test_matmul_op.py 12.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import paddle.fluid.core as core
M
Markus Kliegl 已提交
18 19
import unittest
import numpy as np
20
from op_test import OpTest
21
import paddle
22 23
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
M
Markus Kliegl 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69


def generate_compatible_shapes(dim_X, dim_Y, transpose_X, transpose_Y):
    BATCH_SIZE = 2
    M = 3
    N = 4
    K = 5
    if (dim_X == 1 and transpose_X) or (dim_Y == 1 and transpose_Y):
        K = 1
    if dim_X == 1:
        if transpose_X:
            shape_X = [M]
        else:
            shape_X = [K]
    if dim_Y == 1:
        if transpose_Y:
            shape_Y = [N]
        else:
            shape_Y = [K]
    if dim_X >= 2:
        if transpose_X:
            shape_X = [K, M]
        else:
            shape_X = [M, K]
    if dim_X == 3:
        shape_X = [BATCH_SIZE] + shape_X
    if dim_Y >= 2:
        if transpose_Y:
            shape_Y = [N, K]
        else:
            shape_Y = [K, N]
    if dim_Y == 3:
        shape_Y = [BATCH_SIZE] + shape_Y
    return shape_X, shape_Y


def reference_matmul(X, Y, transpose_X=False, transpose_Y=False):
    """Reference forward implementation using np.matmul."""
    # np.matmul does not support the transpose flags, so we manually
    # transpose X and Y appropriately.
    if transpose_X:
        if X.ndim == 1:
            X = X.reshape((X.size, 1))
        elif X.ndim == 2:
            X = X.T
        else:
C
chengduoZH 已提交
70 71 72
            dim = [i for i in range(len(X.shape))]
            dim[-1], dim[len(X.shape) - 2] = dim[len(X.shape) - 2], dim[-1]
            X = np.transpose(X, tuple(dim))
M
Markus Kliegl 已提交
73 74 75 76
    if transpose_Y:
        if Y.ndim == 1:
            Y = Y.reshape((1, Y.size))
        else:
C
chengduoZH 已提交
77 78 79 80
            dim = [i for i in range(len(Y.shape))]
            dim[-1], dim[len(Y.shape) - 2] = dim[len(Y.shape) - 2], dim[-1]
            Y = np.transpose(Y, tuple(dim))

M
Markus Kliegl 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
    Out = np.matmul(X, Y)
    if not Out.shape:
        # We do not support 0-dimensional Tensors (scalars). So where
        # np.matmul outputs a scalar, we must convert to a Tensor of
        # shape (1, ) instead.
        # Everywhere else, we are compatible with np.matmul.
        Out = np.array([Out], dtype="float32")
    return Out


class Generator(object):
    def setUp(self):
        self.op_type = "matmul"
        X = np.random.random(self.shape_X).astype("float32")
        Y = np.random.random(self.shape_Y).astype("float32")
        Out = reference_matmul(X, Y, self.transpose_X, self.transpose_Y)
        self.inputs = {'X': X, 'Y': Y}
        self.attrs = {
            'transpose_X': self.transpose_X,
            'transpose_Y': self.transpose_Y
        }
        self.outputs = {'Out': Out}

    def test_check_output(self):
105
        self.check_output()
M
Markus Kliegl 已提交
106 107

    def test_check_grad_normal(self):
108
        self.check_grad(['X', 'Y'], 'Out', max_relative_error=1e-3)
M
Markus Kliegl 已提交
109 110 111

    def test_check_grad_ignore_x(self):
        self.check_grad(
112
            ['Y'], 'Out', max_relative_error=1e-3, no_grad_set=set("X"))
M
Markus Kliegl 已提交
113 114 115

    def test_check_grad_ignore_y(self):
        self.check_grad(
116
            ['X'], 'Out', max_relative_error=1e-3, no_grad_set=set('Y'))
M
Markus Kliegl 已提交
117 118


119
class TestMatmulOpError(unittest.TestCase):
120 121 122 123 124 125 126 127 128 129 130 131 132 133
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The inputs type of matmul_op must be Variable.
            input1 = 12
            self.assertRaises(TypeError, fluid.layers.matmul, input1, input1)
            # The inputs dtype of matmul_op must be float32, float64.
            input2 = fluid.layers.data(
                name='input2', shape=[10, 10], dtype="int32")
            self.assertRaises(TypeError, fluid.layers.matmul, input2, input2)
            input3 = fluid.layers.data(
                name='input3', shape=[2, 2], dtype="float16")
            fluid.layers.matmul(input3, input3)


