optimization_tuner.py 21.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18
import copy
import json
import logging

19
# import yaml
20 21 22
import os
import pathlib
import pickle
23 24
import shlex
import shutil
25
import subprocess
26 27
import sys
import time
28 29 30

import paddle
from paddle.distributed.auto_parallel.completion import Completer
31
from paddle.distributed.auto_parallel.dist_context import DistributedContext
32
from paddle.distributed.auto_parallel.partitioner import Partitioner
33 34 35 36
from paddle.distributed.auto_parallel.process_group import (
    clear_all_process_groups,
    get_all_process_groups,
)
37 38 39 40 41 42 43 44
from paddle.distributed.auto_parallel.reshard import Resharder
from paddle.distributed.auto_parallel.utils import (
    debug_program,
    set_grad_var_shape,
)
from paddle.distributed.passes import PassContext, new_pass
from paddle.fluid import program_guard
from paddle.fluid.backward import append_backward
45

46
from ..utils import get_logger
47
from .algorithms import new_algorithm
48
from .config import TuningConfig
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
from .trial import TrialStatus


def _get_new_params_grads(target_program, ref_program, ref_params_grads):
    ref_block = ref_program.global_block()
    target_block = target_program.global_block()
    target_params_grads = []

    for p, g in ref_params_grads:
        # NOTE grad var might not be generated
        assert ref_block.has_var(p.name)
        assert target_block.has_var(p.name)
        new_p = target_block.var(p.name)
        if g:
            new_g = target_block.var(g.name)
        else:
            new_g = None

        target_params_grads.append((new_p, new_g))

    return target_params_grads


def _get_new_loss(target_program, ref_program, loss):
    ref_block = ref_program.global_block()
    target_block = target_program.global_block()
    assert ref_block.has_var(loss.name)

    return target_block.var(loss.name)


def parse_process_groups():
    group_map = {}
    all_process_groups = get_all_process_groups()
    for process_group in all_process_groups:
        group_map[process_group.id] = process_group.ranks
    return group_map


def get_metric(results):
    assert isinstance(
90 91
        results, dict
    ), "results should be type of dictionary, but got {}.".format(type(results))
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
    if 'Throughtput' in results and isinstance(results['Throughtput'], float):
        return float(results['Throughtput'])
    else:
        return -1.0


def parse_results(results):
    if results['Throughtput'] > 0:
        return "Throughtput: {} step / s.".format(results['Throughtput'])
    et = results.get("ErrorType", None)
    if et == "ResourceExhaustedError":
        return "Fail with OOM"
    else:
        return "Fail with UNKWON ERROR"


# TODO only dependent on dist context
# all env need to be start a new pass are member of dist context
def _copy_context(ref_dist_context):

    clear_all_process_groups()

    new_dist_context = DistributedContext()
115 116 117 118 119 120
    new_dist_context._serial_main_program = (
        ref_dist_context.serial_main_program.clone(for_test=False)
    )
    new_dist_context._serial_startup_program = (
        ref_dist_context.serial_startup_program.clone(for_test=False)
    )
121 122 123 124 125 126

    # mapping variable into new dist context
    if getattr(ref_dist_context, '_params_grads', None):
        new_dist_context._params_grads = _get_new_params_grads(
            new_dist_context.serial_main_program,
            ref_dist_context.serial_main_program,
127 128
            ref_dist_context._params_grads,
        )
129 130
    new_dist_context._serial_loss = _get_new_loss(
        new_dist_context.serial_main_program,
131 132 133
        ref_dist_context.serial_main_program,
        ref_dist_context.serial_loss,
    )
134 135 136 137 138 139 140

    for key, var_list in ref_dist_context._serial_feed_vars.items():
        new_var_list = []
        for var in var_list:
            block_idx = var.block.idx
            var_name = var.name
            var = new_dist_context._serial_main_program.blocks[
141 142
                block_idx
            ]._var_recursive(var_name)
143 144 145 146 147
            new_var_list.append(var)
        new_dist_context._serial_feed_vars[key] = new_var_list

