lookup_table_v2_op.h 8.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

T
tangwei12 已提交
17
#include <algorithm>
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#include <string>
#include <vector>

#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/operators/math/blas.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using SelectedRows = framework::SelectedRows;
using DDim = framework::DDim;

constexpr int64_t kNoPadding = -1;

template <typename T>
class LookupTableV2Kernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto *ids_t = context.Input<LoDTensor>("Ids");      // int tensor
    auto *output_t = context.Output<LoDTensor>("Out");  // float tensor
    auto *table_var = context.InputVar("W");

T
tangwei12 已提交
45 46
    int64_t padding_idx = context.Attr<int64_t>("padding_idx");
    int64_t ids_numel = ids_t->numel();
47

T
tangwei12 已提交
48 49
    std::vector<int64_t> ids;
    ids.reserve(ids_numel);
50

T
tangwei12 已提交
51 52 53 54
    if (ids_t->type() == framework::proto::VarType::INT32) {
      std::transform(ids_t->data<int>(), ids_t->data<int>() + ids_numel,
                     std::back_inserter(ids),
                     [&](int id) { return static_cast<int64_t>(id); });
55
    } else {
T
tangwei12 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
      framework::TensorToVector(*ids_t, &ids);
    }

    if (table_var->IsType<LoDTensor>()) {
      auto *table_t = context.Input<LoDTensor>("W");
      int64_t row_number = table_t->dims()[0];
      int64_t row_width = table_t->dims()[1];

      auto *table = table_t->data<T>();
      auto *output = output_t->mutable_data<T>(context.GetPlace());

      for (int64_t i = 0; i < ids_numel; ++i) {
        if (padding_idx != kNoPadding && ids[i] == padding_idx) {
          memset(output + i * row_width, 0, row_width * sizeof(T));
        } else {
          PADDLE_ENFORCE_LT(
              ids[i], row_number,
73 74 75 76 77
              platform::errors::InvalidArgument(
                  "Variable value (input) of OP(fluid.layers.embedding) "
                  "expected >= 0 and < %ld, but got %ld. Please check input "
                  "value.",
                  row_number, ids[i]));
T
tangwei12 已提交
78 79
          PADDLE_ENFORCE_GE(
              ids[i], 0,
80 81 82 83 84
              platform::errors::InvalidArgument(
                  "Variable value (input) of OP(fluid.layers.embedding) "
                  "expected >= 0 and < %ld, but got %ld. Please check input "
                  "value.",
                  row_number, ids[i]));
T
tangwei12 已提交
85 86
          memcpy(output + i * row_width, table + ids[i] * row_width,
                 row_width * sizeof(T));
87
        }
T
tangwei12 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101
      }
    } else if (table_var->IsType<SelectedRows>()) {
      const auto &table_t = table_var->Get<SelectedRows>();
      int64_t row_width = table_t.value().dims()[1];
      const auto *table = table_t.value().data<T>();
      auto *output = output_t->mutable_data<T>(context.GetPlace());

      auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
      for (int64_t i = 0; i < ids_numel; ++i) {
        if (padding_idx != kNoPadding && ids[i] == padding_idx) {
          memset(output + i * row_width, 0, row_width * sizeof(T));
        } else {
          PADDLE_ENFORCE_GE(
              ids[i], 0,
102 103 104 105
              platform::errors::InvalidArgument(
                  "Variable value (input) of OP(fluid.layers.embedding) "
                  "expected >= 0. But received %ld",
                  ids[i]));
T
tangwei12 已提交
106
          auto id_index = table_t.Index(ids[i]);
107 108 109 110 111
          PADDLE_ENFORCE_GE(
              id_index, 0,
              platform::errors::InvalidArgument(
                  "the input key should be exists. But received %d.",
                  id_index));
T
tangwei12 已提交
112 113
          blas.VCOPY(row_width, table + id_index * row_width,
                     output + i * row_width);
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
        }
      }
    }
  }
};

template <typename T>
class LookupTableV2GradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto *table_var = context.InputVar("W");
    DDim table_dim;
    if (table_var->IsType<LoDTensor>()) {
      table_dim = context.Input<LoDTensor>("W")->dims();
    } else if (table_var->IsType<SelectedRows>()) {
      auto *table_t = context.Input<SelectedRows>("W");
      table_dim = table_t->value().dims();
    } else {
132
      PADDLE_THROW(platform::errors::InvalidArgument(
133
          "The parameter W of a LookupTableV2 "
134
          "must be either LoDTensor or SelectedRows"));
135 136 137 138 139 140 141
    }