134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
# Negative dimension generation
def generate_negative_dims(in_shape):
    from itertools import combinations
    size = len(in_shape)
    indexs = list()
    shapes = list()
    for i in range(size):
        indexs.extend(list(combinations([j for j in range(size)], i + 1)))
    for idx in indexs:
        shapes.append(
            [in_shape[i] if i not in idx else -1 for i in range(size)])
    return shapes


# Build program with inputs sizes that contain negative numbers
def test_negative_dims_program(obj):
    for shape_x in generate_negative_dims(obj.shape_X):
        for shape_y in generate_negative_dims(obj.shape_Y):
            X = np.random.random(obj.shape_X).astype("float32")
            Y = np.random.random(obj.shape_Y).astype("float32")
            Ref = reference_matmul(X, Y, obj.transpose_X, obj.transpose_Y)
            with program_guard(Program(), Program()):
                x = fluid.data(name='x', shape=shape_x, dtype='float32')
                y = fluid.data(name='y', shape=shape_y, dtype='float32')
                output = fluid.layers.matmul(x, y, obj.transpose_X,
                                             obj.transpose_Y)
                obj.assertEqual(len(Ref.shape), len(output.shape))
                for idx in range(len(Ref.shape)):
                    if output.shape[idx] != -1:
                        obj.assertEqual(Ref.shape[idx], output.shape[idx])
                exe = fluid.Executor(fluid.CPUPlace())
                res, = exe.run(fluid.default_main_program(),
                               feed={'x': X,
                                     'y': Y},
                               fetch_list=[output])
                np.allclose(res, Ref, atol=1e-5)


# Generate program api cases for all negative possibilities
def api_test(dim_x, dim_y, trans_x, trans_y):
    test_name = ('TestMatMulAPI_dimX_{}_dim_Y_{}_transX_{}_transY_{}'.format(
        dim_x, dim_y, trans_x, trans_y))
    shape_x, shape_y = generate_compatible_shapes(dim_x, dim_y, trans_x,
                                                  trans_y)
178
    globals()[test_name] = type(test_name, (unittest.TestCase, ), {
179 180 181 182 183 184 185 186 187
        'shape_X': shape_x,
        'shape_Y': shape_y,
        'transpose_X': trans_x,
        'transpose_Y': trans_y,
        'test_propram': test_negative_dims_program,
    })


# Generate operators cases for all possibilities
Y
Yu Yang 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
def inject_test(dim_x, dim_y, trans_x, trans_y):
    test_name = ('TestMatMulOp_dimX_{}_dim_Y_{}_transX_{}_transY_{}'.format(
        dim_x, dim_y, trans_x, trans_y))
    shape_x, shape_y = generate_compatible_shapes(dim_x, dim_y, trans_x,
                                                  trans_y)
    globals()[test_name] = type(test_name, (Generator, OpTest), {
        'shape_X': shape_x,
        'shape_Y': shape_y,
        'transpose_X': trans_x,
        'transpose_Y': trans_y,
    })


for dim_X in (1, 2, 3):
    for dim_Y in (1, 2, 3):
        for transose_x in (False, True):
            for transose_y in (False, True):
                inject_test(dim_X, dim_Y, transose_x, transose_y)
206
                api_test(dim_X, dim_Y, transose_x, transose_y)
C
chengduoZH 已提交
207 208


209
# Test case more batch_size and N, M, K
210 211
def generate_compatible_shapes_batch(dim_X, dim_Y, transpose_X, transpose_Y,
                                     batch_size):
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
    BATCH_SIZE = 2
    M = 3
    N = 4
    K = 5
    if (dim_X == 1 and transpose_X) or (dim_Y == 1 and transpose_Y):
        K = 1
    if dim_X == 1:
        if transpose_X:
            shape_X = [M]
        else:
            shape_X = [K]
    if dim_Y == 1:
        if transpose_Y:
            shape_Y = [N]
        else:
            shape_Y = [K]
    if dim_X >= 2:
        if transpose_X:
            shape_X = [K, M]
        else:
            shape_X = [M, K]
    if dim_X == 3:
        shape_X = [BATCH_SIZE] + shape_X
    if dim_Y >= 2:
        if transpose_Y:
            shape_Y = [N, K]
        else:
            shape_Y = [K, N]
    if dim_Y == 3:
        shape_Y = [BATCH_SIZE] + shape_Y
    return shape_X, shape_Y