    for key, var_list in ref_dist_context._serial_fetch_vars.items():
        new_var_list = []
148 149 150 151 152 153 154 155
        # metrics is a list of list
        if key == "metrics":
            for inner_var_list in var_list:
                new_inner_var_list = []
                for var in inner_var_list:
                    block_idx = var.block.idx
                    var_name = var.name
                    var = new_dist_context._serial_main_program.blocks[
156 157
                        block_idx
                    ]._var_recursive(var_name)
158 159 160 161 162 163 164
                    new_inner_var_list.append(var)
                new_var_list.append(new_inner_var_list)
        else:
            for var in var_list:
                block_idx = var.block.idx
                var_name = var.name
                var = new_dist_context._serial_main_program.blocks[
165 166
                    block_idx
                ]._var_recursive(var_name)
167
                new_var_list.append(var)
168 169 170 171
        new_dist_context._serial_fetch_vars[key] = new_var_list

    # copy information in forward and backward
    new_dist_context._serial_optimizer = copy.deepcopy(
172 173
        ref_dist_context.serial_optimizer
    )
174
    new_dist_context._dist_tensors_for_program = copy.deepcopy(
175 176
        ref_dist_context._dist_tensors_for_program
    )
177
    new_dist_context._dist_ops_for_program = copy.deepcopy(
178 179
        ref_dist_context._dist_ops_for_program
    )
180 181 182
    for pm in ref_dist_context.process_meshes:
        new_dist_context.add_process_mesh(pm)
    new_dist_context._dist_op_context = copy.deepcopy(
183 184
        ref_dist_context._dist_op_context
    )
185 186 187 188 189 190 191
    new_dist_context._block_state = copy.deepcopy(ref_dist_context.block_state)

    return new_dist_context


class OptimizationTuner:
    """
192
    OptimizationTuner is used to manage the tuning procedure of hyper-parameters (configs)
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
    of Optimization Pass in AutoParallel.
    """

    def __init__(
        self,
        user_configs,
        dist_context,
        dataset,
        inputs_spec,
        labels_spec,
        batch_size,
        rank,
    ):

        self._config = TuningConfig(user_configs, dist_context._strategy)
        # should not modify dist context from calling function
        self._baseline_dist_context = _copy_context(dist_context)
        self._baseline_completer = Completer(self._baseline_dist_context)

        self._rank = rank
        self._inputs_spec = inputs_spec
        self._labels_spec = labels_spec
        self._dataset = dataset
        self._batch_size = batch_size

        self._finished_trials = []
        self._best_metric = None
        self._best_iter = float("-inf")

        self._logger = get_logger(logging.INFO)

        self._build_programs_without_optimization()
        self._select_tuning_algorithm()

    @property
    def project_dir(self):
        dirname = self._config.project_dir
        if not os.path.exists(dirname):
            if self.rank == 0:
                pathlib.Path(dirname).mkdir(parents=True, exist_ok=True)
        return dirname

    @property
    def rank(self):
        return self._rank

    @property
    def device_id(self):
        return paddle.distributed.ParallelEnv().device_id

    # TODO Generate compelet program with all parts like forward, backward, update
    # as well as parallelism transformation.
    def _build_programs_without_optimization(self):

        serial_main_program = self._baseline_dist_context.serial_main_program
248 249 250
        serial_startup_program = (
            self._baseline_dist_context.serial_startup_program
        )
251 252 253 254 255
        serial_loss = self._baseline_dist_context.serial_loss

        with program_guard(serial_main_program, serial_startup_program):
            params_grads = append_backward(
                serial_loss,
256 257
                distop_context=self._baseline_dist_context.dist_op_context,
            )
258 259

        self._baseline_completer.complete_backward_annotation(
260 261
            serial_main_program
        )
262
        self._baseline_dist_context.block_state.parse_backward_blocks(
263 264
            serial_main_program
        )
265 266 267 268 269 270
        self._baseline_dist_context._params_grads = params_grads

        if self._config.verbose:
            baseline_dir = os.path.join(self.project_dir, "baseline")
            if not os.path.exists(baseline_dir):
                pathlib.Path(baseline_dir).mkdir(parents=True, exist_ok=True)
271 272 273 274 275 276 277 278 279 280
            debug_program(
                self._baseline_dist_context._serial_main_program,
                baseline_dir,
                "main",
            )
            debug_program(
                self._baseline_dist_context._serial_startup_program,
                baseline_dir,
                "startup",
            )
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297

    def _select_tuning_algorithm(self):

        selected_passes_set = self._config.tuning_passes_name
        algorithm_name = "_".join(sorted(selected_passes_set))
        self._algorithm = new_algorithm(algorithm_name, self._config)

    def _apply_optimization(self, trial):
        new_strategy = trial.space
        dist_context = _copy_context(self._baseline_dist_context)
        pass_context = PassContext()
        completer = Completer(dist_context)

        main_program = dist_context.serial_main_program
        startup_program = dist_context.serial_startup_program