    int64_t padding_idx = context.Attr<int64_t>("padding_idx");
    bool is_sparse = context.Attr<bool>("is_sparse");
    // Since paddings are not trainable and fixed in forward, the gradient of
    // paddings makes no sense and we don't deal with it in backward.
    if (is_sparse) {
T
tangwei12 已提交
142
      auto *ids_t = context.Input<LoDTensor>("Ids");
143 144
      auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto *d_table = context.Output<SelectedRows>(framework::GradVarName("W"));
T
tangwei12 已提交
145 146 147 148
      int64_t ids_num = ids_t->numel();

      std::vector<int64_t> ids;
      ids.reserve(ids_num);
149

T
tangwei12 已提交
150 151 152 153 154 155 156
      if (ids_t->type() == framework::proto::VarType::INT32) {
        std::transform(ids_t->data<int>(), ids_t->data<int>() + ids_num,
                       std::back_inserter(ids),
                       [&](int id) { return static_cast<int64_t>(id); });
      } else {
        framework::TensorToVector(*ids_t, &ids);
      }
157

T
tangwei12 已提交
158
      d_table->set_rows(ids);
159 160 161 162 163 164 165 166 167 168 169 170

      auto *d_table_value = d_table->mutable_value();
      d_table_value->Resize({ids_num, table_dim[1]});

      d_table_value->mutable_data<T>(context.GetPlace());

      d_table->set_height(table_dim[0]);

      auto *d_output_data = d_output->data<T>();
      auto *d_table_data = d_table_value->data<T>();

      auto d_output_dims = d_output->dims();
171 172 173
      auto d_output_dims_2d =
          framework::flatten_to_2d(d_output_dims, d_output_dims.size() - 1);
      PADDLE_ENFORCE_EQ(d_table_value->dims(), d_output_dims_2d,
174 175 176 177 178 179
                        platform::errors::InvalidArgument(
                            "ShapeError: The shape of lookup_table@Grad and "
                            "output@Grad should be same. "
                            "But received lookup_table@Grad's shape = [%s], "
                            "output@Grad's shape = [%s].",
                            d_table_value->dims(), d_output_dims_2d));
180 181 182
      memcpy(d_table_data, d_output_data, sizeof(T) * d_output->numel());

    } else {
T
tangwei12 已提交
183
      auto *ids_t = context.Input<LoDTensor>("Ids");
184 185
      auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto *d_table = context.Output<LoDTensor>(framework::GradVarName("W"));
T
tangwei12 已提交
186 187 188 189 190 191 192 193 194 195 196 197
      int64_t ids_num = ids_t->numel();

      std::vector<int64_t> ids;
      ids.reserve(ids_num);

      if (ids_t->type() == framework::proto::VarType::INT32) {
        std::transform(ids_t->data<int>(), ids_t->data<int>() + ids_num,
                       std::back_inserter(ids),
                       [&](int id) { return static_cast<int64_t>(id); });
      } else {
        framework::TensorToVector(*ids_t, &ids);
      }
198

T
tangwei12 已提交
199
      auto *ids_data = ids.data();
200 201 202 203 204 205 206 207 208

      int64_t N = table_dim[0];
      int64_t D = table_dim[1];

      auto *d_output_data = d_output->data<T>();
      auto *d_table_data = d_table->mutable_data<T>(context.GetPlace());

      memset(d_table_data, 0, d_table->numel() * sizeof(T));

T
tangwei12 已提交
209
      for (int64_t i = 0; i < ids_num; ++i) {
210 211 212 213 214 215
        if (padding_idx != kNoPadding && ids_data[i] == padding_idx) {
          // the gradient of padding_idx should be 0, already done by memset, so
          // do nothing.
        } else {
          PADDLE_ENFORCE_LT(
              ids_data[i], N,
216 217 218 219 220
              platform::errors::InvalidArgument(
                  "Variable value (input) of OP(fluid.layers.embedding) "
                  "expected >= 0 and < %ld, but got %ld. Please check input "
                  "value.",
                  N, ids_data[i]));
221 222
          PADDLE_ENFORCE_GE(
              ids_data[i], 0,
223 224 225 226 227
              platform::errors::InvalidArgument(
                  "Variable value (input) of OP(fluid.layers.embedding) "
                  "expected >= 0 and < %ld, but got %ld. Please check input "
                  "value.",
                  N, ids_data[i]));
228 229 230 231 232 233 234 235 236 237 238
          for (int j = 0; j < D; ++j) {
            d_table_data[ids_data[i] * D + j] += d_output_data[i * D + j];
          }
        }
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle