regularizer.py 11.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import logging
16

17
from . import framework
H
hong 已提交
18
from .framework import _non_static_mode, _varbase_creator, in_dygraph_mode
C
chengduoZH 已提交
19
from . import core
20
from paddle import _C_ops, _legacy_C_ops
21

Y
yuyang18 已提交
22
__all__ = ['L1Decay', 'L2Decay', 'L1DecayRegularizer', 'L2DecayRegularizer']
23 24


25
class WeightDecayRegularizer:
26 27 28 29 30 31 32 33 34 35 36 37 38
    """Base class for weight decay regularizers

    Defines the common interface of weight-decay regularizers.
    Weight-decay regularizers are added only during the backward
    pass for faster regularization. They add operations to the network
    that correspond to gradient of the regularization function.
    Users should not use this class directly, but need to use one
    of its implementations
    """

    def __init__(self):
        pass

C
chengduoZH 已提交
39
    def __call__(self, param, grad, block):
40
        """Add corresponding weight decay operations to the network"""
41 42
        raise NotImplementedError()

F
fengjiayi 已提交
43
    def __str__(self):
44
        """Debug string"""
F
fengjiayi 已提交
45 46
        raise NotImplementedError()

47 48

class L2DecayRegularizer(WeightDecayRegularizer):
49
    r"""
50
    Implement the L2 Weight Decay Regularization, which helps to prevent the model over-fitting.
51

52 53 54
    It can be set in :ref:`api_fluid_ParamAttr` or ``optimizer`` (such as :ref:`api_fluid_optimizer_SGDOptimizer` ).
    When set in ``ParamAttr`` , it only takes effect for trainable parameters in this layer. When set in
    ``optimizer`` , it takes effect for all trainable parameters. When set together, ``ParamAttr`` has
55
    higher priority than ``optimizer`` .
56

57
    In the implementation, the formula of L2 Weight Decay Regularization is as follows:
58 59 60 61 62 63

    .. math::

        L2WeightDecay = reg\_coeff * parameter

    Args:
64
        regularization_coeff(float, optional): regularization coeff. Default:0.0
65 66 67 68

    Examples:
        .. code-block:: python

69
            # Example1: set Regularizer in optimizer
70
            import paddle.fluid as fluid
2
201716010711 已提交
71 72
            import paddle
            paddle.enable_static()
73

74 75 76 77 78 79 80 81
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name='image', shape=[3, 28, 28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[1], dtype='int64')
                hidden = fluid.layers.fc(input=data, size=128, act='relu')
                prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
                loss = fluid.layers.cross_entropy(input=prediction, label=label)
2
201716010711 已提交
82
                avg_loss = paddle.mean(loss)
83 84
            optimizer = fluid.optimizer.Adagrad(
                learning_rate=1e-4,
85
                regularization=fluid.regularizer.L2Decay(
86
                    regularization_coeff=0.1))
87
            optimizer.minimize(avg_loss)
88 89 90 91


            # Example2: set Regularizer both in ParamAttr and optimizer
            import paddle.fluid as fluid
2
201716010711 已提交
92 93
            import paddle
            paddle.enable_static()
94 95 96 97

            l1 = fluid.regularizer.L1Decay(regularization_coeff=0.1)
            l2 = fluid.regularizer.L2Decay(regularization_coeff=0.1)
            x = fluid.layers.uniform_random([3,4])
98

99 100 101 102 103
            # set L1 regularization in fluid.ParamAttr
            w_param = fluid.ParamAttr(regularizer=l1)
            hidden1 = fluid.layers.fc(x, 8, param_attr=w_param)  # fc_0.w_0(L1), fc_0.b_0
            hidden2 = fluid.layers.fc(hidden1, 16, param_attr=w_param)   # fc_1.w_0(L1), fc_1.b_0
            predict = fluid.layers.fc(hidden2, 32)    # fc_3.w_0, fc_3.b_0
2
201716010711 已提交
104
            avg_loss = paddle.mean(predict)
105 106 107 108

            # set L2 regularization in optimizer
            optimizer = fluid.optimizer.SGD(learning_rate=1e-4, regularization=l2)
            optimizer.minimize(avg_loss)
109

110
            # it will Print Message:
111
            # Regularization of [fc_0.w_0, fc_1.w_0] have been set by ParamAttr or WeightNormParamAttr already.
112 113
            # So, the Regularization of Optimizer will not take effect for these parameters!

