elementwise_op.h 23.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14 15

#pragma once
C
chengduo 已提交
16

17
#include <algorithm>  // for max
L
liuwei1031 已提交
18
#include <memory>
19
#include <string>
L
liuwei1031 已提交
20
#include <unordered_map>
21
#include <vector>
22

23
#include "paddle/fluid/framework/data_layout.h"
24
#include "paddle/fluid/framework/op_version_registry.h"
25
#include "paddle/fluid/operators/common_infer_shape_functions.h"
26
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
C
chengduo 已提交
27

28 29 30
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
G
gongweibao 已提交
31 32 33 34 35 36 37 38 39

namespace paddle {
namespace operators {

class ElementwiseOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  using Tensor = framework::Tensor;
C
chengduo 已提交
40 41

  void InferShape(framework::InferShapeContext *ctx) const override {
42 43 44 45 46 47 48 49 50 51 52
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ElementwiseOp");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "ElementwiseOp");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "ElementwiseOp");

    PADDLE_ENFORCE_EQ(
        ctx->GetInputsVarType("Y").front(),
        framework::proto::VarType::LOD_TENSOR,
        platform::errors::InvalidArgument(
            "The input var's type should be LoDTensor, but the "
            "received is %s [%s].",
            ctx->GetInputsVarType("Y").front(), ctx->Inputs("Y").front()));
C
chengduo 已提交
53 54

    if (ctx->GetInputsVarType("X").front() ==
55
        framework::proto::VarType::SELECTED_ROWS) {
56 57
      PADDLE_ENFORCE_EQ(
          ctx->GetInputDim("Y").size(), 1u,
58 59 60 61 62
          platform::errors::InvalidArgument(
              "For elementwise_op, if X is Sparse(VarType.SELECTED_ROWS"
              "), Y must be scalar, the size of Y should be 1. "
              "But reveived the size of Y = %s.",
              ctx->GetInputDim("Y").size()));
63 64
      PADDLE_ENFORCE_EQ(
          ctx->GetInputDim("Y")[0], 1,
65 66 67 68 69
          platform::errors::InvalidArgument(
              "For elementwise_op, if X is Sparse(VarType.SELECTED_ROWS"
              "), Y must be scalar, the first dimension of Y should be 1. "
              "But reveived the first dimension of Y = %s.",
              ctx->GetInputDim("Y")[0]));
70 71
    } else if (ctx->GetInputsVarType("X").front() !=
               framework::proto::VarType::LOD_TENSOR) {
72 73 74 75
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Input X's type[%s] is not supported by elementwise_op. Please set "
          "its type to LOD_TENSOR.",
          ctx->GetInputsVarType("X").front()));
C
chengduo 已提交
76
    }
77

78 79 80 81 82 83 84 85
    if (ctx->GetInputDim("X") == ctx->GetInputDim("Y")) {
      ctx->ShareDim("X", /*->*/ "Out");
      ctx->ShareLoD("X", /*->*/ "Out");
    } else {
      auto x_dims = ctx->GetInputDim("X");
      auto y_dims = ctx->GetInputDim("Y");
      int max_dim = std::max(x_dims.size(), y_dims.size());
      int axis = ctx->Attrs().Get<int>("axis");
86 87 88 89 90 91 92 93
      if (x_dims.size() == y_dims.size()) {
        PADDLE_ENFORCE_EQ((axis == -1) || (axis == 0), true,
                          platform::errors::InvalidArgument(
                              "axis should be -1 or 0 while the dimension of "
                              "tensor X (%s) is equal to the dimension of "
                              "tensor Y (%s), but received axis: %s",
                              x_dims.size(), y_dims.size(), axis));
      }
94 95 96 97 98 99 100
      PADDLE_ENFORCE_EQ((axis >= (-1 * max_dim)) && (axis < max_dim), true,
                        platform::errors::InvalidArgument(
                            "The axis range must be [%s, %s), but axis is %s. "
                            "Please set the axis again.",
                            -1 * max_dim, max_dim, axis));
      axis = (axis < 0 ? (std::abs(x_dims.size() - y_dims.size()) + axis + 1)
                       : axis);
101 102 103
      std::vector<int> x_dims_array(max_dim);
      std::vector<int> y_dims_array(max_dim);
      std::vector<int> out_dims_array(max_dim);
J
Jacek Czaja 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
#ifdef PADDLE_WITH_MKLDNN
      // (jczaja): Broadcasting of dims has to be done on Paddle shapes (NHWC)
      // if model is using NHWC.
      bool should_rotate =
          ctx->IsRunMKLDNNKernel() &&
          (platform::MKLDNNDeviceContext::tls().get_cur_paddle_data_layout() ==
           framework::DataLayout::kNHWC);
      if (should_rotate) {
        // Pick bigger shape and rotate this one
        bool x_over_y = (x_dims.size() > y_dims.size());
        auto vdims = x_over_y ? framework::vectorize<int>(x_dims)
                              : framework::vectorize<int>(y_dims);
        std::rotate(vdims.begin() + 1, vdims.begin() + 2, vdims.end());
        if (x_over_y) {
          x_dims = framework::make_ddim(vdims);
        } else {
          y_dims = framework::make_ddim(vdims);
        }
      }
#endif

