ipu_resnet50_test.cc 4.1 KB
Newer Older
J
jianghaicheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <glog/logging.h>
#include <gtest/gtest.h>
#include <cmath>

#include "gflags/gflags.h"
#include "paddle/fluid/inference/tests/api/tester_helper.h"

namespace paddle {
namespace inference {

static std::vector<float> truth_values = {
    127.779f,  738.165f,  1013.22f,  -438.17f,  366.401f,  927.659f,  736.222f,
    -633.684f, -329.927f, -430.155f, -633.062f, -146.548f, -1324.28f, -1349.36f,
    -242.675f, 117.448f,  -801.723f, -391.514f, -404.818f, 454.16f,   515.48f,
    -133.031f, 69.293f,   590.096f,  -1434.69f, -1070.89f, 307.074f,  400.525f,
    -316.12f,  -587.125f, -161.056f, 800.363f,  -96.4708f, 748.706f,  868.174f,
    -447.938f, 112.737f,  1127.2f,   47.4355f,  677.72f,   593.186f,  -336.4f,
    551.362f,  397.823f,  78.3979f,  -715.398f, 405.969f,  404.256f,  246.019f,
    -8.42969f, 131.365f,  -648.051f};

// Compare results with 1 batch
TEST(Analyzer_Resnet50_ipu, compare_results_1_batch) {
  std::string model_dir = FLAGS_infer_model + "/" + "model";
  AnalysisConfig config;
  // num_ipu, enable_pipelining, batches_per_step, batch_size,
  // need_avg_shard
  config.EnableIpu(1, false);
  config.SetModel(model_dir + "/model", model_dir + "/params");

  std::vector<PaddleTensor> inputs;
  auto predictor = CreatePaddlePredictor(config);
  const int batch = 1;
  const int channel = 3;
  const int height = 318;
  const int width = 318;
  const int input_num = batch * channel * height * width;
  std::vector<float> input(input_num, 1);

  PaddleTensor in;
  in.shape = {batch, channel, height, width};
  in.data =
      PaddleBuf(static_cast<void*>(input.data()), input_num * sizeof(float));
  in.dtype = PaddleDType::FLOAT32;
  inputs.emplace_back(in);

  std::vector<PaddleTensor> outputs;

  ASSERT_TRUE(predictor->Run(inputs, &outputs));

  const size_t expected_size = 1;
  EXPECT_EQ(outputs.size(), expected_size);
  float* data_o = static_cast<float*>(outputs[0].data.data());

  for (size_t j = 0; j < outputs[0].data.length() / sizeof(float); j += 10) {
    EXPECT_NEAR((data_o[j] - truth_values[j / 10]) / truth_values[j / 10], 0.,
                12e-5);
  }
}

// Compare results with 2 batch
TEST(Analyzer_Resnet50_ipu, compare_results_2_batch) {
  std::string model_dir = FLAGS_infer_model + "/" + "model";
  AnalysisConfig config;
  // num_ipu, enable_pipelining, batches_per_step, batch_size,
  // need_avg_shard
  config.EnableIpu(2, false, 1, 2, 1);
  config.SetModel(model_dir + "/model", model_dir + "/params");

  std::vector<PaddleTensor> inputs;
  auto predictor = CreatePaddlePredictor(config);
  const int batch = 2;
  const int channel = 3;
  const int height = 318;
  const int width = 318;
  const int input_num = batch * channel * height * width;
  std::vector<float> input(input_num, 1);

  PaddleTensor in;
  in.shape = {batch, channel, height, width};
  in.data =
      PaddleBuf(static_cast<void*>(input.data()), input_num * sizeof(float));
  in.dtype = PaddleDType::FLOAT32;
  inputs.emplace_back(in);

  std::vector<PaddleTensor> outputs;

  ASSERT_TRUE(predictor->Run(inputs, &outputs));

  const size_t expected_size = 1;
  EXPECT_EQ(outputs.size(), expected_size);
  float* data_o = static_cast<float*>(outputs[0].data.data());

  auto num_output_per_batch = outputs[0].data.length() / sizeof(float) / 2;
  for (size_t j = 0; j < num_output_per_batch; j += 10) {
    EXPECT_NEAR((data_o[j] - truth_values[j / 10]) / truth_values[j / 10], 0.,
                12e-5);
    EXPECT_NEAR((data_o[j + num_output_per_batch] - truth_values[j / 10]) /
                    truth_values[j / 10],
                0., 12e-5);
  }
}

}  // namespace inference
}  // namespace paddle