test_mkldnn_op_nhwc.cc 5.2 KB
Newer Older
J
Jacek Czaja 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <algorithm>
#include <cstdlib>
#include <memory>
#include <random>
#include "gtest/gtest.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"

USE_OP(pool2d);
USE_OP_DEVICE_KERNEL(pool2d, MKLDNN);
J
Jacek Czaja 已提交
30 31
USE_OP(relu);
USE_OP_DEVICE_KERNEL(relu, MKLDNN);
J
Jacek Czaja 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
USE_OP(transpose);
USE_OP_DEVICE_KERNEL(transpose, MKLDNN);

namespace paddle {
namespace operators {

struct InputVars {
  std::string name;
  framework::LoDTensor *tensor;
};

TEST(test_pool2d_transpose_nhwc, cpu_place) {
  framework::DDim dims({1, 4, 8, 512});           // NHWC shape
  framework::DDim expected_dims({1, 7, 512, 3});  // NHWC expected shape
  platform::CPUPlace p;
  framework::Scope scope;

  InputVars input_name = {"x",
                          scope.Var("x")->GetMutable<framework::LoDTensor>()};
  // Initialize input data
  std::uniform_real_distribution<float> dist(static_cast<float>(10.0),
                                             static_cast<float>(20.0));
  std::mt19937 engine;
  size_t numel = static_cast<size_t>(framework::product(dims));
  input_name.tensor->Resize(dims);
  auto data_ptr = input_name.tensor->mutable_data<float>(p);
  for (size_t i = 0; i < numel; ++i) {
    data_ptr[i] = dist(engine);
  }

  scope.Var("y")->GetMutable<framework::LoDTensor>();
  auto *z = scope.Var("z")->GetMutable<framework::LoDTensor>();

  auto &pool = platform::DeviceContextPool::Instance();

  // Make pool2d followed by transpose

  auto ksize = std::vector<int>(2, 2);
  auto op_pool = framework::OpRegistry::CreateOp(
      "pool2d", {{"X", {"x"}}}, {{"Out", {"y"}}},
      {{"pooling_type", {std::string("max")}},
       {"ksize", {ksize}},
       {"data_format", {std::string("NHWC")}},
       {"use_mkldnn", {true}}});

  auto axis = std::vector<int>(4, 0);
  axis[1] = 2;
  axis[2] = 3;
  axis[3] = 1;
  auto op_transpose = framework::OpRegistry::CreateOp(
      "transpose", {{"X", {"y"}}}, {{"Out", {"z"}}},
      {{"axis", {axis}}, {"use_mkldnn", {true}}});

  op_pool->Run(scope, p);
  op_transpose->Run(scope, p);
  pool.Get(p)->Wait();

  // Verify shape of output
  PADDLE_ENFORCE_EQ(z->dims(), expected_dims,
                    platform::errors::InvalidArgument(
                        "Computed shape does not match expected shape"));
}

J
Jacek Czaja 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
TEST(test_pool2d_relu_relu_nhwc, cpu_place) {
  framework::DDim dims({1, 4, 8, 512});           // NHWC shape
  framework::DDim expected_dims({1, 512, 3, 7});  // NHWC expected shape
  platform::CPUPlace p;
  framework::Scope scope;

  InputVars input_name = {"x",
                          scope.Var("x")->GetMutable<framework::LoDTensor>()};
  // Initialize input data
  std::uniform_real_distribution<float> dist(static_cast<float>(10.0),
                                             static_cast<float>(20.0));
  std::mt19937 engine;
  size_t numel = static_cast<size_t>(framework::product(dims));
  input_name.tensor->Resize(dims);
  auto data_ptr = input_name.tensor->mutable_data<float>(p);
  for (size_t i = 0; i < numel; ++i) {
    data_ptr[i] = dist(engine);
  }

  scope.Var("y")->GetMutable<framework::LoDTensor>();
  scope.Var("u")->GetMutable<framework::LoDTensor>();
  auto *z = scope.Var("z")->GetMutable<framework::LoDTensor>();

  auto &pool = platform::DeviceContextPool::Instance();

  // Make pool2d(oneDNN) followed by relu(CPU paddle) followed by
  // relu(oneDNN). Second relu should make a shape rotation to NCHW

  auto ksize = std::vector<int>(2, 2);
  auto op_pool = framework::OpRegistry::CreateOp(
      "pool2d", {{"X", {"x"}}}, {{"Out", {"y"}}},
      {{"pooling_type", {std::string("max")}},
       {"ksize", {ksize}},
       {"data_format", {std::string("NHWC")}},
       {"use_mkldnn", {true}}});

  auto axis = std::vector<int>(4, 0);
  axis[1] = 2;
  axis[2] = 3;
  axis[3] = 1;
  auto op_relu1 = framework::OpRegistry::CreateOp(
      "relu", {{"X", {"y"}}}, {{"Out", {"u"}}},
      {{"axis", {axis}}, {"use_mkldnn", {false}}});

  auto op_relu2 = framework::OpRegistry::CreateOp(
      "relu", {{"X", {"u"}}}, {{"Out", {"z"}}}, {{"use_mkldnn", {true}}});

  op_pool->Run(scope, p);
  op_relu1->Run(scope, p);
  op_relu2->Run(scope, p);

  pool.Get(p)->Wait();

  // Verify shape of output
  PADDLE_ENFORCE_EQ(z->dims(), expected_dims,
                    platform::errors::InvalidArgument(
                        "Computed shape does not match expected shape"));
}
J
Jacek Czaja 已提交
153 154
}  // namespace operators
}  // namespace paddle