C
chengduoZH 已提交
245
# Test case n-dim
246
def generate_compatible_shapes_ndim(dim, transpose_X, transpose_Y):
C
chengduoZH 已提交
247 248 249 250 251 252 253
    M = 2
    N = 4
    K = 3
    shape_X = [2 for _ in range(dim - 2)]
    shape_Y = [2 for _ in range(dim - 2)]

    if transpose_X:
C
chengduoZH 已提交
254
        shape_X += [K, M]
C
chengduoZH 已提交
255
    else:
C
chengduoZH 已提交
256
        shape_X += [M, K]
C
chengduoZH 已提交
257 258

    if transpose_Y:
C
chengduoZH 已提交
259
        shape_Y += [N, K]
C
chengduoZH 已提交
260
    else:
C
chengduoZH 已提交
261
        shape_Y += [K, N]
C
chengduoZH 已提交
262 263 264 265

    return shape_X, shape_Y


Y
Yu Yang 已提交
266
# # Test case n-dim
C
chengduoZH 已提交
267 268 269 270 271 272
for dim in [4]:
    for transpose_X in [False, True]:
        for transpose_Y in [False, True]:
            test_name = (
                'TestMatMulOp_dimX_{}_dim_Y_{}_transX_{}_transY_{}'.format(
                    dim, dim, transpose_X, transpose_Y))
273 274
            shape_X, shape_Y = generate_compatible_shapes_ndim(dim, transpose_X,
                                                               transpose_Y)
C
chengduoZH 已提交
275 276 277 278 279 280
            globals()[test_name] = type(test_name, (Generator, OpTest), {
                'shape_X': shape_X,
                'shape_Y': shape_Y,
                'transpose_X': transpose_X,
                'transpose_Y': transpose_Y,
            })
C
chengduoZH 已提交
281

282 283 284 285

class API_TestMm(unittest.TestCase):
    def test_out(self):
        with fluid.program_guard(fluid.Program()):
286 287 288
            x = fluid.data(name="x", shape=[2], dtype="float64")
            y = fluid.data(name='y', shape=[2], dtype='float64')
            res = fluid.data(name="output", shape=[1], dtype="float64")
289 290
            result = paddle.mm(x, y)
            exe = fluid.Executor(fluid.CPUPlace())
291 292
            data1 = np.random.rand(2)
            data2 = np.random.rand(2)
293 294 295 296
            np_res = exe.run(feed={'x': data1, 'y': data2}, fetch_list=[result])
            expected_result = np.matmul(
                data1.reshape(1, 2), data2.reshape(2, 1))

297 298 299 300 301
        self.assertTrue(
            np.allclose(
                np_res, expected_result, atol=1e-5),
            "two value is\
            {}\n{}, check diff!".format(np_res, expected_result))
302

303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
    def test_dygraph_without_out(self):
        device = fluid.CPUPlace()
        with fluid.dygraph.guard(device):
            input_array1 = np.random.rand(3, 4).astype("float64")
            input_array2 = np.random.rand(4, 3).astype("float64")
            data1 = fluid.dygraph.to_variable(input_array1)
            data2 = fluid.dygraph.to_variable(input_array2)
            out = paddle.mm(data1, data2)
            expected_result = np.matmul(input_array1, input_array2)
        self.assertTrue(np.allclose(expected_result, out.numpy()))


class Test_API_Matmul(unittest.TestCase):
    def test_dygraph_without_out(self):
        device = fluid.CPUPlace()
        with fluid.dygraph.guard(device):
            input_array1 = np.random.rand(3, 4).astype("float64")
            input_array2 = np.random.rand(4, 3).astype("float64")
            data1 = fluid.dygraph.to_variable(input_array1)
            data2 = fluid.dygraph.to_variable(input_array2)
            out = paddle.matmul(data1, data2)
            expected_result = np.matmul(input_array1, input_array2)
        self.assertTrue(np.allclose(expected_result, out.numpy()))

327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358

class API_TestMmError(unittest.TestCase):
    def test_errors(self):
        def test_error1():
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                data1 = fluid.data(name="data1", shape=[10, 2], dtype="float32")
                data2 = fluid.data(name="data2", shape=[3, 10], dtype="float32")
                paddle.mm(data1, data2)

        self.assertRaises(ValueError, test_error1)

        def test_error2():
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                data1 = fluid.data(
                    name="data1", shape=[-1, 10, 2], dtype="float32")
                data2 = fluid.data(
                    name="data2", shape=[-1, 2, 10], dtype="float32")
                paddle.mm(data1, data2)

        test_error2()

        def test_error3():
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                data1 = fluid.data(
                    name="data1", shape=[10, 10, 2], dtype="float32")
                data2 = fluid.data(
                    name="data2", shape=[3, 2, 10], dtype="float32")
                paddle.mm(data1, data2)

        self.assertRaises(ValueError, test_error3)


M
Markus Kliegl 已提交
359 360
if __name__ == "__main__":
    unittest.main()