114 115 116 117
    """

    def __init__(self, regularization_coeff=0.0):
        assert regularization_coeff is not None
118
        super().__init__()
119 120
        self._regularization_coeff = regularization_coeff

C
chengduoZH 已提交
121
    def __call__(self, param, grad, block):
122 123 124 125 126 127 128 129 130 131 132 133
        """Add L2 weight decay ops to network

        Adds L2 weight decay ops.
        L2WeightDecay = reg_coeff * parameter

        Args:
            param: parameter variable for which regularization is applied
            block: block in which variable is to be created

        Returns:
            new variable for weight decay
        """
134
        assert isinstance(param, framework.Variable)
135
        assert isinstance(block, framework.Block)
C
chengduoZH 已提交
136

J
Jiabin Yang 已提交
137
        if framework._non_static_mode():
138
            if framework.in_dygraph_mode():
139 140 141
                return _C_ops.scale(
                    param, self._regularization_coeff, 0.0, True
                )
142
            else:
143 144 145
                return _legacy_C_ops.scale(
                    param, "scale", self._regularization_coeff
                )
H
Hongyu Liu 已提交
146
        else:
147 148 149
            decay = block.create_var(
                dtype=param.dtype, shape=param.shape, lod_level=param.lod_level
            )
C
chengduoZH 已提交
150

151
            # Append Op to calculate decay
152 153 154 155 156 157
            block.append_op(
                type='scale',
                inputs={"X": param},
                outputs={"Out": decay},
                attrs={"scale": self._regularization_coeff},
            )
158

159
            return decay
160

F
fengjiayi 已提交
161 162 163
    def __str__(self):
        return "L2Decay, regularization_coeff=%f" % self._regularization_coeff

164 165

class L1DecayRegularizer(WeightDecayRegularizer):
166
    r"""
167
    Implement the L1 Weight Decay Regularization, which encourages the weights to be sparse.
168 169 170 171

    It can be set in :ref:`api_fluid_ParamAttr` or ``optimizer`` (such as :ref:`api_fluid_optimizer_SGDOptimizer` ).
    When set in ``ParamAttr`` , it only takes effect for trainable parameters in this layer. When set in
    ``optimizer`` , it takes effect for all trainable parameters. When set together, ``ParamAttr`` has
172
    higher priority than ``optimizer`` .
173

174
    In the implementation, the formula of L1 Weight Decay Regularization is as follows:
175

176 177 178 179 180
    .. math::

        L1WeightDecay = reg\_coeff * sign(parameter)

    Args:
181
        regularization_coeff(float, optional): regularization coeff. Default:0.0.
182

183 184 185
    Examples:
        .. code-block:: python

186
            # Example1: set Regularizer in optimizer
187
            import paddle.fluid as fluid
2
201716010711 已提交
188 189
            import paddle
            paddle.enable_static()
190 191 192 193 194 195 196 197
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name='image', shape=[3, 28, 28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[1], dtype='int64')
                hidden = fluid.layers.fc(input=data, size=128, act='relu')
                prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
                loss = fluid.layers.cross_entropy(input=prediction, label=label)
2
201716010711 已提交
198
                avg_loss = paddle.mean(loss)
X
Xin Pan 已提交
199 200 201 202
            optimizer = fluid.optimizer.Adagrad(
                learning_rate=1e-4,
                regularization=fluid.regularizer.L1DecayRegularizer(
                    regularization_coeff=0.1))
203
            optimizer.minimize(avg_loss)
204