        # applying optimization pass
298 299
        if new_strategy.amp.enable:
            config = copy.deepcopy(new_strategy.amp.to_dict())
300 301 302 303 304
            config["dist_context"] = dist_context
            config["params_grads"] = dist_context._params_grads

            # TODO AMP Pass should not use loss var
            config["loss"] = dist_context.serial_loss
305 306
            config["input_data"] = (
                self._baseline_dist_context.serial_feed_vars["inputs"]
307
                + self._baseline_dist_context.serial_feed_vars["labels"]
308
            )
309
            if config["use_pure_fp16"]:
310
                config["base_opt"] = dist_context.serial_optimizer
311
                auto_parallel_fp16_pass = new_pass("auto_parallel_fp16", config)
312 313 314
                auto_parallel_fp16_pass.apply(
                    [main_program], [startup_program], pass_context
                )
315
                dist_context.serial_loss = auto_parallel_fp16_pass.get_loss()
316 317
            else:
                auto_parallel_amp_pass = new_pass("auto_parallel_amp", config)
318 319 320
                auto_parallel_amp_pass.apply(
                    [main_program], [startup_program], pass_context
                )
321
                dist_context.serial_loss = auto_parallel_amp_pass.get_loss()
322

323 324
        if new_strategy.recompute.enable:
            config = copy.deepcopy(new_strategy.recompute.to_dict())
325 326 327
            config["dist_context"] = dist_context
            config["no_grad_set"] = None
            config["loss"] = dist_context.serial_loss
328 329 330 331 332 333
            auto_parallel_recompute_pass = new_pass(
                "auto_parallel_recompute", config
            )
            auto_parallel_recompute_pass.apply(
                [main_program], [startup_program], pass_context
            )
334 335 336

        # Do logical partition
        partitioner = Partitioner(dist_context, self.rank)
337 338 339 340 341 342 343
        (
            dist_main_prog,
            dist_startup_prog,
            dist_params_grads,
        ) = partitioner.partition(
            main_program, startup_program, dist_context._params_grads
        )
344 345 346 347 348

        # Generate optimizer
        # FIXME should be remove from apply pass after pass support optimizers
        with program_guard(dist_main_prog, dist_startup_prog):
            optimizer_ops = dist_context.serial_optimizer.apply_gradients(
349 350
                dist_params_grads
            )
351 352 353 354
        completer.complete_update_annotation(dist_main_prog)

        # Do reshard process
        set_grad_var_shape(dist_main_prog, dist_context)
355 356 357 358 359 360 361
        resharder = Resharder(
            dist_main_prog,
            dist_startup_prog,
            self.rank,
            dist_context,
            dist_params_grads,
        )
362 363
        resharder.reshard()

364 365
        if new_strategy.sharding.enable:
            config = copy.deepcopy(new_strategy.sharding.to_dict())
366 367 368
            config["dist_context"] = dist_context
            config["params_grads"] = dist_params_grads
            config["global_rank"] = self.rank
369 370 371 372 373 374
            auto_parallel_sharding_pass = new_pass(
                "auto_parallel_sharding", config
            )
            auto_parallel_sharding_pass.apply(
                [dist_main_prog], [dist_startup_prog], pass_context
            )
375

