mkldnn_reuse.h 20.3 KB
Newer Older
J
Jacek Czaja 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

16
#include <algorithm>
17
#include <memory>
18
#include <sstream>
J
Jacek Czaja 已提交
19
#include <string>
20
#include <utility>
J
Jacek Czaja 已提交
21
#include <vector>
22

X
xiaoli.liu@intel.com 已提交
23
#include "paddle/fluid/framework/data_layout_transform.h"
J
Jacek Czaja 已提交
24
#include "paddle/fluid/framework/operator.h"
25
#include "paddle/fluid/operators/pool_op.h"
J
Jacek Czaja 已提交
26 27
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/platform/place.h"
28
#include "paddle/phi/backends/onednn/onednn_reuse.h"
J
Jacek Czaja 已提交
29 30 31 32 33

namespace paddle {
namespace platform {

using user_function = std::function<std::shared_ptr<float>(const float*)>;
34
using memory = dnnl::memory;
J
Jacek Czaja 已提交
35

36 37
template <typename T,
          typename TForward,
38 39
          typename TBackward = mkldnn_dummy_primitive,
          typename TBackward_params = mkldnn_dummy_primitive>
40 41
using MKLDNNHandlerT =
    phi::funcs::OneDNNHandlerT<T, TForward, TBackward, TBackward_params>;
42

43 44
template <typename T,
          typename TForward,
45 46
          typename TBackward = mkldnn_dummy_primitive,
          typename TBackward_params = mkldnn_dummy_primitive>
47 48
using MKLDNNHandlerNoCachingT = phi::funcs::
    OneDNNHandlerNoCachingT<T, TForward, TBackward, TBackward_params>;
49

50
template <typename T>
51
using ReductionMKLDNNHandler = phi::funcs::ReductionOneDNNHandler<T>;
52

53
template <typename T>
54
using BroadcastDataMKLDNNHandler = phi::funcs::BroadcastDataOneDNNHandler<T>;
55

56 57
template <typename T>
using BinaryMKLDNNHandler = phi::funcs::BinaryOneDNNHandler<T>;
58

59
static void AppendActivation(const framework::ExecutionContext& ctx,
60
                             dnnl::post_ops& post_ops,  // NOLINT
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
                             float activation_scale = 1.0f) {
  const auto invalid_attribute =
      ctx.HasAttr("fuse_activation")
          ? ctx.Attr<std::string>("fuse_activation").empty()
          : true;
  if (invalid_attribute) return;

  const auto fuse_activation = ctx.Attr<std::string>("fuse_activation");
  const auto fuse_alpha =
      ctx.HasAttr("fuse_alpha") ? ctx.Attr<float>("fuse_alpha") : 0.0f;
  const auto fuse_beta =
      ctx.HasAttr("fuse_beta") ? ctx.Attr<float>("fuse_beta") : 0.0f;

  if (fuse_activation == "hard_sigmoid") {
    post_ops.append_eltwise(activation_scale,
                            dnnl::algorithm::eltwise_linear,
                            fuse_alpha,
                            fuse_beta);
    post_ops.append_eltwise(
        activation_scale, dnnl::algorithm::eltwise_clip, 0.0f, 1.0f);
  } else {
    const std::unordered_map<std::string, dnnl::algorithm> activation_map = {
        {"abs", dnnl::algorithm::eltwise_abs},
        {"clip", dnnl::algorithm::eltwise_clip},
        {"gelu", dnnl::algorithm::eltwise_gelu_erf},
        {"gelu_erf", dnnl::algorithm::eltwise_gelu_erf},
        {"gelu_tanh", dnnl::algorithm::eltwise_gelu_tanh},
        {"hard_swish", dnnl::algorithm::eltwise_hardswish},
        {"leaky_relu", dnnl::algorithm::eltwise_relu},
        {"mish", dnnl::algorithm::eltwise_mish},
        {"relu", dnnl::algorithm::eltwise_relu},
        {"relu6", dnnl::algorithm::eltwise_bounded_relu},
        {"sigmoid", dnnl::algorithm::eltwise_logistic},
        {"sqrt", dnnl::algorithm::eltwise_sqrt},
        {"swish", dnnl::algorithm::eltwise_swish},
        {"tanh", dnnl::algorithm::eltwise_tanh}};

    const auto& activation_type = activation_map.find(fuse_activation);

