test_var_base.py 68.9 KB
Newer Older
L
Leo Chen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
18 19
import numpy as np
import six
20
import copy
21

22
import paddle
L
Leo Chen 已提交
23 24
import paddle.fluid as fluid
import paddle.fluid.core as core
J
Jiabin Yang 已提交
25
from paddle.fluid.framework import _test_eager_guard, _in_legacy_dygraph
L
Leo Chen 已提交
26 27 28 29 30 31 32 33


class TestVarBase(unittest.TestCase):
    def setUp(self):
        self.shape = [512, 1234]
        self.dtype = np.float32
        self.array = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)

34
    def func_test_to_tensor(self):
35 36
        def _test_place(place):
            with fluid.dygraph.guard():
37
                paddle.set_default_dtype('float32')
38
                # set_default_dtype should not take effect on int
39 40 41 42
                x = paddle.to_tensor(1, place=place, stop_gradient=False)
                self.assertTrue(np.array_equal(x.numpy(), [1]))
                self.assertNotEqual(x.dtype, core.VarDesc.VarType.FP32)

43 44 45
                y = paddle.to_tensor(2, place=x.place)
                self.assertEqual(str(x.place), str(y.place))

46 47 48 49 50 51 52 53 54
                # set_default_dtype should not take effect on numpy
                x = paddle.to_tensor(
                    np.array([1.2]).astype('float16'),
                    place=place,
                    stop_gradient=False)
                self.assertTrue(
                    np.array_equal(x.numpy(), np.array([1.2], 'float16')))
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP16)

55 56 57 58
                # set_default_dtype take effect on int
                x = paddle.to_tensor(1, place=place)
                self.assertTrue(x.dtype, core.VarDesc.VarType.INT64)

59
                # set_default_dtype take effect on float
60 61 62 63 64
                x = paddle.to_tensor(1.2, place=place, stop_gradient=False)
                self.assertTrue(
                    np.array_equal(x.numpy(), np.array([1.2]).astype(
                        'float32')))
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
Z
Zhou Wei 已提交
65 66 67 68 69 70 71 72
                clone_x = x.clone()
                self.assertTrue(
                    np.array_equal(clone_x.numpy(),
                                   np.array([1.2]).astype('float32')))
                self.assertEqual(clone_x.dtype, core.VarDesc.VarType.FP32)
                y = clone_x**2
                y.backward()
                self.assertTrue(
73 74
                    np.array_equal(x.grad.numpy(),
                                   np.array([2.4]).astype('float32')))
75
                y = x.cpu()
76
                self.assertEqual(y.place.__repr__(), "Place(cpu)")
77 78
                if core.is_compiled_with_cuda():
                    y = x.pin_memory()
79
                    self.assertEqual(y.place.__repr__(), "Place(gpu_pinned)")
80 81
                    y = x.cuda()
                    y = x.cuda(None)
82
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
83
                    y = x.cuda(device_id=0)
84
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
85
                    y = x.cuda(blocking=False)
86
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
87
                    y = x.cuda(blocking=True)
88
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
89 90
                    with self.assertRaises(ValueError):
                        y = x.cuda("test")
91

92 93 94 95 96
                # support 'dtype' is core.VarType
                x = paddle.rand((2, 2))
                y = paddle.to_tensor([2, 2], dtype=x.dtype)
                self.assertEqual(y.dtype, core.VarDesc.VarType.FP32)

97
                # set_default_dtype take effect on complex
98 99
                x = paddle.to_tensor(1 + 2j, place=place, stop_gradient=False)
                self.assertTrue(np.array_equal(x.numpy(), [1 + 2j]))
C
chentianyu03 已提交
100
                self.assertEqual(x.dtype, core.VarDesc.VarType.COMPLEX64)
101 102 103 104 105 106 107 108

                paddle.set_default_dtype('float64')
                x = paddle.to_tensor(1.2, place=place, stop_gradient=False)
                self.assertTrue(np.array_equal(x.numpy(), [1.2]))
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP64)

                x = paddle.to_tensor(1 + 2j, place=place, stop_gradient=False)
                self.assertTrue(np.array_equal(x.numpy(), [1 + 2j]))
C
chentianyu03 已提交
109
                self.assertEqual(x.dtype, core.VarDesc.VarType.COMPLEX128)
110

111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
                x = paddle.to_tensor(
                    1, dtype='float32', place=place, stop_gradient=False)
                self.assertTrue(np.array_equal(x.numpy(), [1.]))
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
                self.assertEqual(x.shape, [1])
                self.assertEqual(x.stop_gradient, False)
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

                x = paddle.to_tensor(
                    (1, 2), dtype='float32', place=place, stop_gradient=False)
                x = paddle.to_tensor(
                    [1, 2], dtype='float32', place=place, stop_gradient=False)
                self.assertTrue(np.array_equal(x.numpy(), [1., 2.]))
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
                self.assertEqual(x.grad, None)
                self.assertEqual(x.shape, [2])
                self.assertEqual(x.stop_gradient, False)
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

                x = paddle.to_tensor(
                    self.array,
                    dtype='float32',
                    place=place,
                    stop_gradient=False)
                self.assertTrue(np.array_equal(x.numpy(), self.array))
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
                self.assertEqual(x.shape, self.shape)
                self.assertEqual(x.stop_gradient, False)
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

                y = paddle.to_tensor(x)
                y = paddle.to_tensor(y, dtype='float64', place=place)
                self.assertTrue(np.array_equal(y.numpy(), self.array))
                self.assertEqual(y.dtype, core.VarDesc.VarType.FP64)
                self.assertEqual(y.shape, self.shape)
                self.assertEqual(y.stop_gradient, True)
                self.assertEqual(y.type, core.VarDesc.VarType.LOD_TENSOR)
                z = x + y
                self.assertTrue(np.array_equal(z.numpy(), 2 * self.array))

                x = paddle.to_tensor(
                    [1 + 2j, 1 - 2j], dtype='complex64', place=place)
                y = paddle.to_tensor(x)
                self.assertTrue(np.array_equal(x.numpy(), [1 + 2j, 1 - 2j]))
C
chentianyu03 已提交
155
                self.assertEqual(y.dtype, core.VarDesc.VarType.COMPLEX64)
156 157
                self.assertEqual(y.shape, [2])

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
                paddle.set_default_dtype('float32')
                x = paddle.randn([3, 4])
                x_array = np.array(x)
                self.assertEqual(x_array.shape, x.numpy().shape)
                self.assertEqual(x_array.dtype, x.numpy().dtype)
                self.assertTrue(np.array_equal(x_array, x.numpy()))

                x = paddle.to_tensor(1.0)
                self.assertEqual(x.item(), 1.0)
                self.assertTrue(isinstance(x.item(), float))

                x = paddle.randn([3, 2, 2])
                self.assertTrue(isinstance(x.item(5), float))
                self.assertTrue(isinstance(x.item(1, 0, 1), float))
                self.assertEqual(x.item(5), x.item(1, 0, 1))
                self.assertTrue(
                    np.array_equal(x.item(1, 0, 1), x.numpy().item(1, 0, 1)))

                x = paddle.to_tensor([[1.111111, 2.222222, 3.333333]])
                self.assertEqual(x.item(0, 2), x.item(2))
                self.assertAlmostEqual(x.item(2), 3.333333)
                self.assertTrue(isinstance(x.item(0, 2), float))

                x = paddle.to_tensor(1.0, dtype='float64')
                self.assertEqual(x.item(), 1.0)
                self.assertTrue(isinstance(x.item(), float))

                x = paddle.to_tensor(1.0, dtype='float16')
                self.assertEqual(x.item(), 1.0)
                self.assertTrue(isinstance(x.item(), float))

                x = paddle.to_tensor(1, dtype='uint8')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int8')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int16')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int32')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int64')
                self.assertEqual(x.item(), 1)
T
tianshuo78520a 已提交
207
                self.assertTrue(isinstance(x.item(), int))
208 209 210 211 212 213 214 215 216

                x = paddle.to_tensor(True)
                self.assertEqual(x.item(), True)
                self.assertTrue(isinstance(x.item(), bool))

                x = paddle.to_tensor(1 + 1j)
                self.assertEqual(x.item(), 1 + 1j)
                self.assertTrue(isinstance(x.item(), complex))

217 218 219 220 221 222 223
                # empty tensor
                x = paddle.to_tensor([])
                self.assertEqual(x.shape, [0])
                expected_result = np.array([], dtype='float32')
                self.assertEqual(x.numpy().shape, expected_result.shape)
                self.assertTrue(np.array_equal(x.numpy(), expected_result))