376 377
        if new_strategy.gradient_merge.enable:
            config = copy.deepcopy(new_strategy.gradient_merge.to_dict())
378 379 380
            config["dist_context"] = dist_context
            config["params_grads"] = dist_params_grads
            auto_parallel_gradient_merge_pass = new_pass(
381 382 383 384 385 386 387 388 389
                "auto_parallel_gradient_merge_pass", config
            )
            auto_parallel_gradient_merge_pass.apply(
                [dist_main_prog], [dist_startup_prog], pass_context
            )
        trial.main_program, trial.startup_program = (
            dist_main_prog,
            dist_startup_prog,
        )
390 391 392 393 394 395 396
        return trial

    def _get_profile_context(self, trial, result_path):

        profile_ctx = {}

        profile_ctx['distributed_env'] = copy.deepcopy(
397 398
            paddle.distributed.ParallelEnv()
        )
399 400
        profile_ctx['group_map'] = parse_process_groups()
        profile_ctx[
401 402
            "loss_var_name"
        ] = self._baseline_dist_context.serial_loss.name
403
        profile_ctx[
404 405
            "main_program_decs"
        ] = trial.main_program.desc.serialize_to_string()
406
        profile_ctx[
407 408
            "startup_program_decs"
        ] = trial.startup_program.desc.serialize_to_string()
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
        self._dataset.batch_size = self._batch_size
        self._dataset.input_names = self._get_input_names()

        profile_ctx["dataset"] = self._dataset
        profile_ctx["result_filename"] = result_path

        return profile_ctx

    def _get_input_names(self):
        input_names = []
        for input_spec in self._inputs_spec[:] + self._labels_spec[:]:
            input_names.append(input_spec.name)
        return input_names

    def _launch_profile(self, ctx_path, trial_dir):

        if os.environ.get("WITH_COVERAGE", "OFF") == "ON":
            coverage_args = ["-m", "coverage", "run", "--branch", "-p"]
        else:
            coverage_args = []

430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
        profile_args = " ".join(
            [
                "--rank",
                str(self.rank),
                "--device_id",
                str(self.device_id),
                "--ctx_filename",
                ctx_path,
                "--profile_start_step",
                str(self._config.profile_start_step),
                "--profile_end_step",
                str(self._config.profile_end_step),
            ]
        )
        cmd_args = (
            "-m paddle.distributed.auto_parallel.tuner.profiler"
            + " "
            + profile_args
        )
449 450 451 452 453 454 455 456 457 458 459 460
        cmd = [sys.executable, "-u"] + coverage_args + shlex.split(cmd_args)

        parent_env = copy.copy(os.environ.copy())
        # env flags need for profile
        new_env = {
            "FLAGS_USE_STANDALONE_EXECUTOR": "False",
        }
        new_env.update(parent_env)

        # TODO if any rank hang or fail, kill all processes
        self._logger.debug("Executing cmd:\n{} .".format(" ".join(cmd)))
        # new_process = subprocess.Popen(cmd, env=new_env)
461 462 463 464 465
        with open(
            os.path.join(trial_dir, "stdout.log" + str(self.rank)), "wb"
        ) as out, open(
            os.path.join(trial_dir, "stderr.log" + str(self.rank)), "wb"
        ) as err:
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
            result = subprocess.Popen(cmd, stdout=out, stderr=err, env=new_env)
            result.wait()
            out.flush()
            err.flush()
            os.fsync(out)
            os.fsync(err)

    def _profile_trial(self, trial):
        # Making working directory
        trial_dir = self._get_trial_dir(trial)
        if not os.path.exists(trial_dir):
            if self.rank == 0:
                pathlib.Path(trial_dir).mkdir(parents=True, exist_ok=True)
            else:
                while not os.path.exists(trial_dir):
                    pass
        ctx_filename = "profile_ctx." + str(self.rank)
        ctx_path = os.path.join(trial_dir, ctx_filename)
        result_path = os.path.join(trial_dir, "result.json")

        # Prepare Profile Context
        profile_ctx = self._get_profile_context(trial, result_path)
        with open(ctx_path, 'wb') as f:
            pickle.dump(profile_ctx, f, protocol=4)

        if self._config.verbose:
            debug_program(trial.main_program, trial_dir, "main_program")
            debug_program(trial.startup_program, trial_dir, "startup_program")