    PADDLE_ENFORCE_NE(
        activation_type,
        activation_map.end(),
        platform::errors::InvalidArgument(
            "Activation '%s' not found in oneDNN algorithms mapper",
            fuse_activation));

    post_ops.append_eltwise(
        activation_scale, activation_type->second, fuse_alpha, fuse_beta);
  }
}

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
static void SetOutMemDescWithUnsqueeze2FuseSupport(
    const framework::ExecutionContext& ctx,
    phi::DenseTensor* out,
    const dnnl::memory::desc& out_md) {
  const std::vector<int>& fused_unsqueeze2_axes =
      ctx.Attr<std::vector<int>>("fused_unsqueeze2_axes");
  const std::vector<int64_t>& op_tz = out_md.dims();
  std::vector<int64_t> unsqueezed_op_tz(
      op_tz.size() + fused_unsqueeze2_axes.size(), 0);

  for (const auto& axis : fused_unsqueeze2_axes) {
    int positive_axis = axis < 0 ? unsqueezed_op_tz.size() + axis : axis;
    unsqueezed_op_tz[positive_axis] = 1;
  }

  int j = 0;
  for (size_t i = 0; i < unsqueezed_op_tz.size(); ++i) {
    if (unsqueezed_op_tz[i] == 0) {
      unsqueezed_op_tz[i] = op_tz[j++];
    }
  }
  out->set_mem_desc(out_md.reshape(unsqueezed_op_tz));
  out->Resize(phi::make_ddim(unsqueezed_op_tz));
}

static void SetOutMemDescWithReshape2FuseSupport(
    const framework::ExecutionContext& ctx,
    phi::DenseTensor* out,
    const dnnl::memory::desc& out_md) {
  std::vector<int64_t> fused_reshape2_shape(
      ctx.Attr<std::vector<int>>("fused_reshape2_shape").begin(),
      ctx.Attr<std::vector<int>>("fused_reshape2_shape").end());

  const int out_shape_numel = out->numel();
  const int new_shape_numel = std::accumulate(fused_reshape2_shape.begin(),
                                              fused_reshape2_shape.end(),
                                              1,
                                              std::multiplies<int64_t>());

  for (size_t i = 0; i < fused_reshape2_shape.size(); ++i) {
    if (fused_reshape2_shape[i] == -1) {
      fused_reshape2_shape[i] = -out_shape_numel / new_shape_numel;
      break;
    }
  }

  out->set_mem_desc(out_md.reshape(fused_reshape2_shape));
  out->Resize(phi::make_ddim(fused_reshape2_shape));
}

static void SetOutMemDescWithLogicalLayoutFusesSupport(
    const framework::ExecutionContext& ctx,
    phi::DenseTensor* out,
    const dnnl::memory::desc& out_md) {
  if (ctx.HasAttr("fused_unsqueeze2_axes")) {
    SetOutMemDescWithUnsqueeze2FuseSupport(ctx, out, out_md);
  } else if (ctx.HasAttr("fused_reshape2_shape")) {
    SetOutMemDescWithReshape2FuseSupport(ctx, out, out_md);
170 171 172
  } else if (ctx.HasAttr("fused_squeeze2_axes")) {
    out->set_mem_desc(out_md);
    out->Resize(phi::make_ddim(out_md.dims()));
173 174 175 176 177
  } else {
    out->set_mem_desc(out_md);
  }
}

