test_prim2orig.py 21.1 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16 17 18 19
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import paddle
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.layers.utils import flatten
20
from paddle.incubate.autograd.primrules import _prim2orig
21 22 23 24 25 26

paddle.enable_static()


############################ Test prim2orig rules ############################
class TestAddPPrim2Orig(unittest.TestCase):
27

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
    def setUp(self):
        self.main_program = paddle.static.Program()
        self.startup_program = paddle.static.Program()
        self.layer_help = LayerHelper('TestPrim2Orig')

        with paddle.static.program_guard(self.main_program,
                                         self.startup_program):
            self.init_data()

    def init_data(self):
        self.op_type = 'add_p'
        X = paddle.static.data(name='X', shape=[2, 2], dtype='float')
        Y = paddle.static.data(name='Y', shape=[2, 2], dtype='float')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Z':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.prim2orig_args = (X, Y)
        self.all_ops = ['add_p', 'elementwise_add']
        # { prim_op_output_var: orign_op_out_index }
        self.out_map = {self.output['Z']: 0}

    def test_op(self):
        with paddle.static.program_guard(self.main_program,
                                         self.startup_program):
57 58 59 60
            op = self.layer_help.append_op(type=self.op_type,
                                           inputs=self.input,
                                           outputs=self.output,
                                           attrs=self.attrs)
61 62 63 64 65 66 67 68 69 70

            orig_out = _prim2orig(op, *self.prim2orig_args)
            all_ops = [op.type for op in self.main_program.block(0).ops]
            self.assertEqual(sorted(all_ops), sorted(self.all_ops))
            orig_out = flatten(orig_out)
            for k, v in self.out_map.items():
                self.assertEqual(k.shape, orig_out[v].shape)


class TestSubPPrim2Orig(TestAddPPrim2Orig):
71

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    def init_data(self):
        self.op_type = 'sub_p'
        X = paddle.static.data(name='X', shape=[7, 8], dtype='float64')
        Y = paddle.static.data(name='Y', shape=[7, 8], dtype='float64')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Z':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.prim2orig_args = (X, Y)
        self.all_ops = ['sub_p', 'elementwise_sub']
        self.out_map = {self.output['Z']: 0}


class TestMulPPrim2Orig(TestAddPPrim2Orig):
90

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
    def init_data(self):
        self.op_type = 'mul_p'
        X = paddle.static.data(name='X', shape=[7, 8], dtype='float64')
        Y = paddle.static.data(name='Y', shape=[7, 8], dtype='float64')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Z':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.prim2orig_args = (X, Y)
        self.all_ops = ['mul_p', 'elementwise_mul']
        self.out_map = {self.output['Z']: 0}


class TestDivPPrim2Orig(TestAddPPrim2Orig):
109

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
    def init_data(self):
        self.op_type = 'div_p'
        X = paddle.static.data(name='X', shape=[7, 8], dtype='float64')
        Y = paddle.static.data(name='Y', shape=[7, 8], dtype='float64')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Z':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.prim2orig_args = (X, Y)
        self.all_ops = ['div_p', 'elementwise_div']
        self.out_map = {self.output['Z']: 0}


class TestSqrtPPrim2Orig(TestAddPPrim2Orig):
128

129 130 131 132
    def init_data(self):
        self.op_type = 'sqrt_p'
        X = paddle.static.data(name='X', shape=[7, 8], dtype='float64')

133 134 135
        self.input = {
            'X': X,
        }
136 137 138 139 140 141 142 143 144 145 146 147
        self.output = {
            'Y':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.prim2orig_args = (X, )
        self.all_ops = ['sqrt_p', 'sqrt']
        self.out_map = {self.output['Y']: 0}


class TestTanhPPrim2Orig(TestAddPPrim2Orig):
148

149 150 151 152
    def init_data(self):
        self.op_type = 'tanh_p'
        X = paddle.static.data(name='X', shape=[7, 8], dtype='float64')