125 126 127
      GetBroadcastDimsArrays(x_dims, y_dims, x_dims_array.data(),
                             y_dims_array.data(), out_dims_array.data(),
                             max_dim, axis);
J
Jacek Czaja 已提交
128 129 130 131 132 133 134
#ifdef PADDLE_WITH_MKLDNN
      // Now rotate shape back if needed (NHWC -> NCHW)
      if (should_rotate) {
        std::rotate(out_dims_array.begin() + 1, out_dims_array.end() - 1,
                    out_dims_array.end());
      }
#endif
135 136 137 138
      ctx->SetOutputDim("Out", framework::make_ddim(out_dims_array));
      // to do
      ctx->ShareLoD("X", /*->*/ "Out");
    }
G
gongweibao 已提交
139
  }
140 141

  framework::OpKernelType GetExpectedKernelType(
C
chengduo 已提交
142
      const framework::ExecutionContext &ctx) const override {
143 144
    auto input_data_type =
        OperatorWithKernel::IndicateOrPromoteVarDataTypes(ctx, "X", "Y");
145 146

#ifdef PADDLE_WITH_MKLDNN
147
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
148 149 150 151 152 153 154
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
155 156 157

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
158
      const framework::OpKernelType &expected_kernel_type) const override {
159 160 161 162 163
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
      return framework::OpKernelType(tensor.type(), tensor.place(),
                                     tensor.layout());
    } else {
J
Jacek Czaja 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
#ifdef PADDLE_WITH_MKLDNN
      // When elementwise is first oneDNN op (there was some non oneDNN op
      // previously)
      // then we also need to rotate shape NHWC -> NCWH
      if ((expected_kernel_type.data_layout_ ==
           framework::DataLayout::kMKLDNN) &&
          (tensor.layout() != framework::DataLayout::kMKLDNN) &&
          paddle::platform::MKLDNNDeviceContext::tls()
                  .get_cur_paddle_data_layout() ==
              framework::DataLayout::kNHWC) {
        return framework::OpKernelType(expected_kernel_type.data_type_,
                                       tensor.place(),
                                       framework::DataLayout::kNHWC);
      }
#endif
179 180 181 182
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
G
gongweibao 已提交
183 184
};

C
chengduo 已提交
185 186 187
class ElementwiseOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
188
  std::unordered_map<std::string, std::string> &GetInputOutputWithSameType()
C
chengduo 已提交
189
      const override {
190 191
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
192 193 194
  }
};

G
gongweibao 已提交
195 196
class ElementwiseOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
197
  void Make() final {
198 199 200 201
    AddInputX();
    AddInputY();
    AddOpOutput();