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
static void SetInMemDescWithSqueeze2FuseSupport(
    const framework::ExecutionContext& ctx,
    phi::DenseTensor* in,
    const dnnl::memory::desc& in_md) {
  const std::vector<int> fused_squeeze2_axes =
      ctx.Attr<std::vector<int>>("fused_squeeze2_axes");
  const std::set<int64_t> squeeze2_axes_set(fused_squeeze2_axes.begin(),
                                            fused_squeeze2_axes.end());
  const std::vector<int64_t>& x_vec_dims = in_md.dims();
  std::vector<int64_t> squeezed_op_tz(
      x_vec_dims.size() - fused_squeeze2_axes.size(), 0);

  int j = 0;
  for (size_t i = 0; i < x_vec_dims.size(); ++i) {
    if (squeeze2_axes_set.count(i) ||
        squeeze2_axes_set.count(i - x_vec_dims.size())) {
      PADDLE_ENFORCE_EQ(
          x_vec_dims[i],
          1,
          platform::errors::InvalidArgument(
              "Squeeze2 input dim %d should be equal to one, but get %d.",
              i,
              x_vec_dims[i]));
      continue;
    }
    squeezed_op_tz[j++] = x_vec_dims[i];
  }

  in->set_mem_desc(in_md.reshape(squeezed_op_tz));
  in->Resize(phi::make_ddim(squeezed_op_tz));
}

static void SetInMemDescWithLogicalLayoutFusesSupport(
    const framework::ExecutionContext& ctx,
    phi::DenseTensor* in,
    const dnnl::memory::desc& in_md) {
  if (ctx.HasAttr("fused_squeeze2_axes")) {
    SetInMemDescWithSqueeze2FuseSupport(ctx, in, in_md);
  } else {
    in->set_mem_desc(in_md);
    in->Resize(phi::make_ddim(in_md.dims()));
  }
}

222
template <typename T>
223 224 225 226 227 228 229 230 231 232
constexpr bool IsInt8() {
  return std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
}

template <typename T>
constexpr bool IsBfloat16() {
  return std::is_same<T, paddle::platform::bfloat16>::value;
}

template <typename XT, typename YT, typename OT>
233
class MatMulV2MKLDNNHandler
234
    : public paddle::platform::MKLDNNHandlerNoCachingT<XT, dnnl::matmul> {
235
 public:
236 237
  MatMulV2MKLDNNHandler(const framework::ExecutionContext& ctx,
                        const dnnl::engine engine,
238
                        paddle::platform::Place cpu_place,
239 240 241 242
                        const std::vector<int64_t>& x_org_dims,
                        bool trans_x,
                        const std::vector<int64_t>& y_org_dims,
                        bool trans_y,
243 244 245
                        bool is_output_fused,
                        const std::vector<int64_t>& x_strides_override,
                        const std::vector<int64_t>& y_strides_override)
246 247
      : paddle::platform::MKLDNNHandlerNoCachingT<XT, dnnl::matmul>(engine,
                                                                    cpu_place) {
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
    // M X K * K X N
    std::vector<int64_t> x_dims(x_org_dims);
    std::vector<int64_t> y_dims(y_org_dims);

    const int MB_idx = x_dims.size() - 3;
    const int H_idx = x_dims.size() - 2;
    const int W_idx = x_dims.size() - 1;

    if (trans_x) std::swap(x_dims[H_idx], x_dims[W_idx]);
    if (trans_y) std::swap(y_dims[H_idx], y_dims[W_idx]);

    const memory::dim M = x_dims[H_idx];
    const memory::dim K = x_dims[W_idx];
    const memory::dim N = y_dims[W_idx];

    std::vector<int64_t> x_strides(x_dims.size() - 3, 1);
    std::vector<int64_t> y_strides(x_dims.size() - 3, 1);
    std::vector<int64_t> out_strides(x_dims.size() - 3, 1);
    std::vector<int64_t> out_ddims(x_dims.size() - 3, 1);

    x_strides.reserve(x_dims.size());
    y_strides.reserve(x_dims.size());
    out_strides.reserve(x_dims.size());

    if (!x_strides_override.empty()) {
      x_strides = x_strides_override;
    } else {
      if (!trans_x) {
        x_strides.insert(x_strides.end(), {M * K, K, 1});
      } else {
        x_strides.insert(x_strides.end(), {M * K, 1, M});
      }
    }

    if (!y_strides_override.empty()) {
      y_strides = y_strides_override;
    } else {
      if (!trans_y) {
        y_strides.insert(y_strides.end(), {N * K, N, 1});
      } else {
        y_strides.insert(y_strides.end(), {N * K, 1, K});
      }
    }