153 154 155
        self.input = {
            'X': X,
        }
156 157 158 159 160 161 162 163 164 165 166
        self.output = {
            'Y':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.prim2orig_args = (X, )
        self.all_ops = ['tanh_p', 'tanh']
        self.out_map = {self.output['Y']: 0}


167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
class TestSinPPrim2Orig(TestAddPPrim2Orig):

    def init_data(self):
        self.op_type = 'sin_p'
        X = paddle.static.data(name='X', shape=[7, 8], dtype='float64')

        self.input = {
            'X': X,
        }
        self.output = {
            'Y':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.prim2orig_args = (X, )
        self.all_ops = ['sin_p', 'sin']
        self.out_map = {self.output['Y']: 0}


class TestCosPPrim2Orig(TestAddPPrim2Orig):

    def init_data(self):
        self.op_type = 'cos_p'
        X = paddle.static.data(name='X', shape=[7, 8], dtype='float64')

        self.input = {
            'X': X,
        }
        self.output = {
            'Y':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.prim2orig_args = (X, )
        self.all_ops = ['cos_p', 'cos']
        self.out_map = {self.output['Y']: 0}


class TestExpPPrim2Orig(TestAddPPrim2Orig):

    def init_data(self):
        self.op_type = 'exp_p'
        X = paddle.static.data(name='X', shape=[7, 8], dtype='float64')

        self.input = {
            'X': X,
        }
        self.output = {
            'Y':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.prim2orig_args = (X, )
        self.all_ops = ['exp_p', 'exp']
        self.out_map = {self.output['Y']: 0}


227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
class TestErfPPrim2Orig(TestAddPPrim2Orig):

    def init_data(self):
        self.op_type = 'erf_p'
        X = paddle.static.data(name='X', shape=[7, 8], dtype='float64')

        self.input = {
            'X': X,
        }
        self.output = {
            'Y':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.prim2orig_args = (X, )
        self.all_ops = ['erf_p', 'erf']
        self.out_map = {self.output['Y']: 0}


247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
class TestAbsPPrim2Orig(TestAddPPrim2Orig):

    def init_data(self):
        self.op_type = 'abs_p'
        X = paddle.static.data(name='X', shape=[7, 8], dtype='float64')

        self.input = {
            'X': X,
        }
        self.output = {
            'Y':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.prim2orig_args = (X, )
        self.all_ops = ['abs_p', 'abs']
        self.out_map = {self.output['Y']: 0}


267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
class TestLogPPrim2Orig(TestAddPPrim2Orig):

    def init_data(self):
        self.op_type = 'log_p'
        X = paddle.static.data(name='X', shape=[7, 8], dtype='float64')

        self.input = {
            'X': X,
        }
        self.output = {
            'Y':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.prim2orig_args = (X, )
        self.all_ops = ['log_p', 'log']
        self.out_map = {self.output['Y']: 0}


287
class TestReshapePPrim2Orig(TestAddPPrim2Orig):
288

289 290 291 292
    def init_data(self):
        self.op_type = 'reshape_p'
        X = paddle.static.data(name='X', shape=[2, 8], dtype='float64')

293 294 295
        self.input = {
            'X': X,
        }
296 297 298 299 300 301 302 303 304 305 306 307
        self.output = {
            'Y':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {'shape': [4, 4]}

        self.prim2orig_args = (X, )
        self.all_ops = ['reshape_p', 'reshape2']
        self.out_map = {self.output['Y']: 0}


class TestBroadcastPPrim2Orig(TestAddPPrim2Orig):
308

309 310 311 312
    def init_data(self):
        self.op_type = 'broadcast_p'
        X = paddle.static.data(name='X', shape=[2, 8], dtype='float64')

313 314 315
        self.input = {
            'X': X,
        }
316 317 318 319 320 321 322 323 324 325 326 327
        self.output = {
            'Y':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {'shape': [10, 2, 8]}

        self.prim2orig_args = (X, )
        self.all_ops = ['broadcast_p', 'expand_v2']
        self.out_map = {self.output['Y']: 0}


class TestTransposePPrim2Orig(TestAddPPrim2Orig):
328

329 330 331 332
    def init_data(self):
        self.op_type = 'transpose_p'
        X = paddle.static.data(name='X', shape=[7, 8, 9, 10], dtype='float64')