G
gongweibao 已提交
202
    AddAttr<int>("axis",
203 204 205 206
                 "(int, default -1). If X.dimension != Y.dimension,"
                 "Y.dimension must be a subsequence of x.dimension. And axis "
                 "is the start dimension index "
                 "for broadcasting Y onto X. ")
207
        .SetDefault(-1);
208
    AddAttr<bool>("use_mkldnn", "(bool, default false). Used by MKLDNN.")
209 210
        .SetDefault(false)
        .AsExtra();
211
    AddAttr<std::string>("x_data_format", "This parameter is no longer used.")
212 213
        .SetDefault("")
        .AsExtra();
214
    AddAttr<std::string>("y_data_format", "This parameter is no longer used.")
215 216
        .SetDefault("")
        .AsExtra();
217 218 219 220
    AddAttr<bool>(
        "use_quantizer",
        "(bool, default false) "
        "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
221 222
        .SetDefault(false)
        .AsExtra();
223 224 225 226
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
227 228
        .InEnum({"float32", "int8", "bfloat16"})
        .AsExtra();
229
    /* int8 parameters */
230 231
    AddAttr<float>("Scale_x",
                   "(float, default 1.0f), The quantize scale of X tensor")
232 233
        .SetDefault(1.0f)
        .AsExtra();
234 235
    AddAttr<float>("Scale_y",
                   "(float, default 1.0f), The quantize scale of Y tensor")
236 237
        .SetDefault(1.0f)
        .AsExtra();
238 239
    AddAttr<float>("Scale_out",
                   "(float, default 1.0f), The quantize scale of output data")
240 241
        .SetDefault(1.0f)
        .AsExtra();
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
    AddOpComment();
  }

 protected:
  virtual void AddInputX() {
    AddInput("X", "(Tensor), The first input tensor of elementwise op.");
  }
  virtual void AddInputY() {
    AddInput("Y", "(Tensor), The second input tensor of elementwise op.");
  }
  virtual void AddOpOutput() {
    AddOutput("Out",
              "N-dimension tensor. A location into which the result is stored. "
              "It's dimension "
              "equals with x");
  }
  virtual void AddOpComment() { AddComment(GetCommentExamples()); }

  virtual std::string GetOpFuntionality() const { return ""; }

  virtual std::string GetName() const = 0;
  virtual std::string GetEquation() const = 0;

  std::string GetCommentExamples() const {
    return string::Sprintf(R"DOC(
Elementwise %s Operator.

%s
K
kexinzhao 已提交
270 271 272

The equation is:

Y
Yu Yang 已提交
273
$$%s$$
K
kexinzhao 已提交
274

275
- $X$: a tensor of any dimension.
L
Luo Tao 已提交
276
- $Y$: a tensor whose dimensions must be less than or equal to the dimensions of $X$.
K
kexinzhao 已提交
277 278

There are two cases for this operator:
279

L
Luo Tao 已提交
280 281
1. The shape of $Y$ is the same with $X$.
2. The shape of $Y$ is a continuous subsequence of $X$.
K
kexinzhao 已提交
282 283

For case 2:
284

285 286
1. Broadcast $Y$ to match the shape of $X$, where $axis$ is the start dimension index
   for broadcasting $Y$ onto $X$.
L
Luo Tao 已提交
287
2. If $axis$ is -1 (default), $axis = rank(X) - rank(Y)$.
288
3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of
L
Luo Tao 已提交
289
   subsequence, such as shape(Y) = (2, 1) => (2).
K
kexinzhao 已提交
290

L
Luo Tao 已提交
291
For example:
292

G
gongweibao 已提交
293
  .. code-block:: text
G
gongweibao 已提交
294

295 296
    shape(X) = (2, 3, 4, 5), shape(Y) = (,)
    shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
L
Luo Tao 已提交
297
    shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
298 299
    shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
300
    shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
301

Y
Yu Yang 已提交
302
)DOC",
303
                           GetName(), GetOpFuntionality(), GetEquation());
G
gongweibao 已提交
304 305 306 307 308 309 310 311
  }
};

class ElementwiseOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

C
chengduo 已提交
312
  void InferShape(framework::InferShapeContext *ctx) const override {
313
    auto out_grad_name = framework::GradVarName("Out");
314 315 316
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "ElementwiseOpGrad");
    OP_INOUT_CHECK(ctx->HasInput(out_grad_name), "Input", out_grad_name,
                   "ElementwiseOpGrad");
Q
Qiao Longfei 已提交
317 318 319
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
320 321
      ctx->ShareDim("X", /*->*/ x_grad_name);
      ctx->ShareLoD("X", /*->*/ x_grad_name);
G
gongweibao 已提交
322
    }
Q
Qiao Longfei 已提交
323
    if (ctx->HasOutput(y_grad_name)) {
324 325
      ctx->ShareDim("Y", /*->*/ y_grad_name);
      ctx->ShareLoD("Y", /*->*/ y_grad_name);
G
gongweibao 已提交
326 327
    }
  }
328 329

  framework::OpKernelType GetExpectedKernelType(
C
chengduo 已提交
330
      const framework::ExecutionContext &ctx) const override {
331 332
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
333 334