    out_strides.insert(out_strides.end(), {M * N, N, 1});
    out_ddims.insert(out_ddims.end(),
                     {std::max(x_dims[MB_idx], y_dims[MB_idx]), M, N});

    for (int i = x_dims.size() - 4; i >= 0; --i) {
      out_ddims[i] = std::max(x_dims[i], y_dims[i]);
      if (x_strides_override.empty()) {
        x_strides[i] = x_dims[i + 1] * x_strides[i + 1];
      }
      if (y_strides_override.empty()) {
        y_strides[i] = y_dims[i + 1] * y_strides[i + 1];
      }
      out_strides[i] = out_ddims[i + 1] * out_strides[i + 1];
    }

307 308
    // TODO(jczaja): Why not for int8??
    if (!IsInt8<OT>() && is_output_fused) {
309 310 311
      out_strides = FakeTransposeStrides(out_ddims);
    }

312 313 314
    auto x_md = memory::desc(x_dims, MKLDNNGetDataType<XT>(), x_strides);
    auto y_md = memory::desc(y_dims, MKLDNNGetDataType<YT>(), y_strides);
    auto out_md = memory::desc(out_ddims, MKLDNNGetDataType<OT>(), out_strides);
315

316 317 318 319 320
    const dnnl::primitive_attr matmul_attrs = CreateMatmulAttrs(ctx);

    this->AcquireForwardPrimitiveDescriptor(matmul_attrs, x_md, y_md, out_md);
  }

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
  float ComputeOutputScale(const framework::ExecutionContext& ctx) {
    float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 1.0f;
    if (ctx.HasAttr("Scale_x") && ctx.HasAttr("Scale_y") &&
        ctx.HasAttr("Scale_out")) {
      float scale_x = ctx.Attr<float>("Scale_x");
      float scale_y = ctx.Attr<float>("Scale_y");
      bool force_fp32_out = ctx.HasAttr("force_fp32_output")
                                ? ctx.Attr<bool>("force_fp32_output")
                                : false;
      float scale_out = force_fp32_out ? 1.f : ctx.Attr<float>("Scale_out");
      alpha *= scale_out / (scale_x * scale_y);
    }
    return alpha;
  }

336 337 338 339 340
  dnnl::primitive_attr CreateMatmulAttrs(
      const framework::ExecutionContext& ctx) {
    dnnl::primitive_attr matmul_attrs;
    dnnl::post_ops post_operations;

341 342 343
    float scale_out = ComputeOutputScale(ctx);
    if (scale_out != 1.0f) {
      matmul_attrs.set_output_scales(0, {scale_out});
344 345
    }

346
    if (ctx.HasInput("ResidualData")) {
347
      auto* residual_data = ctx.Input<phi::DenseTensor>("ResidualData");
348 349
      auto residual_data_tz = phi::vectorize(residual_data->dims());
      auto residual_data_md = memory::desc(residual_data_tz,
350 351
                                           MKLDNNGetDataType<OT>(),
                                           dnnl::memory::format_tag::any);
352 353
      post_operations.append_binary(dnnl::algorithm::binary_add,
                                    residual_data_md);
354 355 356 357
      if (ctx.HasAttr("Scale_in_eltwise")) {
        float sum_scale = scale_out / ctx.Attr<float>("Scale_in_eltwise");
        post_operations.append_sum(sum_scale);
      }
358 359
    }

360 361
    AppendActivation(ctx, post_operations);

362 363 364 365 366 367
    if (ctx.HasAttr("fused_output_scale")) {
      float scale_alpha = ctx.Attr<float>("fused_output_scale");
      post_operations.append_eltwise(
          1.0, dnnl::algorithm::eltwise_linear, scale_alpha, 0.0f);
    }