333 334 335
        self.input = {
            'X': X,
        }
336 337 338 339 340 341 342 343 344 345 346 347
        self.output = {
            'Y':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {'axis': [1, 2, 0, 3]}

        self.prim2orig_args = (X, )
        self.all_ops = ['transpose_p', 'transpose2']
        self.out_map = {self.output['Y']: 0}


class TestSplitPPrim2Orig(TestAddPPrim2Orig):
348

349 350 351 352
    def init_data(self):
        self.op_type = 'split_p'
        X = paddle.static.data(name='X', shape=[3, 9, 5], dtype='float64')

353 354 355
        self.input = {
            'X': X,
        }
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
        self.output = {
            'YS': [
                self.layer_help.create_variable_for_type_inference(
                    dtype=X.dtype) for i in range(3)
            ]
        }
        self.attrs = {'num_or_sections': [2, 3, 4], 'axis': 1}

        self.prim2orig_args = (X, )
        self.all_ops = ['split_p', 'split']
        self.out_map = {
            self.output['YS'][0]: 0,
            self.output['YS'][1]: 1,
            self.output['YS'][2]: 2,
        }


class TestConcatPPrim2Orig(TestAddPPrim2Orig):
374

375 376 377 378 379 380
    def init_data(self):
        self.op_type = 'concat_p'
        X = paddle.static.data(name='X', shape=[3, 9, 5], dtype='float64')
        Y = paddle.static.data(name='Y', shape=[2, 9, 5], dtype='float64')
        Z = paddle.static.data(name='Z', shape=[1, 9, 5], dtype='float64')

381 382 383
        self.input = {
            'XS': [X, Y, Z],
        }
384 385 386 387 388 389 390 391 392 393 394 395
        self.output = {
            'Y':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {'axis': 0}

        self.prim2orig_args = ((X, Y, Z), )
        self.all_ops = ['concat_p', 'concat']
        self.out_map = {self.output['Y']: 0}


class TestReducePPrim2Orig(TestAddPPrim2Orig):
396

397
    def init_data(self):
398
        self.op_type = 'reduce_sum_p'
399 400 401 402 403 404 405 406 407 408
        X = paddle.static.data(name='X', shape=[3, 9, 5], dtype='float64')

        self.input = {'X': X}
        self.output = {
            'Y':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {'axis': [1], 'keepdim': True}

        self.prim2orig_args = (X, )
409
        self.all_ops = ['reduce_sum_p', 'reduce_sum']
410 411 412 413
        self.out_map = {self.output['Y']: 0}


class TestMatmulPPrim2Orig(TestAddPPrim2Orig):
414

415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
    def init_data(self):
        self.op_type = 'matmul_p'
        X = paddle.static.data(name='X', shape=[9, 5], dtype='float64')
        Y = paddle.static.data(name='Y', shape=[5, 9], dtype='float64')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Z':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.prim2orig_args = (X, Y)
        self.all_ops = ['matmul_p', 'matmul_v2']
        self.out_map = {self.output['Z']: 0}


class TestSliceSelectPPrim2Orig(TestAddPPrim2Orig):
433

434 435 436 437
    def init_data(self):
        self.op_type = 'slice_select_p'
        X = paddle.static.data(name='X', shape=[9, 5], dtype='float64')

438 439 440
        self.input = {
            'X': X,
        }
441 442 443 444 445 446 447 448 449 450 451 452
        self.output = {
            'Y':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {'axis': [0], 'starts': [1], 'ends': [8], 'strides': [2]}

        self.prim2orig_args = (X, )
        self.all_ops = ['slice_select_p', 'strided_slice']
        self.out_map = {self.output['Y']: 0}


class TestSliceAssignPPrim2Orig(TestAddPPrim2Orig):
453

454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
    def init_data(self):
        self.op_type = 'slice_assign_p'
        X = paddle.static.data(name='X', shape=[9, 5], dtype='float64')
        Y = paddle.static.data(name='Y', shape=[9, 3], dtype='float64')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Z':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {'axis': [1], 'starts': [0], 'ends': [3], 'strides': [1]}