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
                numpy_array = np.random.randn(3, 4)
                # covert core.LoDTensor to paddle.Tensor
                lod_tensor = paddle.fluid.core.LoDTensor()
                place = paddle.fluid.framework._current_expected_place()
                lod_tensor.set(numpy_array, place)
                x = paddle.to_tensor(lod_tensor)
                self.assertTrue(np.array_equal(x.numpy(), numpy_array))
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)
                self.assertEqual(str(x.place), str(place))

                # covert core.Tensor to paddle.Tensor
                x = paddle.to_tensor(numpy_array)
                dlpack = x.value().get_tensor()._to_dlpack()
                tensor_from_dlpack = paddle.fluid.core.from_dlpack(dlpack)
                x = paddle.to_tensor(tensor_from_dlpack)
                self.assertTrue(np.array_equal(x.numpy(), numpy_array))
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

242 243 244 245 246 247 248 249
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item()
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item(18)
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item(1, 2)
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item(2, 1, 2)
250 251 252 253 254 255 256 257 258 259 260 261
                with self.assertRaises(TypeError):
                    paddle.to_tensor('test')
                with self.assertRaises(TypeError):
                    paddle.to_tensor(1, dtype='test')
                with self.assertRaises(ValueError):
                    paddle.to_tensor([[1], [2, 3]])
                with self.assertRaises(ValueError):
                    paddle.to_tensor([[1], [2, 3]], place='test')
                with self.assertRaises(ValueError):
                    paddle.to_tensor([[1], [2, 3]], place=1)

        _test_place(core.CPUPlace())
262
        _test_place("cpu")
263
        if core.is_compiled_with_cuda():
264
            _test_place(core.CUDAPinnedPlace())
265
            _test_place("gpu_pinned")
266
            _test_place(core.CUDAPlace(0))
267
            _test_place("gpu:0")
268 269 270
        if core.is_compiled_with_npu():
            _test_place(core.NPUPlace(0))
            _test_place("npu:0")
271

272 273 274 275 276 277
    def test_to_tensor(self):
        with _test_eager_guard():
            self.func_test_to_tensor()
        self.func_test_to_tensor()

    def func_test_to_tensor_not_change_input_stop_gradient(self):
278 279 280 281 282 283 284
        with paddle.fluid.dygraph.guard(core.CPUPlace()):
            a = paddle.zeros([1024])
            a.stop_gradient = False
            b = paddle.to_tensor(a)
            self.assertEqual(a.stop_gradient, False)
            self.assertEqual(b.stop_gradient, True)

285 286 287 288 289 290
    def test_to_tensor_not_change_input_stop_gradient(self):
        with _test_eager_guard():
            self.func_test_to_tensor_not_change_input_stop_gradient()
        self.func_test_to_tensor_not_change_input_stop_gradient()

    def func_test_to_tensor_change_place(self):
291 292 293 294 295
        if core.is_compiled_with_cuda():
            a_np = np.random.rand(1024, 1024)
            with paddle.fluid.dygraph.guard(core.CPUPlace()):
                a = paddle.to_tensor(a_np, place=paddle.CUDAPinnedPlace())
                a = paddle.to_tensor(a)
296
                self.assertEqual(a.place.__repr__(), "Place(cpu)")
297 298 299 300

            with paddle.fluid.dygraph.guard(core.CUDAPlace(0)):
                a = paddle.to_tensor(a_np, place=paddle.CUDAPinnedPlace())
                a = paddle.to_tensor(a)
301
                self.assertEqual(a.place.__repr__(), "Place(gpu:0)")
302 303 304 305

            with paddle.fluid.dygraph.guard(core.CUDAPlace(0)):
                a = paddle.to_tensor(a_np, place=paddle.CPUPlace())
                a = paddle.to_tensor(a, place=paddle.CUDAPinnedPlace())
306
                self.assertEqual(a.place.__repr__(), "Place(gpu_pinned)")
307

308 309 310 311 312 313
    def test_to_tensor_change_place(self):
        with _test_eager_guard():
            self.func_test_to_tensor_change_place()
        self.func_test_to_tensor_change_place()

    def func_test_to_tensor_with_lodtensor(self):
314 315 316 317 318 319 320 321 322 323 324
        if core.is_compiled_with_cuda():
            a_np = np.random.rand(1024, 1024)
            with paddle.fluid.dygraph.guard(core.CPUPlace()):
                lod_tensor = core.LoDTensor()
                lod_tensor.set(a_np, core.CPUPlace())
                a = paddle.to_tensor(lod_tensor)
                self.assertTrue(np.array_equal(a_np, a.numpy()))

            with paddle.fluid.dygraph.guard(core.CUDAPlace(0)):
                lod_tensor = core.LoDTensor()
                lod_tensor.set(a_np, core.CUDAPlace(0))
325
                a = paddle.to_tensor(lod_tensor, place=core.CPUPlace())
326
                self.assertTrue(np.array_equal(a_np, a.numpy()))
327
                self.assertTrue(a.place.__repr__(), "Place(cpu)")
328

329 330 331 332 333 334
    def test_to_tensor_with_lodtensor(self):
        with _test_eager_guard():
            self.func_test_to_tensor_with_lodtensor()
        self.func_test_to_tensor_with_lodtensor()

    def func_test_to_variable(self):
L
Leo Chen 已提交
335 336 337 338 339 340 341 342 343 344
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array, name="abc")
            self.assertTrue(np.array_equal(var.numpy(), self.array))
            self.assertEqual(var.name, 'abc')
            # default value
            self.assertEqual(var.persistable, False)
            self.assertEqual(var.stop_gradient, True)
            self.assertEqual(var.shape, self.shape)
            self.assertEqual(var.dtype, core.VarDesc.VarType.FP32)
            self.assertEqual(var.type, core.VarDesc.VarType.LOD_TENSOR)
345 346 347 348 349 350 351
            # The type of input must be 'ndarray' or 'Variable', it will raise TypeError
            with self.assertRaises(TypeError):
                var = fluid.dygraph.to_variable("test", name="abc")
            # test to_variable of LayerObjectHelper(LayerHelperBase)
            with self.assertRaises(TypeError):
                linear = fluid.dygraph.Linear(32, 64)
                var = linear._helper.to_variable("test", name="abc")
L
Leo Chen 已提交
352

353 354 355 356 357 358
    def test_to_variable(self):
        with _test_eager_guard():
            self.func_test_to_variable()
        self.func_test_to_variable()

    def func_test_list_to_variable(self):
359 360 361 362 363 364 365 366
        with fluid.dygraph.guard():
            array = [[[1, 2], [1, 2], [1.0, 2]], [[1, 2], [1, 2], [1, 2]]]
            var = fluid.dygraph.to_variable(array, dtype='int32')
            self.assertTrue(np.array_equal(var.numpy(), array))
            self.assertEqual(var.shape, [2, 3, 2])
            self.assertEqual(var.dtype, core.VarDesc.VarType.INT32)
            self.assertEqual(var.type, core.VarDesc.VarType.LOD_TENSOR)

367 368 369 370 371 372
    def test_list_to_variable(self):
        with _test_eager_guard():
            self.func_test_list_to_variable()
        self.func_test_list_to_variable()

    def func_test_tuple_to_variable(self):
373 374 375 376 377 378 379 380
        with fluid.dygraph.guard():
            array = (((1, 2), (1, 2), (1, 2)), ((1, 2), (1, 2), (1, 2)))
            var = fluid.dygraph.to_variable(array, dtype='float32')
            self.assertTrue(np.array_equal(var.numpy(), array))
            self.assertEqual(var.shape, [2, 3, 2])
            self.assertEqual(var.dtype, core.VarDesc.VarType.FP32)
            self.assertEqual(var.type, core.VarDesc.VarType.LOD_TENSOR)

381 382 383 384 385 386
    def test_tuple_to_variable(self):
        with _test_eager_guard():
            self.func_test_tuple_to_variable()
        self.func_test_tuple_to_variable()

    def func_test_tensor_to_variable(self):
387 388
        with fluid.dygraph.guard():
            t = fluid.Tensor()
L
Leo Chen 已提交
389
            t.set(np.random.random((1024, 1024)), fluid.CPUPlace())
390 391 392
            var = fluid.dygraph.to_variable(t)
            self.assertTrue(np.array_equal(t, var.numpy()))

393 394 395 396 397 398
    def test_tensor_to_variable(self):
        with _test_eager_guard():
            self.func_test_tensor_to_variable()
        self.func_test_tensor_to_variable()

    def func_test_leaf_tensor(self):
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
        with fluid.dygraph.guard():
            x = paddle.to_tensor(np.random.uniform(-1, 1, size=[10, 10]))
            self.assertTrue(x.is_leaf)
            y = x + 1
            self.assertTrue(y.is_leaf)

            x = paddle.to_tensor(
                np.random.uniform(
                    -1, 1, size=[10, 10]), stop_gradient=False)
            self.assertTrue(x.is_leaf)
            y = x + 1
            self.assertFalse(y.is_leaf)

            linear = paddle.nn.Linear(10, 10)
            input = paddle.to_tensor(
                np.random.uniform(
                    -1, 1, size=[10, 10]).astype('float32'),
                stop_gradient=False)
            self.assertTrue(input.is_leaf)

            out = linear(input)
            self.assertTrue(linear.weight.is_leaf)
            self.assertTrue(linear.bias.is_leaf)
            self.assertFalse(out.is_leaf)