205 206 207

            # Example2: set Regularizer both in ParamAttr and optimizer
            import paddle.fluid as fluid
2
201716010711 已提交
208 209
            import paddle
            paddle.enable_static()
210 211 212
            l1 = fluid.regularizer.L1Decay(regularization_coeff=0.1)
            l2 = fluid.regularizer.L2Decay(regularization_coeff=0.1)
            x = fluid.layers.uniform_random([3,4])
213

214 215 216 217 218
            # set L1 regularization in fluid.ParamAttr
            w_param = fluid.ParamAttr(regularizer=l1)
            hidden1 = fluid.layers.fc(x, 8, param_attr=w_param)  # fc_0.w_0(L1), fc_0.b_0
            hidden2 = fluid.layers.fc(hidden1, 16, param_attr=w_param)  # fc_1.w_0(L1), fc_1.b_0
            predict = fluid.layers.fc(hidden2, 32)   # fc_3.w_0, fc_3.b_0
2
201716010711 已提交
219
            avg_loss = paddle.mean(predict)
220 221 222 223

            # set L2 regularization in optimizer
            optimizer = fluid.optimizer.SGD(learning_rate=1e-4, regularization=l2)
            optimizer.minimize(avg_loss)
224

225
            # it will Print Message:
226
            # Regularization of [fc_0.w_0, fc_1.w_0] have been set by ParamAttr or WeightNormParamAttr already.
227 228
            # So, the Regularization of Optimizer will not take effect for these parameters!

229 230 231 232
    """

    def __init__(self, regularization_coeff=0.0):
        assert regularization_coeff is not None
233
        super().__init__()
234 235
        self._regularization_coeff = regularization_coeff

C
chengduoZH 已提交
236
    def __call__(self, param, grad, block):
237 238 239 240 241 242 243 244 245 246 247 248
        """Add L1 weight decay ops to network

        Adds L1 weight decay ops.
        L1WeightDecay = reg_coeff * sign(parameter)

        Args:
            param: parameter variable for which regularization is applied
            block: block in which variable is to be created

        Returns:
            new variable for weight decay
        """
249
        assert isinstance(param, framework.Variable)
250
        assert isinstance(block, framework.Block)
C
chengduo 已提交
251

J
Jiabin Yang 已提交
252
        if framework._non_static_mode():
253
            sign = block.create_var(dtype=param.dtype, shape=param.shape)
H
Hongyu Liu 已提交
254 255
            decay = block.create_var(dtype=param.dtype, shape=param.shape)
        else:
256 257 258 259 260 261
            sign = block.create_var(
                dtype=param.dtype, shape=param.shape, lod_level=param.lod_level
            )
            decay = block.create_var(
                dtype=param.dtype, shape=param.shape, lod_level=param.lod_level
            )
H
hong 已提交
262
        if in_dygraph_mode():
263 264
            sign = _C_ops.sign(param)
            return _C_ops.scale(sign, self._regularization_coeff, 0.0, True)
C
chengduoZH 已提交
265

266
        # Append sign op
267
        block.append_op(type='sign', inputs={"X": param}, outputs={"Out": sign})
268 269

        # Append scale op to the output of sign op
270 271 272 273 274 275
        block.append_op(
            type='scale',
            inputs={"X": sign},
            outputs={"Out": decay},
            attrs={"scale": self._regularization_coeff},
        )
276 277

        return decay
278

F
fengjiayi 已提交
279 280 281
    def __str__(self):
        return "L1Decay, regularization_coeff=%f" % self._regularization_coeff

282 283 284 285 286 287 288

# We short the class name, since users will use the regulaizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# hidden = fluid.layers.fc(...,
Y
Yu Yang 已提交
289
#                          param_attr=fluid.regularizer.Xavier())
290 291 292 293
#
# It is no need to add a `Regularizer` as the class suffix
L1Decay = L1DecayRegularizer
L2Decay = L2DecayRegularizer