        self.prim2orig_args = (X, Y)
        self.all_ops = ['slice_assign_p', 'assign', 'set_value']
        self.out_map = {self.output['Z']: 0}


class TestGatherPPrim2Orig(TestAddPPrim2Orig):
472

473 474 475
    def init_data(self):
        self.op_type = 'gather_p'
        X = paddle.static.data(name='X', shape=[9, 5], dtype='float64')
476 477 478
        IndexTensor = paddle.static.data(name='IndexTensor',
                                         shape=[3],
                                         dtype='int32')
479 480 481 482 483 484

        self.input = {'X': X, 'IndexTensor': IndexTensor}
        self.output = {
            'Y':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
485 486 487
        self.attrs = {
            'axis': 0,
        }
488 489 490

        self.prim2orig_args = (
            IndexTensor,
491 492
            X,
        )
493 494 495 496 497
        self.all_ops = ['gather_p', 'gather']
        self.out_map = {self.output['Y']: 0}


class TestScatterAddPPrim2Orig(TestAddPPrim2Orig):
498

499 500 501 502
    def init_data(self):
        self.op_type = 'scatter_add_p'
        X = paddle.static.data(name='X', shape=[9, 5], dtype='float64')
        Y = paddle.static.data(name='Y', shape=[3, 5], dtype='float64')
503 504 505
        IndexTensor = paddle.static.data(name='IndexTensor',
                                         shape=[3],
                                         dtype='int32')
506 507 508 509 510 511

        self.input = {'X': X, 'Y': Y, 'IndexTensor': IndexTensor}
        self.output = {
            'Z':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
512 513 514
        self.attrs = {
            'axis': 0,
        }
515 516 517 518 519 520 521 522 523

        self.prim2orig_args = (IndexTensor, X, Y)
        self.all_ops = [
            'scatter_add_p', 'fill_any_like', 'scatter', 'elementwise_add'
        ]
        self.out_map = {self.output['Z']: 0}


class TestFillConstantPPrim2Orig(TestAddPPrim2Orig):
524

525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
    def init_data(self):
        self.op_type = 'fill_constant_p'

        self.input = {}
        self.output = {
            'Y':
            self.layer_help.create_variable_for_type_inference(paddle.int32)
        }
        self.attrs = {'value': 10, 'shape': [5, 5], 'dtype': paddle.int32}

        self.prim2orig_args = ()
        self.all_ops = ['fill_constant_p', 'fill_constant']
        self.out_map = {self.output['Y']: 0}


540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
class TestSelectPPrim2Orig(TestAddPPrim2Orig):

    def init_data(self):
        self.op_type = 'select_p'
        Cond = paddle.static.data(name='Condition', shape=[5, 6], dtype='bool')
        X = paddle.static.data(name='X', shape=[5, 6], dtype='float32')
        Y = paddle.static.data(name='Y', shape=[5, 6], dtype='float32')

        self.input = {'Condition': Cond, 'X': X, 'Y': Y}
        self.output = {
            'Z':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}
        self.prim2orig_args = (Cond, X, Y)
        self.all_ops = ['select_p', 'where']
        self.out_map = {self.output['Z']: 0}


class TestEqPPrim2Orig(TestAddPPrim2Orig):

    def init_data(self):
        self.op_type = 'eq_p'
        X = paddle.static.data(name='X', shape=[7, 8], dtype='float64')
        Y = paddle.static.data(name='Y', shape=[7, 8], dtype='float64')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Z':
            self.layer_help.create_variable_for_type_inference(dtype='bool')
        }
        self.attrs = {}

        self.prim2orig_args = (X, Y)
        self.all_ops = ['eq_p', 'equal']
        self.out_map = {self.output['Z']: 0}