424 425 426 427 428 429
    def test_leaf_tensor(self):
        with _test_eager_guard():
            self.func_test_leaf_tensor()
        self.func_test_leaf_tensor()

    def func_test_detach(self):
Z
Zhou Wei 已提交
430 431 432 433 434
        with fluid.dygraph.guard():
            x = paddle.to_tensor(1.0, dtype="float64", stop_gradient=False)
            detach_x = x.detach()
            self.assertTrue(detach_x.stop_gradient, True)

Z
zhulei 已提交
435 436
            cmp_float = np.allclose if core.is_compiled_with_rocm(
            ) else np.array_equal
Z
Zhou Wei 已提交
437
            detach_x[:] = 10.0
Z
zhulei 已提交
438
            self.assertTrue(cmp_float(x.numpy(), [10.0]))
Z
Zhou Wei 已提交
439 440 441

            y = x**2
            y.backward()
Z
zhulei 已提交
442
            self.assertTrue(cmp_float(x.grad.numpy(), [20.0]))
Z
Zhou Wei 已提交
443 444 445 446 447
            self.assertEqual(detach_x.grad, None)

            detach_x.stop_gradient = False  # Set stop_gradient to be False, supported auto-grad
            z = 3 * detach_x**2
            z.backward()
Z
zhulei 已提交
448 449
            self.assertTrue(cmp_float(x.grad.numpy(), [20.0]))
            self.assertTrue(cmp_float(detach_x.grad.numpy(), [60.0]))
450

451 452 453 454 455
            with self.assertRaises(ValueError):
                detach_x[:] = 5.0

            detach_x.stop_gradient = True

Z
Zhou Wei 已提交
456
            # Due to sharing of data with origin Tensor, There are some unsafe operations:
457 458 459 460
            with self.assertRaises(RuntimeError):
                y = 2**x
                detach_x[:] = 5.0
                y.backward()
Z
Zhou Wei 已提交
461

462 463 464 465 466 467
    def test_detach(self):
        with _test_eager_guard():
            self.func_test_detach()
        self.func_test_detach()

    def func_test_write_property(self):
L
Leo Chen 已提交
468 469 470
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)

471
            self.assertEqual(var.name, 'generated_tensor_0')
L
Leo Chen 已提交
472 473 474 475 476 477 478 479 480 481 482
            var.name = 'test'
            self.assertEqual(var.name, 'test')

            self.assertEqual(var.persistable, False)
            var.persistable = True
            self.assertEqual(var.persistable, True)

            self.assertEqual(var.stop_gradient, True)
            var.stop_gradient = False
            self.assertEqual(var.stop_gradient, False)

483 484 485 486 487 488
    def test_write_property(self):
        with _test_eager_guard():
            self.func_test_write_property()
        self.func_test_write_property()

    def func_test_deep_copy(self):
489
        with fluid.dygraph.guard():
490 491 492 493
            if _in_legacy_dygraph():
                empty_var = core.VarBase()
            else:
                empty_var = core.eager.Tensor()
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
            empty_var_copy = copy.deepcopy(empty_var)
            self.assertEqual(empty_var.stop_gradient,
                             empty_var_copy.stop_gradient)
            self.assertEqual(empty_var.persistable, empty_var_copy.persistable)
            self.assertEqual(empty_var.type, empty_var_copy.type)
            self.assertEqual(empty_var.dtype, empty_var_copy.dtype)

            x = paddle.to_tensor([2.], stop_gradient=False)
            y = paddle.to_tensor([3.], stop_gradient=False)
            z = x * y
            memo = {}
            x_copy = copy.deepcopy(x, memo)
            y_copy = copy.deepcopy(y, memo)

            self.assertEqual(x_copy.stop_gradient, y_copy.stop_gradient)
            self.assertEqual(x_copy.persistable, y_copy.persistable)
            self.assertEqual(x_copy.type, y_copy.type)
            self.assertEqual(x_copy.dtype, y_copy.dtype)
            self.assertTrue(np.array_equal(x.numpy(), x_copy.numpy()))
            self.assertTrue(np.array_equal(y.numpy(), y_copy.numpy()))

            self.assertNotEqual(id(x), id(x_copy))
            self.assertTrue(np.array_equal(x.numpy(), [2.]))

518 519 520
            with self.assertRaises(ValueError):
                x_copy[:] = 5.

521 522 523 524 525 526 527 528 529
            with self.assertRaises(RuntimeError):
                copy.deepcopy(z)

            x_copy2 = copy.deepcopy(x, memo)
            y_copy2 = copy.deepcopy(y, memo)
            self.assertEqual(id(x_copy), id(x_copy2))
            self.assertEqual(id(y_copy), id(y_copy2))

            # test copy selected rows
530 531 532 533 534 535 536 537 538
            if _in_legacy_dygraph():
                x = core.VarBase(core.VarDesc.VarType.FP32, [3, 100],
                                 "selected_rows",
                                 core.VarDesc.VarType.SELECTED_ROWS, True)
            else:
                x = core.eager.Tensor(core.VarDesc.VarType.FP32, [3, 100],
                                      "selected_rows",
                                      core.VarDesc.VarType.SELECTED_ROWS, True)

539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
            selected_rows = x.value().get_selected_rows()
            selected_rows.get_tensor().set(
                np.random.rand(3, 100), core.CPUPlace())
            selected_rows.set_height(10)
            selected_rows.set_rows([3, 5, 7])
            x_copy = copy.deepcopy(x)

            self.assertEqual(x_copy.stop_gradient, x.stop_gradient)
            self.assertEqual(x_copy.persistable, x.persistable)
            self.assertEqual(x_copy.type, x.type)
            self.assertEqual(x_copy.dtype, x.dtype)

            copy_selected_rows = x_copy.value().get_selected_rows()
            self.assertEqual(copy_selected_rows.height(),
                             selected_rows.height())
            self.assertEqual(copy_selected_rows.rows(), selected_rows.rows())
            self.assertTrue(
                np.array_equal(
                    np.array(copy_selected_rows.get_tensor()),
                    np.array(selected_rows.get_tensor())))

560 561 562 563 564
    def test_deep_copy(self):
        with _test_eager_guard():
            self.func_test_deep_copy()
        self.func_test_deep_copy()

L
Leo Chen 已提交
565
    # test some patched methods
566
    def func_test_set_value(self):
L
Leo Chen 已提交
567 568 569 570 571 572 573 574 575
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            tmp1 = np.random.uniform(0.1, 1, [2, 2, 3]).astype(self.dtype)
            self.assertRaises(AssertionError, var.set_value, tmp1)

            tmp2 = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)
            var.set_value(tmp2)
            self.assertTrue(np.array_equal(var.numpy(), tmp2))

576 577 578 579 580 581
    def test_set_value(self):
        with _test_eager_guard():
            self.func_test_set_value()
        self.func_test_set_value()

    def func_test_to_string(self):
L
Leo Chen 已提交
582 583
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
584
            self.assertTrue(isinstance(str(var), str))
L
Leo Chen 已提交
585

586 587 588 589 590 591
    def test_to_string(self):
        with _test_eager_guard():
            self.func_test_to_string()
        self.func_test_to_string()

    def func_test_element_size(self):
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
        with fluid.dygraph.guard():
            x = paddle.to_tensor(1, dtype='bool')
            self.assertEqual(x.element_size(), 1)

            x = paddle.to_tensor(1, dtype='float16')
            self.assertEqual(x.element_size(), 2)

            x = paddle.to_tensor(1, dtype='float32')
            self.assertEqual(x.element_size(), 4)

            x = paddle.to_tensor(1, dtype='float64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.to_tensor(1, dtype='int8')
            self.assertEqual(x.element_size(), 1)

            x = paddle.to_tensor(1, dtype='int16')
            self.assertEqual(x.element_size(), 2)

            x = paddle.to_tensor(1, dtype='int32')
            self.assertEqual(x.element_size(), 4)

            x = paddle.to_tensor(1, dtype='int64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.to_tensor(1, dtype='uint8')
            self.assertEqual(x.element_size(), 1)

            x = paddle.to_tensor(1, dtype='complex64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.to_tensor(1, dtype='complex128')
            self.assertEqual(x.element_size(), 16)