368 369
    matmul_attrs.set_post_ops(post_operations);
    return matmul_attrs;
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
  }

  std::vector<int64_t> FakeTransposeStrides(
      const std::vector<int64_t>& matmul_out_dims) const {
    // fuse matmul_v2 + transpose + reshape guarantees that output is 4D and
    // transpose axis are: {0, 2, 1, 3}
    std::vector<int64_t> transpose_axis = {0, 2, 1, 3};
    std::vector<int64_t> fake_strides(transpose_axis.size());
    int ndims = static_cast<int>(transpose_axis.size());

    int total_stride = 1;

    for (int i = ndims - 1; i >= 0; --i) {
      fake_strides[transpose_axis[i]] = total_stride;
      total_stride *= matmul_out_dims[transpose_axis[i]];
    }

    return fake_strides;
  }

390
  std::shared_ptr<memory> AcquireWeightsMemory(const phi::DenseTensor* input) {
391
    const YT* input_data = input->data<YT>();
392
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->weights_desc(),
393 394 395
                                            to_void_cast<YT>(input_data));
  }

396
  std::shared_ptr<dnnl::memory> AcquireDstMemory(phi::DenseTensor* output) {
397 398 399
    // We cannot use base AcquireDstMemory as it makes an allocation request
    // base on DST memory primitive size. This is fine in general, but in MatMul
    // we have primitive that covers only one batch of Data and then shift
400 401 402 403
    // pointer for every new batch. Hence phi::DenseTensor size is bigger that
    // dst memory primitive size. So would we request less memory that is there
    // and it triggers an assertion.  So as there is no 'any' format here we can
    // leave default size of phi::DenseTensor as computed in ComputeInferShape
404 405
    OT* ptr = output->mutable_data<OT>(this->place_);
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->dst_desc(), ptr);
406 407 408
  }
};

409 410 411
static std::unordered_map<std::string, std::string> GetAttributeMap(
    std::string act_type) {
  std::unordered_map<std::string, std::string> attr_map;
412
  if (act_type == "swish") {
413
    attr_map.emplace("beta", "fuse_alpha");
414
  } else if (act_type == "relu6") {
415
    attr_map.emplace("threshold", "fuse_alpha");
416
  } else if (act_type == "hard_sigmoid") {
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
    attr_map.emplace("slope", "fuse_alpha");
    attr_map.emplace("offset", "fuse_beta");
  } else if (act_type == "clip") {
    attr_map.emplace("min", "fuse_alpha");
    attr_map.emplace("max", "fuse_beta");
  } else {
    attr_map.emplace("alpha", "fuse_alpha");
    attr_map.emplace("beta", "fuse_beta");
  }
  return attr_map;
}

static std::vector<std::string> GetSupportedActivations() {
  return std::vector<std::string>{"abs",
                                  "clip",
                                  "gelu",
                                  "hard_sigmoid",
                                  "hard_swish",
                                  "leaky_relu",
                                  "mish",
                                  "relu",
                                  "relu6",
                                  "sigmoid",
                                  "sqrt",
                                  "swish",
                                  "tanh"};
443 444
}

445
class ReorderMKLDNNHandler {
446
 public:
A
Adam 已提交
447
  ReorderMKLDNNHandler(std::vector<int64_t>& dims,  // NOLINT
448
                       framework::proto::VarType::Type vtype,
449 450
                       dnnl::memory::data_type dtype,
                       dnnl::engine engine)
451
      : dims_(dims),
452
        vtype_(vtype),
453 454
        vtype_dst_(vtype),
        dtype_(dtype),
455 456
        dtype_dst_(dtype),
        engine_(engine) {}
457 458 459

  ReorderMKLDNNHandler(std::vector<int64_t>& dims,  // NOLINT
                       framework::proto::VarType::Type vtype,
460
                       dnnl::memory::data_type dtype,
461
                       framework::proto::VarType::Type vtype_dst,
462 463
                       dnnl::memory::data_type dtype_dst,
                       dnnl::engine engine)
464
      : dims_(dims),
465 466 467
        vtype_(vtype),
        vtype_dst_(vtype_dst),
        dtype_(dtype),
468 469
        dtype_dst_(dtype_dst),
        engine_(engine) {}
470

471 472 473 474 475
  std::shared_ptr<dnnl::memory> AcquireSrcMemory(const dnnl::memory::desc& md,
                                                 void* ptr) {
    return std::make_shared<dnnl::memory>(md, engine_, ptr);
  }

