log_softmax_op.cu 7.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include <limits>
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
17
#include "paddle/fluid/operators/log_softmax_op.h"
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
#include "paddle/fluid/platform/cuda_device_function.h"

namespace paddle {
namespace operators {

#define LAUNCH_WARP_FORWAR_COMPUTE(near_greater_power_of_two)                \
  case near_greater_power_of_two:                                            \
    ComputeLogSoftmaxForwardInWarp<                                          \
        T, AccT, near_greater_power_of_two><<<blocks, threads, 0, stream>>>( \
        dst, src, outer_size, dim_size);                                     \
    break;

template <typename T, int KernelWarpSize>
__device__ __forceinline__ T WarpReduceSum(T value) {
#pragma unroll
  for (int offset = KernelWarpSize / 2; offset > 0; offset /= 2) {
    T sum_val = platform::CudaShuffleXorSync(0xFFFFFFFF, value, offset);
    value = value + sum_val;
  }
  return value;
}

template <typename T, int KernelWarpSize>
__device__ __forceinline__ T WarpReduceMax(T value) {
#pragma unroll
  for (int offset = KernelWarpSize / 2; offset > 0; offset /= 2) {
    T max_val = platform::CudaShuffleXorSync(0xFFFFFFFF, value, offset);
    value = max(value, max_val);
  }
  return value;
}

int GetNearGreaterPowerOfTwo(int value) {
  int log2_value = 0;
  while ((1 << log2_value) < value) {
    ++log2_value;
  }
  return 1 << log2_value;
}

template <typename T, typename AccT, int NearGreaterPowerOfTwo>
__global__ void ComputeLogSoftmaxForwardInWarp(T *dst, const T *src,
                                               int batch_size,
                                               int element_count) {
  constexpr int near_greater_power_of_two = NearGreaterPowerOfTwo;
  constexpr int kernel_warp_size =
      (near_greater_power_of_two < 32) ? near_greater_power_of_two : 32;
  constexpr int warp_iter = near_greater_power_of_two / kernel_warp_size;
  int batch_id = blockDim.y * blockIdx.x + threadIdx.y;

  // set effective_warp_id as 1 when warps do effective work,
  // when warps do ineffective work, effective_warp_id remains unchanged.
  int effective_warp_id = batch_size - batch_id;
  if (effective_warp_id > 1) effective_warp_id = 1;

  int thread_in_warp_idx = threadIdx.x;

  // 1.read data from global memory to registers
  AccT elements[warp_iter];
  // set effective_element_count as the num of elements when warps do effective
  // work
  // set effective_element_count as 0, when warps do ineffective work
  int effective_element_count = (effective_warp_id <= 0) ? 0 : element_count;
  for (int it = 0; it < warp_iter; ++it) {
    int element_index = thread_in_warp_idx + it * kernel_warp_size;
    if (element_index < effective_element_count) {
      elements[it] =
          static_cast<AccT>(src[batch_id * element_count + element_index]);
    } else {
      elements[it] = -std::numeric_limits<AccT>::infinity();
    }
  }

  // 2.compute max_value. For each thread, loop all registers to find max
  AccT max_value = elements[0];
#pragma unroll
  for (int it = 1; it < warp_iter; ++it) {
    max_value = (max_value > elements[it]) ? max_value : elements[it];
  }
  max_value = WarpReduceMax<AccT, kernel_warp_size>(max_value);

  // 3.For each warp, accumulate all thread registers
  AccT sum = 0.0f;
#pragma unroll
  for (int it = 0; it < warp_iter; ++it) {
    sum += std::exp(elements[it] - max_value);
  }
  sum = WarpReduceSum<AccT, kernel_warp_size>(sum);