626 627 628 629 630 631
    def test_element_size(self):
        with _test_eager_guard():
            self.func_test_element_size()
        self.func_test_element_size()

    def func_test_backward(self):
L
Leo Chen 已提交
632 633 634 635 636 637 638 639
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            var.stop_gradient = False
            loss = fluid.layers.relu(var)
            loss.backward()
            grad_var = var._grad_ivar()
            self.assertEqual(grad_var.shape, self.shape)

640 641 642 643 644 645
    def test_backward(self):
        with _test_eager_guard():
            self.func_test_backward()
        self.func_test_backward()

    def func_test_gradient(self):
L
Leo Chen 已提交
646 647 648 649 650 651 652 653
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            var.stop_gradient = False
            loss = fluid.layers.relu(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, self.array.shape)

654 655 656 657 658 659
    def test_gradient(self):
        with _test_eager_guard():
            self.func_test_gradient()
        self.func_test_gradient()

    def func_test_block(self):
L
Leo Chen 已提交
660 661 662 663 664
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            self.assertEqual(var.block,
                             fluid.default_main_program().global_block())

665 666 667 668 669
    def test_block(self):
        with _test_eager_guard():
            self.func_test_block()
        self.func_test_block()

670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
    def _test_slice(self):
        w = fluid.dygraph.to_variable(
            np.random.random((784, 100, 100)).astype('float64'))

        for i in range(3):
            nw = w[i]
            self.assertEqual((100, 100), tuple(nw.shape))

        nw = w[:]
        self.assertEqual((784, 100, 100), tuple(nw.shape))

        nw = w[:, :]
        self.assertEqual((784, 100, 100), tuple(nw.shape))

        nw = w[:, :, -1]
        self.assertEqual((784, 100), tuple(nw.shape))

        nw = w[1, 1, 1]

        self.assertEqual(len(nw.shape), 1)
        self.assertEqual(nw.shape[0], 1)

        nw = w[:, :, :-1]
        self.assertEqual((784, 100, 99), tuple(nw.shape))

        tensor_array = np.array(
            [[[1, 2, 3], [4, 5, 6], [7, 8, 9]],
             [[10, 11, 12], [13, 14, 15], [16, 17, 18]],
             [[19, 20, 21], [22, 23, 24], [25, 26, 27]]]).astype('float32')
        var = fluid.dygraph.to_variable(tensor_array)
        var1 = var[0, 1, 1]
        var2 = var[1:]
        var3 = var[0:1]
        var4 = var[::-1]
        var5 = var[1, 1:, 1:]
        var_reshape = fluid.layers.reshape(var, [3, -1, 3])
        var6 = var_reshape[:, :, -1]
        var7 = var[:, :, :-1]
        var8 = var[:1, :1, :1]
        var9 = var[:-1, :-1, :-1]
        var10 = var[::-1, :1, :-1]
        var11 = var[:-1, ::-1, -1:]
        var12 = var[1:2, 2:, ::-1]
        var13 = var[2:10, 2:, -2:-1]
        var14 = var[1:-1, 0:2, ::-1]
        var15 = var[::-1, ::-1, ::-1]
716
        var16 = var[-4:4]
717 718
        var17 = var[:, 0, 0:0]
        var18 = var[:, 1:1:2]
719 720 721

        vars = [
            var, var1, var2, var3, var4, var5, var6, var7, var8, var9, var10,
722
            var11, var12, var13, var14, var15, var16, var17, var18
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
        ]
        local_out = [var.numpy() for var in vars]

        self.assertTrue(np.array_equal(local_out[1], tensor_array[0, 1, 1:2]))
        self.assertTrue(np.array_equal(local_out[2], tensor_array[1:]))
        self.assertTrue(np.array_equal(local_out[3], tensor_array[0:1]))
        self.assertTrue(np.array_equal(local_out[4], tensor_array[::-1]))
        self.assertTrue(np.array_equal(local_out[5], tensor_array[1, 1:, 1:]))
        self.assertTrue(
            np.array_equal(local_out[6],
                           tensor_array.reshape((3, -1, 3))[:, :, -1]))
        self.assertTrue(np.array_equal(local_out[7], tensor_array[:, :, :-1]))
        self.assertTrue(np.array_equal(local_out[8], tensor_array[:1, :1, :1]))
        self.assertTrue(
            np.array_equal(local_out[9], tensor_array[:-1, :-1, :-1]))
        self.assertTrue(
            np.array_equal(local_out[10], tensor_array[::-1, :1, :-1]))
        self.assertTrue(
            np.array_equal(local_out[11], tensor_array[:-1, ::-1, -1:]))
        self.assertTrue(
            np.array_equal(local_out[12], tensor_array[1:2, 2:, ::-1]))
        self.assertTrue(
            np.array_equal(local_out[13], tensor_array[2:10, 2:, -2:-1]))
        self.assertTrue(
            np.array_equal(local_out[14], tensor_array[1:-1, 0:2, ::-1]))
        self.assertTrue(
            np.array_equal(local_out[15], tensor_array[::-1, ::-1, ::-1]))
750
        self.assertTrue(np.array_equal(local_out[16], tensor_array[-4:4]))
751 752
        self.assertTrue(np.array_equal(local_out[17], tensor_array[:, 0, 0:0]))
        self.assertTrue(np.array_equal(local_out[18], tensor_array[:, 1:1:2]))
753

754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
    def _test_slice_for_tensor_attr(self):
        tensor_array = np.array(
            [[[1, 2, 3], [4, 5, 6], [7, 8, 9]],
             [[10, 11, 12], [13, 14, 15], [16, 17, 18]],
             [[19, 20, 21], [22, 23, 24], [25, 26, 27]]]).astype('float32')

        var = paddle.to_tensor(tensor_array)

        one = paddle.ones(shape=[1], dtype="int32")
        two = paddle.full(shape=[1], fill_value=2, dtype="int32")
        negative_one = paddle.full(shape=[1], fill_value=-1, dtype="int32")
        four = paddle.full(shape=[1], fill_value=4, dtype="int32")

        var = fluid.dygraph.to_variable(tensor_array)
        var1 = var[0, one, one]
        var2 = var[one:]
        var3 = var[0:one]
        var4 = var[::negative_one]
        var5 = var[one, one:, one:]
        var_reshape = fluid.layers.reshape(var, [3, negative_one, 3])
        var6 = var_reshape[:, :, negative_one]
        var7 = var[:, :, :negative_one]
        var8 = var[:one, :one, :1]
        var9 = var[:-1, :negative_one, :negative_one]
        var10 = var[::negative_one, :one, :negative_one]
        var11 = var[:negative_one, ::-1, negative_one:]
        var12 = var[one:2, 2:, ::negative_one]
        var13 = var[two:10, 2:, -2:negative_one]
        var14 = var[1:negative_one, 0:2, ::negative_one]
        var15 = var[::negative_one, ::-1, ::negative_one]
        var16 = var[-4:4]

        vars = [
            var, var1, var2, var3, var4, var5, var6, var7, var8, var9, var10,
            var11, var12, var13, var14, var15, var16
        ]
        local_out = [var.numpy() for var in vars]

        self.assertTrue(np.array_equal(local_out[1], tensor_array[0, 1, 1:2]))
        self.assertTrue(np.array_equal(local_out[2], tensor_array[1:]))
        self.assertTrue(np.array_equal(local_out[3], tensor_array[0:1]))
        self.assertTrue(np.array_equal(local_out[4], tensor_array[::-1]))
        self.assertTrue(np.array_equal(local_out[5], tensor_array[1, 1:, 1:]))
        self.assertTrue(
            np.array_equal(local_out[6],
                           tensor_array.reshape((3, -1, 3))[:, :, -1]))
        self.assertTrue(np.array_equal(local_out[7], tensor_array[:, :, :-1]))
        self.assertTrue(np.array_equal(local_out[8], tensor_array[:1, :1, :1]))
        self.assertTrue(
            np.array_equal(local_out[9], tensor_array[:-1, :-1, :-1]))
        self.assertTrue(
            np.array_equal(local_out[10], tensor_array[::-1, :1, :-1]))
        self.assertTrue(
            np.array_equal(local_out[11], tensor_array[:-1, ::-1, -1:]))
        self.assertTrue(
            np.array_equal(local_out[12], tensor_array[1:2, 2:, ::-1]))
        self.assertTrue(
            np.array_equal(local_out[13], tensor_array[2:10, 2:, -2:-1]))
        self.assertTrue(
            np.array_equal(local_out[14], tensor_array[1:-1, 0:2, ::-1]))
        self.assertTrue(
            np.array_equal(local_out[15], tensor_array[::-1, ::-1, ::-1]))
        self.assertTrue(np.array_equal(local_out[16], tensor_array[-4:4]))