578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
class TestNePPrim2Orig(TestAddPPrim2Orig):

    def init_data(self):
        self.op_type = 'ne_p'
        X = paddle.static.data(name='X', shape=[7, 8], dtype='float64')
        Y = paddle.static.data(name='Y', shape=[7, 8], dtype='float64')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Z':
            self.layer_help.create_variable_for_type_inference(dtype='bool')
        }
        self.attrs = {}

        self.prim2orig_args = (X, Y)
        self.all_ops = ['ne_p', 'not_equal']
        self.out_map = {self.output['Z']: 0}


class TestGtPPrim2Orig(TestAddPPrim2Orig):

    def init_data(self):
        self.op_type = 'gt_p'
        X = paddle.static.data(name='X', shape=[7, 8], dtype='float64')
        Y = paddle.static.data(name='Y', shape=[7, 8], dtype='float64')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Z':
            self.layer_help.create_variable_for_type_inference(dtype='bool')
        }
        self.attrs = {}

        self.prim2orig_args = (X, Y)
        self.all_ops = ['gt_p', 'greater_than']
        self.out_map = {self.output['Z']: 0}


class TestGePPrim2Orig(TestAddPPrim2Orig):

    def init_data(self):
        self.op_type = 'ge_p'
        X = paddle.static.data(name='X', shape=[7, 8], dtype='float64')
        Y = paddle.static.data(name='Y', shape=[7, 8], dtype='float64')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Z':
            self.layer_help.create_variable_for_type_inference(dtype='bool')
        }
        self.attrs = {}

        self.prim2orig_args = (X, Y)
        self.all_ops = ['ge_p', 'greater_equal']
        self.out_map = {self.output['Z']: 0}


635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
class TestPowPPrim2Orig(TestAddPPrim2Orig):

    def init_data(self):
        self.op_type = 'pow_p'
        X = paddle.static.data(name='X', shape=[7, 8], dtype='float64')
        Y = paddle.static.data(name='Y', shape=[7, 8], dtype='float64')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Z':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.prim2orig_args = (X, Y)
        self.all_ops = ['pow_p', 'elementwise_pow']
        self.out_map = {self.output['Z']: 0}


654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
class TestMaxPPrim2Orig(TestAddPPrim2Orig):

    def init_data(self):
        self.op_type = 'max_p'
        X = paddle.static.data(name='X', shape=[7, 8], dtype='float64')
        Y = paddle.static.data(name='Y', shape=[7, 8], dtype='float64')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Z':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.prim2orig_args = (X, Y)
        self.all_ops = ['max_p', 'elementwise_max']
        self.out_map = {self.output['Z']: 0}


673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
class TestBernoulliPPrim2Orig(TestAddPPrim2Orig):

    def init_data(self):
        self.op_type = 'bernoulli_p'

        self.input = {}
        self.output = {
            'Y':
            self.layer_help.create_variable_for_type_inference(
                dtype=paddle.float64)
        }
        self.attrs = {'shape': [7, 8], 'dtype': paddle.float64, 'p': 0.5}

        self.prim2orig_args = ()
        self.all_ops = ['bernoulli_p', 'fill_constant', 'bernoulli']
        self.out_map = {self.output['Y']: 0}


691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
class TestCastPPrim2Orig(TestAddPPrim2Orig):

    def init_data(self):
        self.op_type = 'cast_p'
        X = paddle.static.data(name='X', shape=[7, 8], dtype='float64')

        self.input = {
            'X': X,
        }
        self.output = {
            'Y':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {'dtype': paddle.int64}

        self.prim2orig_args = (X, )
        self.all_ops = ['cast_p', 'cast']
        self.out_map = {self.output['Y']: 0}


J
Jiabin Yang 已提交
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
class TestRsqrtPrim2Orig(TestAddPPrim2Orig):

    def init_data(self):
        self.op_type = 'rsqrt_p'
        X = paddle.static.data(name='X', shape=[7, 8], dtype='float64')

        self.input = {
            'X': X,
        }
        self.output = {
            'Y':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.prim2orig_args = (X, )
        self.all_ops = ['rsqrt_p', 'rsqrt']
        self.out_map = {self.output['Y']: 0}


731 732
if __name__ == '__main__':
    unittest.main()