gpu_context.h 9.0 KB
Newer Older
W
Wilber 已提交
1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
Copyright (c) 2022 NVIDIA Corporation. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

W
Wilber 已提交
18 19
#include <array>
#include <functional>
W
Wilber 已提交
20
#include <mutex>
21

22 23 24
#include "paddle/phi/backends/gpu/forwards.h"
#include "paddle/phi/backends/gpu/gpu_decls.h"
#include "paddle/phi/backends/gpu/gpu_helper.h"
25
#include "paddle/phi/backends/gpu/gpu_info.h"
26 27
#include "paddle/phi/common/place.h"
#include "paddle/phi/core/device_context.h"
28

29
namespace phi {
30

L
Leo Chen 已提交
31 32
class CUDAStream;

W
Wilber 已提交
33 34
class DnnWorkspaceHandle {
 public:
35 36
  inline DnnWorkspaceHandle(Allocator* allocator, gpuStream_t stream)
      : allocator_(allocator), stream_(stream) {
W
Wilber 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
    mtx_.reset(new std::mutex());
  }

  inline void RunFunc(const std::function<void(void*)>& cudnn_func,
                      size_t required_workspace_bytes) {
    if (required_workspace_bytes > WorkspaceSize()) {
      ReallocWorkspace(required_workspace_bytes);
    }
    {
      std::lock_guard<std::mutex> guard(*mtx_);
      cudnn_func(allocation_ ? allocation_->ptr() : nullptr);
    }
  }

  /*! \brief Thread which call RunFuncSync() would release gpu memory after
   *  running the function. Currently this function is only used when cudnn
   *  exhaustive searching and callers have to guarantee that the input function
   *  is host blocking */
55 56 57
  void RunFuncSync(const std::function<void(void*)>& cudnn_func,
                   size_t required_workspace_bytes,
                   bool use_cached_allocation = true);
W
Wilber 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

  inline size_t WorkspaceSize() {
    if (allocation_ == nullptr) {
      return 0;
    }
    return allocation_->size();
  }

  void ResetWorkspace();

  void ReallocWorkspace(size_t required_workspace_bytes);

  DnnWorkspaceHandle(DnnWorkspaceHandle&&) = default;
  DnnWorkspaceHandle& operator=(DnnWorkspaceHandle&&) = delete;

 private:
  Allocator::AllocationPtr allocation_{nullptr};
75 76
  Allocator* allocator_{nullptr};  // Not owned
  gpuStream_t stream_{nullptr};    // Not owned
W
Wilber 已提交
77 78
  std::unique_ptr<std::mutex> mtx_;
};
W
Wilber 已提交
79

80
class PADDLE_API GPUContext : public DeviceContext {
W
Wilber 已提交
81
 public:
L
Leo Chen 已提交
82 83
  explicit GPUContext(const GPUPlace& place, bool init = true);

W
Wilber 已提交
84 85
  GPUContext(GPUContext&&);
  GPUContext& operator=(GPUContext&&);
W
Wilber 已提交
86 87 88 89 90 91 92 93 94

  virtual ~GPUContext();

  /*! \brief  Return place in the device context. */
  const Place& GetPlace() const override;

  /*! \brief  Return gpu stream in the device context. */
  gpuStream_t stream() const;

L
Leo Chen 已提交
95 96 97
  /*! \brief  Return CUDAStream in the device context. */
  CUDAStream* cuda_stream() const;

W
Wilber 已提交
98 99 100 101 102 103
  /*! \brief  Return cudnn  handle in the device context. */
  dnnHandle_t cudnn_handle() const;

  /*! \brief  Return cublas handle in the device context. */
  blasHandle_t cublas_handle() const;

104 105 106
  /*! \brief  Return cublasLt handle in the device context. */
  blasLtHandle_t cublaslt_handle() const;

W
Wilber 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
  /*! \brief  Return cusolver handle in the device context. */
  solverHandle_t cusolver_dn_handle() const;

  /*! \brief  Return cusparse handle in the device context. */
  sparseHandle_t cusparse_handle() const;

  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

  /*! \brief  Wait for event in the stream. */
  void WaitEvent(gpuEvent_t ev) const;

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Return compute capability in the device context. */
  int GetComputeCapability() const;

  /*! \brief  Return the max physical thread count in the device context */
  int GetMaxPhysicalThreadCount() const;

  /*! \brief  Return the SM count in the device context */
  int GetSMCount() const;

  /*! \brief  Return the Max thread num of block in the device context */
  int GetMaxThreadsPerBlock() const;

  /*! \brief  Return the max grid dim size in the device context */
  std::array<int, 3> GetCUDAMaxGridDimSize() const;

  /*! \brief  Return eigen device in the device context. */
  Eigen::GpuDevice* eigen_device() const;