818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
    def _test_for_getitem_ellipsis_index(self):
        shape = (64, 3, 5, 256)
        np_fp32_value = np.random.random(shape).astype('float32')
        np_int_value = np.random.randint(1, 100, shape)

        var_fp32 = paddle.to_tensor(np_fp32_value)
        var_int = paddle.to_tensor(np_int_value)

        def assert_getitem_ellipsis_index(var_tensor, var_np):
            var = [
                var_tensor[..., 0].numpy(),
                var_tensor[..., 1, 0].numpy(),
                var_tensor[0, ..., 1, 0].numpy(),
                var_tensor[1, ..., 1].numpy(),
                var_tensor[2, ...].numpy(),
                var_tensor[2, 0, ...].numpy(),
                var_tensor[2, 0, 1, ...].numpy(),
                var_tensor[...].numpy(),
                var_tensor[:, ..., 100].numpy(),
            ]

            self.assertTrue(np.array_equal(var[0], var_np[..., 0]))
            self.assertTrue(np.array_equal(var[1], var_np[..., 1, 0]))
            self.assertTrue(np.array_equal(var[2], var_np[0, ..., 1, 0]))
            self.assertTrue(np.array_equal(var[3], var_np[1, ..., 1]))
            self.assertTrue(np.array_equal(var[4], var_np[2, ...]))
            self.assertTrue(np.array_equal(var[5], var_np[2, 0, ...]))
            self.assertTrue(np.array_equal(var[6], var_np[2, 0, 1, ...]))
            self.assertTrue(np.array_equal(var[7], var_np[...]))
            self.assertTrue(np.array_equal(var[8], var_np[:, ..., 100]))

        var_fp32 = paddle.to_tensor(np_fp32_value)
        var_int = paddle.to_tensor(np_int_value)

        assert_getitem_ellipsis_index(var_fp32, np_fp32_value)
        assert_getitem_ellipsis_index(var_int, np_int_value)

855 856 857 858 859
        # test 1 dim tensor
        var_one_dim = paddle.to_tensor([1, 2, 3, 4])
        self.assertTrue(
            np.array_equal(var_one_dim[..., 0].numpy(), np.array([1])))

860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
    def _test_none_index(self):
        shape = (8, 64, 5, 256)
        np_value = np.random.random(shape).astype('float32')
        var_tensor = paddle.to_tensor(np_value)

        var = [
            var_tensor[1, 0, None].numpy(),
            var_tensor[None, ..., 1, 0].numpy(),
            var_tensor[:, :, :, None].numpy(),
            var_tensor[1, ..., 1, None].numpy(),
            var_tensor[2, ..., None, None].numpy(),
            var_tensor[None, 2, 0, ...].numpy(),
            var_tensor[None, 2, None, 1].numpy(),
            var_tensor[None].numpy(),
            var_tensor[0, 0, None, 0, 0, None].numpy(),
875
            var_tensor[None, None, 0, ..., None].numpy(),
876
            var_tensor[..., None, :, None].numpy(),
877 878 879 880 881 882 883 884 885 886 887 888 889
            var_tensor[0, 1:10:2, None, None, ...].numpy(),
        ]

        self.assertTrue(np.array_equal(var[0], np_value[1, 0, None]))
        self.assertTrue(np.array_equal(var[1], np_value[None, ..., 1, 0]))
        self.assertTrue(np.array_equal(var[2], np_value[:, :, :, None]))
        self.assertTrue(np.array_equal(var[3], np_value[1, ..., 1, None]))
        self.assertTrue(np.array_equal(var[4], np_value[2, ..., None, None]))
        self.assertTrue(np.array_equal(var[5], np_value[None, 2, 0, ...]))
        self.assertTrue(np.array_equal(var[6], np_value[None, 2, None, 1]))
        self.assertTrue(np.array_equal(var[7], np_value[None]))
        self.assertTrue(
            np.array_equal(var[8], np_value[0, 0, None, 0, 0, None]))
890 891
        self.assertTrue(
            np.array_equal(var[9], np_value[None, None, 0, ..., None]))
892
        self.assertTrue(np.array_equal(var[10], np_value[..., None, :, None]))
893 894 895 896

        # TODO(zyfncg) there is a bug of dimensions when slice step > 1 and 
        #              indexs has int type 
        # self.assertTrue(
897
        #     np.array_equal(var[11], np_value[0, 1:10:2, None, None, ...]))
898

Z
zyfncg 已提交
899 900 901 902 903
    def _test_bool_index(self):
        shape = (4, 2, 5, 64)
        np_value = np.random.random(shape).astype('float32')
        var_tensor = paddle.to_tensor(np_value)
        index = [[True, True, True, True], [True, False, True, True],
904 905
                 [True, False, False, True], [False, 0, 1, True, True],
                 [False, False, False, False]]
Z
zyfncg 已提交
906 907 908 909
        index2d = np.array([[True, True], [False, False], [True, False],
                            [True, True]])
        tensor_index = paddle.to_tensor(index2d)
        var = [
910 911
            var_tensor[index[0]].numpy(), var_tensor[index[1]].numpy(),
            var_tensor[index[2]].numpy(), var_tensor[index[3]].numpy(),
Z
zyfncg 已提交
912 913
            var_tensor[paddle.to_tensor(index[0])].numpy(),
            var_tensor[tensor_index].numpy(),
914
            var_tensor[paddle.to_tensor(index[4])].numpy()
Z
zyfncg 已提交
915 916 917 918 919 920 921
        ]
        self.assertTrue(np.array_equal(var[0], np_value[index[0]]))
        self.assertTrue(np.array_equal(var[1], np_value[index[1]]))
        self.assertTrue(np.array_equal(var[2], np_value[index[2]]))
        self.assertTrue(np.array_equal(var[3], np_value[index[3]]))
        self.assertTrue(np.array_equal(var[4], np_value[index[0]]))
        self.assertTrue(np.array_equal(var[5], np_value[index2d]))
922
        self.assertTrue(np.array_equal(var[6], np_value[index[4]]))
Z
zyfncg 已提交
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
        self.assertTrue(
            np.array_equal(var_tensor[var_tensor > 0.67], np_value[np_value >
                                                                   0.67]))
        self.assertTrue(
            np.array_equal(var_tensor[var_tensor < 0.55], np_value[np_value <
                                                                   0.55]))

        with self.assertRaises(ValueError):
            var_tensor[[False, False, False, False]]
        with self.assertRaises(ValueError):
            var_tensor[[True, False]]
        with self.assertRaises(ValueError):
            var_tensor[[True, False, False, False, False]]
        with self.assertRaises(IndexError):
            var_tensor[paddle.to_tensor([[True, False, False, False]])]

939 940 941 942 943 944 945 946 947
    def _test_scalar_bool_index(self):
        shape = (1, 2, 5, 64)
        np_value = np.random.random(shape).astype('float32')
        var_tensor = paddle.to_tensor(np_value)
        index = [True]
        tensor_index = paddle.to_tensor(index)
        var = [var_tensor[tensor_index].numpy(), ]
        self.assertTrue(np.array_equal(var[0], np_value[index]))

H
hong 已提交
948 949 950 951 952 953 954
    def _test_for_var(self):
        np_value = np.random.random((30, 100, 100)).astype('float32')
        w = fluid.dygraph.to_variable(np_value)

        for i, e in enumerate(w):
            self.assertTrue(np.array_equal(e.numpy(), np_value[i]))

955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
    def _test_numpy_index(self):
        array = np.arange(120).reshape([4, 5, 6])
        t = paddle.to_tensor(array)
        self.assertTrue(np.array_equal(t[np.longlong(0)].numpy(), array[0]))
        self.assertTrue(
            np.array_equal(t[np.longlong(0):np.longlong(4):np.longlong(2)]
                           .numpy(), array[0:4:2]))
        self.assertTrue(np.array_equal(t[np.int64(0)].numpy(), array[0]))
        self.assertTrue(
            np.array_equal(t[np.int32(1):np.int32(4):np.int32(2)].numpy(),
                           array[1:4:2]))
        self.assertTrue(
            np.array_equal(t[np.int16(0):np.int16(4):np.int16(2)].numpy(),
                           array[0:4:2]))

    def _test_list_index(self):
        # case1:
        array = np.arange(120).reshape([6, 5, 4])
        x = paddle.to_tensor(array)
        py_idx = [[0, 2, 0, 1, 3], [0, 0, 1, 2, 0]]
        idx = [paddle.to_tensor(py_idx[0]), paddle.to_tensor(py_idx[1])]
        self.assertTrue(np.array_equal(x[idx].numpy(), array[py_idx]))
        self.assertTrue(np.array_equal(x[py_idx].numpy(), array[py_idx]))
        # case2:
        tensor_x = paddle.to_tensor(
            np.zeros(12).reshape(2, 6).astype(np.float32))
981 982
        tensor_y1 = paddle.zeros([1], dtype='int32') + 2
        tensor_y2 = paddle.zeros([1], dtype='int32') + 5
983 984 985 986 987 988
        tensor_x[:, tensor_y1:tensor_y2] = 42
        res = tensor_x.numpy()
        exp = np.array([[0., 0., 42., 42., 42., 0.],
                        [0., 0., 42., 42., 42., 0.]])
        self.assertTrue(np.array_equal(res, exp))

