "Adding persistent variable which  to layer is not supported now"
                    )
1488 1489

        self._is_test = True
W
WeiXin 已提交
1490
        self._input_args_names = None
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507

    @staticmethod
    @framework.dygraph_only
    def _construct(model_path, configs=None):
        # 0. dir and filename check
        model_path = os.path.normpath(model_path)
        if not os.path.isdir(model_path):
            raise ValueError("There is no directory named '%s'" % model_path)
        model_filename = None
        params_filename = None
        if configs is not None:
            model_filename = configs.model_filename
            params_filename = configs.params_filename

        # 1. load program desc & construct _ProgramHolder
        programs = _construct_program_holders(model_path, model_filename)

1508
        # 2. load layer parameters & buffers
1509
        persistable_vars = _construct_params_and_buffers(
1510 1511
            model_path, programs, params_filename
        )
1512 1513 1514 1515 1516 1517

        # 3. construct TranslatedLayer object
        translated_layer = TranslatedLayer(programs, persistable_vars)

        # 4. create TranslatedLayer's execution method
        for method_name, program_holder in programs.items():
1518 1519 1520 1521
            if translated_layer._input_args_names is None:
                translated_layer._input_args_names = [
                    ins.name() for ins in program_holder.input_descs
                ]
1522
            setattr(
1523 1524
                TranslatedLayer,
                method_name,
1525
                TranslatedLayer._execution_method_creator(
1526 1527 1528
                    method_name, program_holder
                ),
            )
1529 1530 1531 1532 1533 1534 1535 1536

        # 5. set TranslatedLayer's default mode to eval
        translated_layer.eval()

        return translated_layer

    @staticmethod
    def _execution_method_creator(method_name, program_holder):
W
WeiXin 已提交
1537 1538 1539 1540
        def __i_m_p_l__(self, *input):
            program_holder = self._program_holder_dict[__i_m_p_l__.__name__]
            # When using jit.save, it runs in static graph mode.
            # Run in dynamic graph mode when the model is inferring.
J
Jiabin Yang 已提交
1541
            if _non_static_mode():
W
WeiXin 已提交
1542 1543 1544 1545 1546 1547 1548
                return _run_dygraph(self, input, program_holder)
            else:
                # NOTE(weixin): [ why not use 'program_holder.infer_program' directly? ]
                # When use '_run_static_graph(input, program_holder, program_holder.infer_program)',
                # because '_run_static_graph' modifies 'ProgramDesc', 'OpDesc.op_size()' will return a very large wrong number.
                # A Segmentation fault error may occur if used 'p=ProgramDesc(program_holder.infer_program)'.
                p = framework.Program._construct_from_desc(
1549 1550
                    core.ProgramDesc(program_holder.infer_program)
                )
W
WeiXin 已提交
1551 1552 1553 1554
                return _run_static_graph(input, program_holder, p.desc)

        __i_m_p_l__.__name__ = method_name
        return __i_m_p_l__
1555 1556 1557

    def train(self):
        self._is_test = False
1558
        self.training = True
1559 1560 1561

    def eval(self):
        self._is_test = True
1562
        self.training = False
1563 1564 1565 1566 1567 1568 1569 1570

    def program(self, method_name='forward'):
        """
        Gets translated program of specified method.

        Args:
            - method_name (string): mehtod name corresponding to the program
                to be obtained. Default: 'forward'.
1571

1572 1573 1574 1575 1576
        Returns:
            Program

        Examples:
            .. code-block:: python
1577

1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
                import numpy as np
                import paddle
                import paddle.nn as nn
                import paddle.optimizer as opt

                BATCH_SIZE = 16
                BATCH_NUM = 4
                EPOCH_NUM = 4

                IMAGE_SIZE = 784
                CLASS_NUM = 10

                # define a random dataset
                class RandomDataset(paddle.io.Dataset):
                    def __init__(self, num_samples):
                        self.num_samples = num_samples

                    def __getitem__(self, idx):
                        image = np.random.random([IMAGE_SIZE]).astype('float32')
                        label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                        return image, label

                    def __len__(self):
                        return self.num_samples

                class LinearNet(nn.Layer):
                    def __init__(self):
1605
                        super().__init__()
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
                        self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)

                    @paddle.jit.to_static
                    def forward(self, x):
                        return self._linear(x)

                def train(layer, loader, loss_fn, opt):
                    for epoch_id in range(EPOCH_NUM):
                        for batch_id, (image, label) in enumerate(loader()):
                            out = layer(image)
                            loss = loss_fn(out, label)
                            loss.backward()
                            opt.step()
                            opt.clear_grad()
                            print("Epoch {} batch {}: loss = {}".format(
                                epoch_id, batch_id, np.mean(loss.numpy())))

                # create network
                layer = LinearNet()
                loss_fn = nn.CrossEntropyLoss()
                adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())

                # create data loader
                dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
                loader = paddle.io.DataLoader(dataset,
                    batch_size=BATCH_SIZE,
                    shuffle=True,
                    drop_last=True,
                    num_workers=2)

                # train
                train(layer, loader, loss_fn, adam)

                # save
                model_path = "linear.example.model"
                paddle.jit.save(layer, model_path)

                # load
                translated_layer = paddle.jit.load(model_path)

                # get program
                program = translated_layer.program()
        """
        # 1. get program holder
1650
        program_holder = self._get_program_holder(method_name)
1651 1652 1653 1654 1655 1656 1657

        # 2. get inference program desc
        program_desc = program_holder.infer_program

        # 3. construct program
        program = _build_program_by_desc(program_desc)
        return program
1658 1659 1660 1661 1662

    def _get_program_holder(self, method_name='forward'):
        program_holder = self._program_holder_dict.get(method_name, None)
        if program_holder is None:
            raise ValueError(
1663 1664 1665
                "The method `%s` does not exist in loaded TranslatedLayer."
                % method_name
            )
1666 1667 1668 1669 1670 1671 1672 1673 1674
        return program_holder

    def _input_spec(self, method_name='forward'):
        # 1. get program holder
        program_holder = self._get_program_holder(method_name)

        # 2. build input spec by input desc
        input_spec = []
        for var_desc in program_holder.input_descs:
1675 1676 1677 1678 1679
            spec = paddle.static.InputSpec(
                shape=var_desc.shape(),
                dtype=var_desc.dtype(),
                name=var_desc.name(),
            )
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
            input_spec.append(spec)

        return input_spec

    def _output_spec(self, method_name='forward'):
        # 1. get program holder
        program_holder = self._get_program_holder(method_name)

        # 2. build output spec by output desc
        output_spec = []
        for var_desc in program_holder.output_descs:
1691 1692
            # NOTE(chenweihang): InputSpec describes a tensor, not just input.
            # Maybe the name is not good enough. Here we use InputSpec to
1693
            # construct the description of Output tensor
1694 1695 1696 1697 1698
            spec = paddle.static.InputSpec(
                shape=var_desc.shape(),
                dtype=var_desc.dtype(),
                name=var_desc.name(),
            )
1699 1700 1701
            output_spec.append(spec)

        return output_spec