        # Run
        self._launch_profile(ctx_path, trial_dir)

        # Load results
        try:
            with open(result_path, 'r') as fp:
                results = json.load(fp)
            return results
        except FileNotFoundError:
            Error_results = {"Throughtput": -1, "ErrorType": 'FatalError'}
            return Error_results

    def _evaluate_trial(self, trial):

        self._logger.info("Trial {} evaluation start.".format(trial.name))
        self._apply_optimization(trial)

        if self._config.mode == "PROFILE":
            results = self._profile_trial(trial)

        elif self._config.mode == "COSTMODEL":
            raise NotImplementedError(
517 518
                "COSTMODEL mode for optimization tuning is not supported yet!"
            )
519
        else:
520 521 522
            raise NotImplementedError(
                "invalid evaluation mode: {}".format(self._config.mode)
            )
523

524 525 526 527 528
        self._logger.info(
            "Trial {} evaluation finish with {}.".format(
                trial.name, parse_results(results)
            )
        )
529 530 531 532 533 534
        return results

    def _update(self, i, trial, results):
        self._finished_trials.append(trial)

        cur_mertic = get_metric(results)
535
        if self._best_metric is None or cur_mertic > self._best_metric:
536 537 538 539 540 541 542 543 544 545 546
            self._best_metric = cur_mertic
            self._best_iter = i

    def _get_trial_dir(self, trial):
        return os.path.join(self.project_dir, trial.name)

    def get_best_config(self):
        """
        Return the best optimization configuration found in the tuning.

        Returns:
547
            A object of fleet.DistributedStrategy with best configuration.
548 549 550 551 552 553 554 555 556 557 558 559 560 561
        """
        assert self._best_iter >= 0, "The best configuration is not found yet !"
        best_trial = self._finished_trials[self._best_iter]
        return self._algorithm.get_config_from_trial(best_trial)

    def summary(self):
        """
        Display tuning result summary.
        """
        # TODO summary with the trial_name with metric_of_trial
        best_trial = self._finished_trials[self._best_iter]
        summary_ = """
Tuning Result Summary
Run total {} trials with {} min.
562
The best trial is: [{}], whose configuration is following:
563 564 565 566 567 568
        """.format(
            len(self._finished_trials),
            (time.time() - self._tuning_start_time) / 60,
            best_trial.name,
        )
        summary_ += "\n" + best_trial.summary() + "\n"
569 570 571 572 573
        self._logger.info(summary_)
        with open(os.path.join(self.project_dir, "summary.txt"), "w+") as fw:
            for line in summary_.split("\n"):
                fw.write(line + "\n")

574 575 576 577
        # full_strategy = self.get_best_config()
        # path = os.path.join(self.project_dir, "tuned_dist_strategy.yaml")
        # with open(path, 'w') as outfile:
        #     yaml.dump(full_strategy, outfile, default_flow_style=False)
578 579 580 581 582 583 584 585 586 587 588 589 590

    def clear(self):
        """
        Clear the temporary file generated in tuning procedure.
        """
        # TODO clear up zombie process created by tuning
        if not self._config.verbose:
            for trial in self._finished_trials:
                trial_dir = self._get_trial_dir(trial)
                shutil.rmtree(trial_dir, ignore_errors=True)

    def tune(self):
        """
591 592
        Performs the search for best hyperparameter configuations
        for the selected optimization pass(es).
593 594 595 596 597 598 599
        """

        # step1: collect model info which might be used for
        # pruning the search space of the algorithm
        self._tuning_start_time = time.time()
        self._algorithm.collect_model_info(
            self._baseline_dist_context.serial_main_program,
600 601
            self._baseline_dist_context.serial_startup_program,
        )
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622

        # main search loop
        i = 0
        while i < self._config.max_num_trial:
            # step2: create a new trial
            trial = self._algorithm.next_trial()

            if trial.status == TrialStatus.STOPPED:
                break

            # step3: evaluate the trial
            results = self._evaluate_trial(trial)

            # step4: update the algorithm with last result,
            # which could be used by algorithm to pruning the
            # remaining search space.
            self._algorithm.update(results)
            self._update(i, trial, results)

            # early stop
            i += 1
623 624 625 626
            if (
                self._config.early_stop
                and self._config.early_stop <= i - self._best_iter
            ):
627
                self._logger.info(
628 629 630 631
                    "Early stop the Tuning since there is no better trial found within [{}] trials".format(
                        self._config.early_stop
                    )
                )
632 633 634 635 636 637
                break

        # step5: summary the best config and return
        self.summary()

        self.clear()