W
WeiXin 已提交
989 990 991 992 993
        # case3:
        row = np.array([0, 1, 2])
        col = np.array([2, 1, 3])
        self.assertTrue(np.array_equal(array[row, col], x[row, col].numpy()))

W
wanghuancoder 已提交
994
    def func_test_slice(self):
L
Leo Chen 已提交
995
        with fluid.dygraph.guard():
996
            self._test_slice()
997
            self._test_slice_for_tensor_attr()
H
hong 已提交
998
            self._test_for_var()
999
            self._test_for_getitem_ellipsis_index()
1000
            self._test_none_index()
Z
zyfncg 已提交
1001
            self._test_bool_index()
1002
            self._test_scalar_bool_index()
1003 1004
            self._test_numpy_index()
            self._test_list_index()
1005

L
Leo Chen 已提交
1006 1007
            var = fluid.dygraph.to_variable(self.array)
            self.assertTrue(np.array_equal(var[1, :].numpy(), self.array[1, :]))
1008
            self.assertTrue(np.array_equal(var[::-1].numpy(), self.array[::-1]))
L
Leo Chen 已提交
1009

H
hong 已提交
1010 1011 1012
            with self.assertRaises(IndexError):
                y = var[self.shape[0]]

1013 1014 1015
            with self.assertRaises(IndexError):
                y = var[0 - self.shape[0] - 1]

W
WeiXin 已提交
1016 1017 1018 1019
            with self.assertRaises(IndexError):
                mask = np.array([1, 0, 1, 0], dtype=bool)
                var[paddle.to_tensor([0, 1]), mask]

W
wanghuancoder 已提交
1020 1021 1022 1023 1024
    def test_slice(self):
        with _test_eager_guard():
            self.func_test_slice()
        self.func_test_slice()

1025
    def func_test_var_base_to_np(self):
L
Leo Chen 已提交
1026 1027 1028 1029 1030 1031
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            self.assertTrue(
                np.array_equal(var.numpy(),
                               fluid.framework._var_base_to_np(var)))

1032 1033 1034 1035 1036 1037
    def test_var_base_to_np(self):
        with _test_eager_guard():
            self.func_test_var_base_to_np()
        self.func_test_var_base_to_np()

    def func_test_var_base_as_np(self):
1038 1039 1040 1041 1042 1043 1044 1045
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            self.assertTrue(np.array_equal(var.numpy(), np.array(var)))
            self.assertTrue(
                np.array_equal(
                    var.numpy(), np.array(
                        var, dtype=np.float32)))

1046 1047 1048 1049 1050 1051
    def test_var_base_as_np(self):
        with _test_eager_guard():
            self.func_test_var_base_as_np()
        self.func_test_var_base_as_np()

    def func_test_if(self):
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
        with fluid.dygraph.guard():
            var1 = fluid.dygraph.to_variable(np.array([[[0]]]))
            var2 = fluid.dygraph.to_variable(np.array([[[1]]]))

            var1_bool = False
            var2_bool = False

            if var1:
                var1_bool = True

            if var2:
                var2_bool = True

            assert var1_bool == False, "if var1 should be false"
            assert var2_bool == True, "if var2 should be true"
            assert bool(var1) == False, "bool(var1) is False"
            assert bool(var2) == True, "bool(var2) is True"

1070 1071 1072 1073 1074 1075
    def test_if(self):
        with _test_eager_guard():
            self.func_test_if()
        self.func_test_if()

    def func_test_to_static_var(self):
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
        with fluid.dygraph.guard():
            # Convert VarBase into Variable or Parameter
            var_base = fluid.dygraph.to_variable(self.array, name="var_base_1")
            static_var = var_base._to_static_var()
            self._assert_to_static(var_base, static_var)

            var_base = fluid.dygraph.to_variable(self.array, name="var_base_2")
            static_param = var_base._to_static_var(to_parameter=True)
            self._assert_to_static(var_base, static_param, True)

            # Convert ParamBase into Parameter
            fc = fluid.dygraph.Linear(
                10,
                20,
                param_attr=fluid.ParamAttr(
                    learning_rate=0.001,
                    do_model_average=True,
                    regularizer=fluid.regularizer.L1Decay()))
            weight = fc.parameters()[0]
            static_param = weight._to_static_var()
            self._assert_to_static(weight, static_param, True)

1098 1099 1100 1101 1102
    def test_to_static_var(self):
        with _test_eager_guard():
            self.func_test_to_static_var()
        self.func_test_to_static_var()

1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
    def _assert_to_static(self, var_base, static_var, is_param=False):
        if is_param:
            self.assertTrue(isinstance(static_var, fluid.framework.Parameter))
            self.assertTrue(static_var.persistable, True)
            if isinstance(var_base, fluid.framework.ParamBase):
                for attr in ['trainable', 'is_distributed', 'do_model_average']:
                    self.assertEqual(
                        getattr(var_base, attr), getattr(static_var, attr))

                self.assertEqual(static_var.optimize_attr['learning_rate'],
                                 0.001)
                self.assertTrue(
                    isinstance(static_var.regularizer,
                               fluid.regularizer.L1Decay))
        else:
            self.assertTrue(isinstance(static_var, fluid.framework.Variable))

        attr_keys = ['block', 'dtype', 'type', 'name']
        for attr in attr_keys:
            self.assertEqual(getattr(var_base, attr), getattr(static_var, attr))

        self.assertListEqual(list(var_base.shape), list(static_var.shape))

1126
    def func_test_tensor_str(self):
Z
Zhou Wei 已提交
1127
        paddle.enable_static()
1128
        paddle.disable_static(paddle.CPUPlace())
C
cnn 已提交
1129
        paddle.seed(10)
1130 1131 1132 1133
        a = paddle.rand([10, 20])
        paddle.set_printoptions(4, 100, 3)
        a_str = str(a)

1134
        expected = '''Tensor(shape=[10, 20], dtype=float32, place=Place(cpu), stop_gradient=True,
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
       [[0.2727, 0.5489, 0.8655, ..., 0.2916, 0.8525, 0.9000],
        [0.3806, 0.8996, 0.0928, ..., 0.9535, 0.8378, 0.6409],
        [0.1484, 0.4038, 0.8294, ..., 0.0148, 0.6520, 0.4250],
        ...,
        [0.3426, 0.1909, 0.7240, ..., 0.4218, 0.2676, 0.5679],
        [0.5561, 0.2081, 0.0676, ..., 0.9778, 0.3302, 0.9559],
        [0.2665, 0.8483, 0.5389, ..., 0.4956, 0.6862, 0.9178]])'''

        self.assertEqual(a_str, expected)

1145 1146 1147 1148 1149 1150
    def test_tensor_str(self):
        with _test_eager_guard():
            self.func_test_tensor_str()
        self.func_test_tensor_str()

    def func_test_tensor_str2(self):
1151 1152 1153 1154
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor([[1.5111111, 1.0], [0, 0]])
        a_str = str(a)

1155
        expected = '''Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
1156 1157 1158 1159 1160
       [[1.5111, 1.    ],
        [0.    , 0.    ]])'''

        self.assertEqual(a_str, expected)

1161 1162 1163 1164 1165 1166
    def test_tensor_str2(self):
        with _test_eager_guard():
            self.func_test_tensor_str2()
        self.func_test_tensor_str2()

    def func_test_tensor_str3(self):
1167 1168 1169 1170
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor([[-1.5111111, 1.0], [0, -0.5]])
        a_str = str(a)

1171
        expected = '''Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
1172 1173 1174 1175 1176
       [[-1.5111,  1.    ],
        [ 0.    , -0.5000]])'''

        self.assertEqual(a_str, expected)

1177 1178 1179 1180 1181 1182
    def test_tensor_str3(self):
        with _test_eager_guard():
            self.func_test_tensor_str3()
        self.func_test_tensor_str3()

    def func_test_tensor_str_scaler(self):
1183 1184 1185 1186
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor(np.array(False))
        a_str = str(a)

1187
        expected = '''Tensor(shape=[], dtype=bool, place=Place(cpu), stop_gradient=True,
1188 1189 1190 1191
       False)'''

        self.assertEqual(a_str, expected)