#ifdef PADDLE_WITH_MKLDNN
335
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
336 337 338 339 340 341 342
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
C
chentianyu03 已提交
343 344 345 346 347 348 349 350 351 352 353 354 355

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
      return framework::OpKernelType(tensor.type(), tensor.place(),
                                     tensor.layout());
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
356 357 358 359 360 361 362 363 364 365 366 367
  framework::KernelSignature GetExpectedPtenKernelArgs(
      const framework::ExecutionContext &ctx) const override {
    if (Type() == "elementwise_add_grad") {
      if (ctx.InputVar("X")->IsType<framework::LoDTensor>()) {
        return framework::KernelSignature(
            "add_grad", {"X", "Y", framework::GradVarName("Out")}, {"axis"},
            {framework::GradVarName("X"), framework::GradVarName("Y")});
      }
    }

    return framework::KernelSignature("None", {"X"}, {}, {"Out"});
  }
G
gongweibao 已提交
368
};
369

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
class ElementwiseOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

  void InferShape(framework::InferShapeContext *ctx) const override {
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->ShareDim("X", x_grad_name);
      ctx->ShareLoD("X", x_grad_name);
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->ShareDim("Y", y_grad_name);
      ctx->ShareLoD("Y", y_grad_name);
    }
    if (ctx->HasOutput("DDOut")) {
      ctx->ShareDim("DOut", "DDOut");
      ctx->ShareLoD("DOut", "DDOut");
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
394
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "DOut");
395 396

#ifdef PADDLE_WITH_MKLDNN
397
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
398 399 400 401 402 403 404
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
C
chentianyu03 已提交
405 406 407 408 409 410 411 412 413 414 415 416 417

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
      return framework::OpKernelType(tensor.type(), tensor.place(),
                                     tensor.layout());
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
};

class ElementwiseOpDoubleGradWithoutDXDY
    : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

  void InferShape(framework::InferShapeContext *ctx) const override {
    if (ctx->HasOutput("DDOut")) {
      ctx->ShareDim("DOut", "DDOut");
      ctx->ShareLoD("DOut", "DDOut");
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
435 436
    framework::proto::VarType::Type input_data_type;
    if (ctx.HasInput("DDX") == false) {
437 438
      OP_INOUT_CHECK(ctx.HasInput("DDY"), "Input", "DDY",
                     "ElementwiseOpDoubleGradWithoutDXDY");
439
      input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "DDY");
440
    } else if (ctx.HasInput("DDY") == false) {
441 442
      OP_INOUT_CHECK(ctx.HasInput("DDX"), "Input", "DDX",
                     "ElementwiseOpDoubleGradWithoutDXDY");
443
      input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "DDX");
444
    } else {
445 446
      input_data_type =
          OperatorWithKernel::IndicateOrPromoteVarDataTypes(ctx, "DDX", "DDY");
447
    }
448 449

#ifdef PADDLE_WITH_MKLDNN
450
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
451 452 453 454 455 456 457
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
458 459 460 461 462 463 464 465 466 467 468 469 470

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
      return framework::OpKernelType(tensor.type(), tensor.place(),
                                     tensor.layout());
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
471 472
};