  // 4.store result.
  sum = std::log(sum);
#pragma unroll
  for (int it = 0; it < warp_iter; ++it) {
    int element_index = thread_in_warp_idx + it * kernel_warp_size;
    if (element_index < element_count) {
      dst[batch_id * element_count + element_index] =
          static_cast<T>(elements[it] - max_value - sum);
    } else {
      break;
    }
  }
}

template <typename T, typename AccT>
void LaunchSoftmaxForwardForLastAxis(T *dst, const T *src, int dim_size,
                                     int outer_size, gpuStream_t stream) {
  int threads_per_block = 128;
  int near_greater_power_of_two = GetNearGreaterPowerOfTwo(dim_size);
  int kernel_warp_size =
      (near_greater_power_of_two < 32) ? near_greater_power_of_two : 32;
  int warps_per_block = (threads_per_block / kernel_warp_size);
  int blocks = (outer_size + warps_per_block - 1) / warps_per_block;
  dim3 threads(kernel_warp_size, warps_per_block, 1);

  switch (near_greater_power_of_two) {
    LAUNCH_WARP_FORWAR_COMPUTE(1);
    LAUNCH_WARP_FORWAR_COMPUTE(2);
    LAUNCH_WARP_FORWAR_COMPUTE(4);     // dim_size: 3~4
    LAUNCH_WARP_FORWAR_COMPUTE(8);     // dim_size: 5~8
    LAUNCH_WARP_FORWAR_COMPUTE(16);    // dim_size: 9~16
    LAUNCH_WARP_FORWAR_COMPUTE(32);    // dim_size: 17~32
    LAUNCH_WARP_FORWAR_COMPUTE(64);    // dim_size: 33~64
    LAUNCH_WARP_FORWAR_COMPUTE(128);   // dim_size 65~128
    LAUNCH_WARP_FORWAR_COMPUTE(256);   // dim_size 129~256
    LAUNCH_WARP_FORWAR_COMPUTE(512);   // dim_size 257~512
    LAUNCH_WARP_FORWAR_COMPUTE(1024);  // dim_size 513~1024

    default:
      break;
  }
}

template <typename T>
class LogSoftmaxKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
  using MPDType = typename details::MPTypeTrait<T>::Type;

 public:
  void Compute(const framework::ExecutionContext &context) const override {
    const auto *x = context.Input<framework::Tensor>("X");
    auto *out = context.Output<framework::Tensor>("Out");
    const auto *input_data = x->data<T>();
    auto *output_data = out->mutable_data<T>(context.GetPlace());

    const int rank = x->dims().size();
    const int axis = CanonicalAxis(context.Attr<int>("axis"), rank);

    int dim_size = x->dims()[axis];
    int inner_size = 1;
    for (int i = axis + 1; i < x->dims().size(); ++i) {
      inner_size *= x->dims()[i];
    }
    int outer_size = SizeToAxis(axis, x->dims());
    gpuStream_t stream = context.cuda_device_context().stream();

    if (inner_size == 1 && dim_size <= 1024 && dim_size * sizeof(T) <= 4096) {
      LaunchSoftmaxForwardForLastAxis<T, MPDType>(output_data, input_data,
                                                  dim_size, outer_size, stream);
    } else {
      LogSoftmaxFunctor<platform::CUDADeviceContext, T>()(
          context.template device_context<platform::CUDADeviceContext>(), x,
          out, axis);
    }
  }
};

}  // operators
}  // paddle
186 187 188 189 190 191 192 193 194 195 196

namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_CUDA_KERNEL(
    log_softmax, ops::LogSoftmaxKernel<plat::CUDADeviceContext, float>,
    ops::LogSoftmaxKernel<plat::CUDADeviceContext, double>,
    ops::LogSoftmaxKernel<plat::CUDADeviceContext, plat::float16>);
REGISTER_OP_CUDA_KERNEL(
    log_softmax_grad, ops::LogSoftmaxGradKernel<plat::CUDADeviceContext, float>,
    ops::LogSoftmaxGradKernel<plat::CUDADeviceContext, double>,
    ops::LogSoftmaxGradKernel<plat::CUDADeviceContext, plat::float16>);