1192 1193 1194 1195 1196 1197
    def test_tensor_str_scaler(self):
        with _test_eager_guard():
            self.func_test_tensor_str_scaler()
        self.func_test_tensor_str_scaler()

    def func_test_tensor_str_shape_with_zero(self):
1198 1199 1200 1201 1202
        paddle.disable_static(paddle.CPUPlace())
        x = paddle.ones((10, 10))
        y = paddle.fluid.layers.where(x == 0)
        a_str = str(y)

1203
        expected = '''Tensor(shape=[0, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
1204 1205 1206 1207
       [])'''

        self.assertEqual(a_str, expected)

1208 1209 1210 1211 1212 1213
    def test_tensor_str_shape_with_zero(self):
        with _test_eager_guard():
            self.func_test_tensor_str_shape_with_zero()
        self.func_test_tensor_str_shape_with_zero()

    def func_test_tensor_str_linewidth(self):
1214 1215 1216 1217 1218 1219 1220
        paddle.disable_static(paddle.CPUPlace())
        paddle.seed(2021)
        x = paddle.rand([128])
        paddle.set_printoptions(
            precision=4, threshold=1000, edgeitems=3, linewidth=80)
        a_str = str(x)

1221
        expected = '''Tensor(shape=[128], dtype=float32, place=Place(cpu), stop_gradient=True,
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
       [0.3759, 0.0278, 0.2489, 0.3110, 0.9105, 0.7381, 0.1905, 0.4726, 0.2435,
        0.9142, 0.3367, 0.7243, 0.7664, 0.9915, 0.2921, 0.1363, 0.8096, 0.2915,
        0.9564, 0.9972, 0.2573, 0.2597, 0.3429, 0.2484, 0.9579, 0.7003, 0.4126,
        0.4274, 0.0074, 0.9686, 0.9910, 0.0144, 0.6564, 0.2932, 0.7114, 0.9301,
        0.6421, 0.0538, 0.1273, 0.5771, 0.9336, 0.6416, 0.1832, 0.9311, 0.7702,
        0.7474, 0.4479, 0.3382, 0.5579, 0.0444, 0.9802, 0.9874, 0.3038, 0.5640,
        0.2408, 0.5489, 0.8866, 0.1006, 0.5881, 0.7560, 0.7928, 0.8604, 0.4670,
        0.9285, 0.1482, 0.4541, 0.1307, 0.6221, 0.4902, 0.1147, 0.4415, 0.2987,
        0.7276, 0.2077, 0.7551, 0.9652, 0.4369, 0.2282, 0.0047, 0.2934, 0.4308,
        0.4190, 0.1442, 0.3650, 0.3056, 0.6535, 0.1211, 0.8721, 0.7408, 0.4220,
        0.5937, 0.3123, 0.9198, 0.0275, 0.5338, 0.4622, 0.7521, 0.3609, 0.4703,
        0.1736, 0.8976, 0.7616, 0.3756, 0.2416, 0.2907, 0.3246, 0.4305, 0.5717,
        0.0735, 0.0361, 0.5534, 0.4399, 0.9260, 0.6525, 0.3064, 0.4573, 0.9210,
        0.8269, 0.2424, 0.7494, 0.8945, 0.7098, 0.8078, 0.4707, 0.5715, 0.7232,
        0.4678, 0.5047])'''

        self.assertEqual(a_str, expected)

1240 1241 1242 1243 1244 1245
    def test_tensor_str_linewidth(self):
        with _test_eager_guard():
            self.func_test_tensor_str_linewidth()
        self.func_test_tensor_str_linewidth()

    def func_test_tensor_str_linewidth2(self):
1246 1247 1248 1249 1250 1251
        paddle.disable_static(paddle.CPUPlace())
        paddle.seed(2021)
        x = paddle.rand([128])
        paddle.set_printoptions(precision=4, linewidth=160, sci_mode=True)
        a_str = str(x)

1252
        expected = '''Tensor(shape=[128], dtype=float32, place=Place(cpu), stop_gradient=True,
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
       [3.7587e-01, 2.7798e-02, 2.4891e-01, 3.1097e-01, 9.1053e-01, 7.3811e-01, 1.9045e-01, 4.7258e-01, 2.4354e-01, 9.1415e-01, 3.3666e-01, 7.2428e-01,
        7.6640e-01, 9.9146e-01, 2.9215e-01, 1.3625e-01, 8.0957e-01, 2.9153e-01, 9.5642e-01, 9.9718e-01, 2.5732e-01, 2.5973e-01, 3.4292e-01, 2.4841e-01,
        9.5794e-01, 7.0029e-01, 4.1260e-01, 4.2737e-01, 7.3788e-03, 9.6863e-01, 9.9102e-01, 1.4416e-02, 6.5640e-01, 2.9318e-01, 7.1136e-01, 9.3008e-01,
        6.4209e-01, 5.3849e-02, 1.2730e-01, 5.7712e-01, 9.3359e-01, 6.4155e-01, 1.8320e-01, 9.3110e-01, 7.7021e-01, 7.4736e-01, 4.4793e-01, 3.3817e-01,
        5.5794e-01, 4.4412e-02, 9.8023e-01, 9.8735e-01, 3.0376e-01, 5.6397e-01, 2.4082e-01, 5.4893e-01, 8.8659e-01, 1.0065e-01, 5.8812e-01, 7.5600e-01,
        7.9280e-01, 8.6041e-01, 4.6701e-01, 9.2852e-01, 1.4821e-01, 4.5410e-01, 1.3074e-01, 6.2210e-01, 4.9024e-01, 1.1466e-01, 4.4154e-01, 2.9868e-01,
        7.2758e-01, 2.0766e-01, 7.5508e-01, 9.6522e-01, 4.3688e-01, 2.2823e-01, 4.7394e-03, 2.9342e-01, 4.3083e-01, 4.1902e-01, 1.4416e-01, 3.6500e-01,
        3.0560e-01, 6.5350e-01, 1.2115e-01, 8.7206e-01, 7.4081e-01, 4.2203e-01, 5.9372e-01, 3.1230e-01, 9.1979e-01, 2.7486e-02, 5.3383e-01, 4.6224e-01,
        7.5211e-01, 3.6094e-01, 4.7034e-01, 1.7355e-01, 8.9763e-01, 7.6165e-01, 3.7557e-01, 2.4157e-01, 2.9074e-01, 3.2458e-01, 4.3049e-01, 5.7171e-01,
        7.3509e-02, 3.6087e-02, 5.5341e-01, 4.3993e-01, 9.2601e-01, 6.5248e-01, 3.0640e-01, 4.5727e-01, 9.2104e-01, 8.2688e-01, 2.4243e-01, 7.4937e-01,
        8.9448e-01, 7.0981e-01, 8.0783e-01, 4.7065e-01, 5.7154e-01, 7.2319e-01, 4.6777e-01, 5.0465e-01])'''

        self.assertEqual(a_str, expected)

1267 1268 1269 1270 1271 1272
    def test_tensor_str_linewidth2(self):
        with _test_eager_guard():
            self.func_test_tensor_str_linewidth2()
        self.func_test_tensor_str_linewidth2()

    def func_tensor_str_bf16(self):
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor([[1.5, 1.0], [0, 0]])
        a = paddle.cast(a, dtype=core.VarDesc.VarType.BF16)
        paddle.set_printoptions(precision=4)
        a_str = str(a)

        expected = '''Tensor(shape=[2, 2], dtype=bfloat16, place=Place(cpu), stop_gradient=True,
       [[1.5000, 1.    ],
        [0.    , 0.    ]])'''

        self.assertEqual(a_str, expected)

1285 1286 1287 1288 1289
    def test_tensor_str_bf16(self):
        with _test_eager_guard():
            self.func_tensor_str_bf16()
        self.func_tensor_str_bf16()

1290 1291 1292 1293 1294 1295
    def test_tensor_str_bf16(self):
        with _test_eager_guard():
            self.func_tensor_str_bf16()
        self.func_tensor_str_bf16()

    def func_test_print_tensor_dtype(self):
L
Leo Chen 已提交
1296 1297 1298 1299 1300 1301 1302
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.rand([1])
        a_str = str(a.dtype)

        expected = 'paddle.float32'

        self.assertEqual(a_str, expected)
1303 1304 1305 1306 1307

    def test_print_tensor_dtype(self):
        with _test_eager_guard():
            self.func_test_print_tensor_dtype()
        self.func_test_print_tensor_dtype()
L
Leo Chen 已提交
1308

L
Leo Chen 已提交
1309

1310
class TestVarBaseSetitem(unittest.TestCase):
1311
    def func_setUp(self):
1312 1313 1314
        self.set_dtype()
        self.tensor_x = paddle.to_tensor(np.ones((4, 2, 3)).astype(self.dtype))
        self.np_value = np.random.random((2, 3)).astype(self.dtype)
1315 1316
        self.tensor_value = paddle.to_tensor(self.np_value)