473 474 475 476 477 478 479 480 481 482 483 484 485 486
class ElementwiseOpTripleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

  void InferShape(framework::InferShapeContext *ctx) const override {
    if (ctx->HasOutput("D_DDX")) {
      ctx->ShareDim("DDX", "D_DDX");
      ctx->ShareLoD("DDX", "D_DDX");
    }
    if (ctx->HasOutput("D_DDY")) {
      ctx->ShareDim("DDY", "D_DDY");
      ctx->ShareLoD("DDY", "D_DDY");
    }
487 488 489 490 491 492 493 494 495 496 497 498
    if (ctx->HasOutput("D_X")) {
      ctx->ShareDim("X", "D_X");
      ctx->ShareLoD("X", "D_X");
    }
    if (ctx->HasOutput("D_Y")) {
      ctx->ShareDim("Y", "D_Y");
      ctx->ShareLoD("Y", "D_Y");
    }
    if (ctx->HasOutput("D_DOut")) {
      ctx->ShareDim("DOut", "D_DOut");
      ctx->ShareLoD("DOut", "D_DOut");
    }
499 500 501 502 503
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    framework::proto::VarType::Type input_data_type;
504
    input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "D_DDOut");
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
      return framework::OpKernelType(tensor.type(), tensor.place(),
                                     tensor.layout());
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
};

530 531 532
template <typename T>
class ElemwiseGradKernel : public framework::OpKernel<T> {
 public:
C
chengduo 已提交
533 534
  void Compute(const framework::ExecutionContext &context) const override {
    auto *dx =
535
        context.Output<framework::LoDTensor>(framework::GradVarName("X"));
536 537 538
    auto &dout =
        *context.Input<framework::LoDTensor>(framework::GradVarName("Out"));
    pten::funcs::ElementwiseGradPreProcess(dout, dx);
539 540 541
  }
};

542 543
DECLARE_INPLACE_OP_INFERER(ElementwiseOpInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(ElementwiseGradOpInplaceInferer,
544 545
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
546 547
DECLARE_INPLACE_OP_INFERER(ElementwiseDoubleGradOpInplaceInferer,
                           {"DDX", "DDOut"});
D
dzhwinter 已提交
548

549 550 551
DECLARE_INPLACE_OP_INFERER(ElementwiseTripleGradOpInplaceInferer,
                           {"D_DDOut", "D_DDX"});

552 553 554
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ElementwiseGradNoBufVarsInferer, "X", "Y");
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ElementwiseDoubleGradNoBufVarsInferer, "Y",
                                    "DOut");
555 556
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ElementwiseTripleGradNoBufVarsInferer,
                                    "DDX", "DDY");
S
sneaxiy 已提交
557

G
gongweibao 已提交
558 559
}  // namespace operators
}  // namespace paddle
H
hong 已提交
560 561 562 563 564 565 566 567
#define REGISTER_ELEMWISE_GRAD_MAKER(kernel_type, op_name)              \
  template <typename T>                                                 \
  class kernel_type##GradMaker                                          \
      : public paddle::framework::SingleGradOpMaker<T> {                \
   public:                                                              \
    using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker; \
                                                                        \
   protected:                                                           \
568
    void Apply(::paddle::framework::GradOpPtr<T> op) const override {   \
H
hong 已提交
569
      op->SetType(#kernel_type "_grad");                                \
570
      op->SetInput("X", this->Input("X"));                              \
H
hong 已提交
571 572 573 574 575 576 577 578 579
      op->SetInput("Y", this->Input("Y"));                              \
      op->SetInput(::paddle::framework::GradVarName("Out"),             \
                   this->OutputGrad("Out"));                            \
      op->SetAttrMap(this->Attrs());                                    \
      op->SetOutput(::paddle::framework::GradVarName("X"),              \
                    this->InputGrad("X"));                              \
      op->SetOutput(::paddle::framework::GradVarName("Y"),              \
                    this->InputGrad("Y"));                              \
    }                                                                   \
580 581
  }

582 583 584 585
#define REGISTER_ELEMWISE_EXPLICIT_OP_WITHOUT_GRAD(op_type, op_name)    \
  REGISTER_OPERATOR(op_type, ::paddle::operators::ElementwiseOp,        \
                    ::paddle::operators::Elementwise##op_name##OpMaker, \
                    ::paddle::operators::ElementwiseOpInferVarType,     \
H
hong 已提交
586 587
                    op_type##GradMaker<::paddle::framework::OpDesc>,    \
                    op_type##GradMaker<::paddle::imperative::OpBase>,   \
588
                    ::paddle::operators::ElementwiseOpInplaceInferer);