476 477 478 479
  std::shared_ptr<dnnl::memory> AcquireSrcMemory(const MKLDNNMemoryFormat& fmt,
                                                 void* ptr) {
    auto md = dnnl::memory::desc(dims_, dtype_, fmt);
    return std::make_shared<dnnl::memory>(md, engine_, ptr);
480 481
  }

482
  std::shared_ptr<dnnl::memory> AcquireSubmemory(
483 484
      const std::vector<int64_t>& dims,
      const std::vector<int64_t>& offset,
485
      const std::shared_ptr<dnnl::memory>& mem_p) {
486
    auto sub_md = mem_p->get_desc().submemory_desc(dims, {offset});
487 488
    auto sub_mem_p = std::make_shared<dnnl::memory>(
        sub_md, engine_, mem_p->get_data_handle());
489 490 491
    return sub_mem_p;
  }

492
  std::shared_ptr<dnnl::memory> AcquireDstMemory(phi::DenseTensor* output,
493 494
                                                 const MKLDNNMemoryFormat& fmt,
                                                 platform::Place place) {
495
    auto dst_md = platform::MKLDNNMemDesc(dims_, dtype_dst_, fmt);
496
    auto dst_data = output->mutable_data(
497
        place, framework::TransToPhiDataType(vtype_dst_), dst_md.get_size());
498
    return std::make_shared<dnnl::memory>(dst_md, engine_, dst_data);
499 500
  }

501
  std::shared_ptr<dnnl::memory> AcquireDstMemory(
502
      phi::DenseTensor* output,
503
      const dnnl::memory::desc& src_md,
504 505 506 507 508 509 510 511 512 513 514 515 516 517
      platform::Place place) {
    if (vtype_dst_ == vtype_) {
      auto dst_data = output->mutable_data(
          place, framework::TransToPhiDataType(vtype_dst_), src_md.get_size());
      return std::make_shared<dnnl::memory>(src_md, engine_, dst_data);
    } else {
      auto dst_md = src_md;
      dst_md.data.data_type = static_cast<dnnl_data_type_t>(dtype_dst_);
      auto dst_data = output->mutable_data(
          place, framework::TransToPhiDataType(vtype_dst_), dst_md.get_size());
      return std::make_shared<dnnl::memory>(dst_md, engine_, dst_data);
    }
  }

518
  std::shared_ptr<dnnl::memory> AcquireDstMemory(
519
      phi::DenseTensor* output,
520 521 522
      const std::vector<int64_t>& dims,
      const MKLDNNMemoryFormat& fmt,
      platform::Place place) {
523
    auto dst_md = platform::MKLDNNMemDesc(dims, dtype_dst_, fmt);
524
    auto dst_data = output->mutable_data(
525
        place, framework::TransToPhiDataType(vtype_dst_), dst_md.get_size());
526
    return std::make_shared<dnnl::memory>(dst_md, engine_, dst_data);
527 528
  }

529 530 531 532
  std::shared_ptr<dnnl::reorder> AcquireReorder(
      std::shared_ptr<dnnl::memory> dst_memory_p,
      std::shared_ptr<dnnl::memory> src_memory_p) {
    return std::make_shared<dnnl::reorder>(*(src_memory_p), *(dst_memory_p));
533 534
  }

535 536 537 538
  std::shared_ptr<dnnl::reorder> AcquireReorder(
      std::shared_ptr<dnnl::memory> dst_memory_p,
      std::shared_ptr<dnnl::memory> src_memory_p,
      const dnnl::primitive_attr& attrs) {
539 540
    return std::make_shared<dnnl::reorder>(
        *(src_memory_p), *(dst_memory_p), attrs);
541 542
  }

543
 private:
A
Adam 已提交
544
  std::vector<int64_t> dims_;
545
  framework::proto::VarType::Type vtype_, vtype_dst_;
546 547
  dnnl::memory::data_type dtype_, dtype_dst_;
  dnnl::engine engine_;
548
};
J
Jacek Czaja 已提交
549 550
}  // namespace platform
}  // namespace paddle