  /*! \brief  Return a cudnn workspace handle to call multiple cudnn
   *  functions without interrupting by other threads.
   *  Once the first cudnn function is called by the handle, a lock
   *  would be acquired to prevent other threads from accessing the
   *  workspace. Once the handle is destructed, the lock would be released.
   */
W
Wilber 已提交
146 147
  // TODO(wilber): The return type is a pointer, to be modified later.
  DnnWorkspaceHandle cudnn_workspace_handle() const;
W
Wilber 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196

 public:
  /*! \brief  Call cublas function safely. */
  void CublasCall(const std::function<void(blasHandle_t)>&) const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  void TensorCoreCublasCallIfAvailable(
      const std::function<void(blasHandle_t)>&) const;

  /*! \brief  Call cusparse function safely. */
  void CusparseCall(const std::function<void(sparseHandle_t)>&) const;

  void RecordEvent(gpuEvent_t ev, const std::function<void()>& callback) const;

  void RecordEvent(gpuEvent_t ev) const;

  void AddStreamCallback(const std::function<void()>& callback) const;

  void WaitStreamCallback() const;

 public:
  /*! \brief  Return nccl communicators. */
  ncclComm_t nccl_comm() const;

  /*! \brief  Set nccl communicators. */
  void set_nccl_comm(ncclComm_t comm);

 public:
  // NOTE: DeviceContext hold resources. Used in training scenarios.
  // The interface used by the training scene, DeviceContext will initialize
  // all resources and delete them when destructing.
  // Note that you must set the Allocator before calling Init function.
  void Init();

  // TODO(wilber): Why does the GetAllocator interface require a stream
  // parameter?
  // The temporary trick method bypasses this problem, and the following
  // interfaces
  // need to be deleted later.

  // Note that this is a trick implementation, which can be used to partially
  // initialize when the SetAllocator interface is not called.
  void PartialInitWithoutAllocator();
  // Note that this is a trick implementation that can be used to initialize
  // resources that require an Allocator when the SetAllocator interface is
  // called.
  void PartialInitWithAllocator();

L
Leo Chen 已提交
197 198 199 200 201
  // Note that this function is a trick implementation since all 'set' methods
  // are protected by default.
  // clear: whether clear the original CUDAStream or not
  void SetCUDAStream(CUDAStream*, bool clear = true);

W
Wilber 已提交
202 203 204 205 206 207 208
 protected:
  // NOTE: External users manage resources. Used in inference scenarios.
  // The Set interface is for inference only, DeviceContext will mark the
  // resource as external, and will not delete any resource when destructing.
  void SetStream(gpuStream_t);

  void SetEigenDevice(Eigen::GpuDevice*);
209
  void SetEigenDevice(std::function<Eigen::GpuDevice*()>&&);
W
Wilber 已提交
210 211

  void SetBlasHandle(blasHandle_t);
212
  void SetBlasHandle(std::function<blasHandle_t()>&&);
W
Wilber 已提交
213

W
Wilber 已提交
214
  void SetBlasTensorCoreHandle(blasHandle_t);
215
  void SetBlasTensorCoreHandle(std::function<blasHandle_t()>&&);
W
Wilber 已提交
216 217

  void SetBlasTF32Handle(blasHandle_t);
218
  void SetBlasTF32Handle(std::function<blasHandle_t()>&&);
W
Wilber 已提交
219

220
  void SetBlasLtHandle(blasLtHandle_t);
221
  void SetBlasLtHandle(std::function<blasLtHandle_t()>&&);
222

W
Wilber 已提交
223
  void SetDnnHandle(dnnHandle_t);
224
  void SetDnnHandle(std::function<dnnHandle_t()>&&);
W
Wilber 已提交
225 226

  void SetSolverHandle(solverHandle_t);
227
  void SetSolverHandle(std::function<solverHandle_t()>&&);
W
Wilber 已提交
228 229

  void SetSparseHandle(sparseHandle_t);
230
  void SetSparseHandle(std::function<sparseHandle_t()>&&);
W
Wilber 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252

  void SetDnnWorkspaceHandle(DnnWorkspaceHandle*);

  void SetComputeCapability(int val);

  void SetMaxThreadsPerMultiProcessor(int val);

  void SetMultiProcessors(int val);

  void SetMaxThreadsPerBlock(int val);

  void SetMaxGridDimSize(const std::array<int, 3>& val);

  void SetDriverVersion(int val);

  void SetRuntimeVersion(int val);

 private:
  struct Impl;
  std::unique_ptr<Impl> impl_;
};

253 254 255 256 257 258 259
// Note: In order to register the kernel of CUDNN, GPUDNNContext is required.
// Currently, CUDNN kernel directly uses GPUContext. But if the kernel function
// has the same name, this will lead to duplicate instantiations of GPU kernel
// and GPUDNN kernel function, so if we using GPUDNNContext = GPUContext, we
// must use different function name for cudnn kernel
using GPUDNNContext = GPUContext;

260 261 262 263 264 265 266 267
// KPS (Kernel PrimitiveS API) needs to exist as a kind of backend,
// because we want to implement a KPS-based kernel and make it run
// on GPU and XPU at the same time, so we need KPSContext when registering
// KPS Kernel. Note: XPU and GPU cannot be compiled at the same time!
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
using KPSContext = GPUContext;
#endif

268
}  // namespace phi