1317 1318 1319
    def set_dtype(self):
        self.dtype = "int32"

1320
    def _test(self, value):
J
Jiabin Yang 已提交
1321
        if _in_legacy_dygraph():
W
wanghuancoder 已提交
1322
            self.assertEqual(self.tensor_x.inplace_version, 0)
1323

1324
        id_origin = id(self.tensor_x)
1325
        self.tensor_x[0] = value
J
Jiabin Yang 已提交
1326
        if _in_legacy_dygraph():
W
wanghuancoder 已提交
1327
            self.assertEqual(self.tensor_x.inplace_version, 1)
1328 1329

        if isinstance(value, (six.integer_types, float)):
1330
            result = np.zeros((2, 3)).astype(self.dtype) + value
1331 1332 1333 1334 1335 1336 1337 1338

        else:
            result = self.np_value

        self.assertTrue(np.array_equal(self.tensor_x[0].numpy(), result))
        self.assertEqual(id_origin, id(self.tensor_x))

        self.tensor_x[1:2] = value
J
Jiabin Yang 已提交
1339
        if _in_legacy_dygraph():
W
wanghuancoder 已提交
1340
            self.assertEqual(self.tensor_x.inplace_version, 2)
1341 1342 1343 1344
        self.assertTrue(np.array_equal(self.tensor_x[1].numpy(), result))
        self.assertEqual(id_origin, id(self.tensor_x))

        self.tensor_x[...] = value
J
Jiabin Yang 已提交
1345
        if _in_legacy_dygraph():
W
wanghuancoder 已提交
1346
            self.assertEqual(self.tensor_x.inplace_version, 3)
1347 1348 1349
        self.assertTrue(np.array_equal(self.tensor_x[3].numpy(), result))
        self.assertEqual(id_origin, id(self.tensor_x))

W
wanghuancoder 已提交
1350
    def func_test_value_tensor(self):
1351 1352
        self._test(self.tensor_value)

W
wanghuancoder 已提交
1353 1354
    def test_value_tensor(self):
        with _test_eager_guard():
1355
            self.func_setUp()
W
wanghuancoder 已提交
1356
            self.func_test_value_tensor()
1357
        self.func_setUp()
W
wanghuancoder 已提交
1358 1359 1360
        self.func_test_value_tensor()

    def func_test_value_numpy(self):
1361 1362
        self._test(self.np_value)

W
wanghuancoder 已提交
1363 1364
    def test_value_numpy(self):
        with _test_eager_guard():
1365
            self.func_setUp()
W
wanghuancoder 已提交
1366
            self.func_test_value_numpy()
1367
        self.func_setUp()
W
wanghuancoder 已提交
1368 1369 1370
        self.func_test_value_numpy()

    def func_test_value_int(self):
1371 1372
        self._test(10)

W
wanghuancoder 已提交
1373 1374
    def test_value_int(self):
        with _test_eager_guard():
1375
            self.func_setUp()
W
wanghuancoder 已提交
1376
            self.func_test_value_int()
1377
        self.func_setUp()
W
wanghuancoder 已提交
1378 1379
        self.func_test_value_int()

1380 1381 1382 1383 1384 1385 1386 1387 1388 1389

class TestVarBaseSetitemInt64(TestVarBaseSetitem):
    def set_dtype(self):
        self.dtype = "int64"


class TestVarBaseSetitemFp32(TestVarBaseSetitem):
    def set_dtype(self):
        self.dtype = "float32"

1390
    def func_test_value_float(self):
1391 1392 1393
        paddle.disable_static()
        self._test(3.3)

1394 1395 1396 1397 1398 1399 1400
    def test_value_float(self):
        with _test_eager_guard():
            self.func_setUp()
            self.func_test_value_float()
        self.func_setUp()
        self.func_test_value_float()

1401

1402 1403 1404 1405 1406
class TestVarBaseSetitemFp64(TestVarBaseSetitem):
    def set_dtype(self):
        self.dtype = "float64"


1407
class TestVarBaseSetitemBoolIndex(unittest.TestCase):
1408
    def func_setUp(self):
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
        paddle.disable_static()
        self.set_dtype()
        self.set_input()

    def set_input(self):
        self.tensor_x = paddle.to_tensor(np.ones((4, 2, 3)).astype(self.dtype))
        self.np_value = np.random.random((2, 3)).astype(self.dtype)
        self.tensor_value = paddle.to_tensor(self.np_value)

    def set_dtype(self):
        self.dtype = "int32"

    def _test(self, value):
        paddle.disable_static()
        self.assertEqual(self.tensor_x.inplace_version, 0)

        id_origin = id(self.tensor_x)
        index_1 = paddle.to_tensor(np.array([True, False, False, False]))
        self.tensor_x[index_1] = value
        self.assertEqual(self.tensor_x.inplace_version, 1)

        if isinstance(value, (six.integer_types, float)):
            result = np.zeros((2, 3)).astype(self.dtype) + value

        else:
            result = self.np_value

        self.assertTrue(np.array_equal(self.tensor_x[0].numpy(), result))
        self.assertEqual(id_origin, id(self.tensor_x))

        index_2 = paddle.to_tensor(np.array([False, True, False, False]))
        self.tensor_x[index_2] = value
        self.assertEqual(self.tensor_x.inplace_version, 2)
        self.assertTrue(np.array_equal(self.tensor_x[1].numpy(), result))
        self.assertEqual(id_origin, id(self.tensor_x))

        index_3 = paddle.to_tensor(np.array([True, True, True, True]))
        self.tensor_x[index_3] = value
        self.assertEqual(self.tensor_x.inplace_version, 3)
        self.assertTrue(np.array_equal(self.tensor_x[3].numpy(), result))
        self.assertEqual(id_origin, id(self.tensor_x))

1451
    def func_test_value_tensor(self):
1452 1453 1454
        paddle.disable_static()
        self._test(self.tensor_value)

1455 1456 1457 1458 1459 1460 1461 1462
    def test_value_tensor(self):
        with _test_eager_guard():
            self.func_setUp()
            self.func_test_value_tensor()
        self.func_setUp()
        self.func_test_value_tensor()

    def func_test_value_numpy(self):
1463 1464 1465
        paddle.disable_static()
        self._test(self.np_value)

1466 1467 1468 1469 1470 1471 1472 1473
    def test_value_numpy(self):
        with _test_eager_guard():
            self.func_setUp()
            self.func_test_value_numpy()
        self.func_setUp()
        self.func_test_value_numpy()

    def func_test_value_int(self):
1474 1475 1476
        paddle.disable_static()
        self._test(10)

1477 1478 1479 1480 1481 1482 1483
    def test_value_int(self):
        with _test_eager_guard():
            self.func_setUp()
            self.func_test_value_int()
        self.func_setUp()
        self.func_test_value_int()

1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509

class TestVarBaseSetitemBoolScalarIndex(unittest.TestCase):
    def set_input(self):
        self.tensor_x = paddle.to_tensor(np.ones((1, 2, 3)).astype(self.dtype))
        self.np_value = np.random.random((2, 3)).astype(self.dtype)
        self.tensor_value = paddle.to_tensor(self.np_value)

    def _test(self, value):
        paddle.disable_static()
        self.assertEqual(self.tensor_x.inplace_version, 0)

        id_origin = id(self.tensor_x)
        index = paddle.to_tensor(np.array([True]))
        self.tensor_x[index] = value
        self.assertEqual(self.tensor_x.inplace_version, 1)

        if isinstance(value, (six.integer_types, float)):
            result = np.zeros((2, 3)).astype(self.dtype) + value

        else:
            result = self.np_value

        self.assertTrue(np.array_equal(self.tensor_x[0].numpy(), result))
        self.assertEqual(id_origin, id(self.tensor_x))


1510
class TestVarBaseInplaceVersion(unittest.TestCase):
1511
    def func_test_setitem(self):
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
        paddle.disable_static()

        var = paddle.ones(shape=[4, 2, 3], dtype="float32")
        self.assertEqual(var.inplace_version, 0)

        var[1] = 1
        self.assertEqual(var.inplace_version, 1)

        var[1:2] = 1
        self.assertEqual(var.inplace_version, 2)

1523 1524 1525 1526 1527 1528
    def test_setitem(self):
        with _test_eager_guard():
            self.func_test_setitem()
        self.func_test_setitem()

    def func_test_bump_inplace_version(self):
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
        paddle.disable_static()
        var = paddle.ones(shape=[4, 2, 3], dtype="float32")
        self.assertEqual(var.inplace_version, 0)

        var._bump_inplace_version()
        self.assertEqual(var.inplace_version, 1)

        var._bump_inplace_version()
        self.assertEqual(var.inplace_version, 2)

1539 1540 1541 1542 1543
    def test_bump_inplace_version(self):
        with _test_eager_guard():
            self.func_test_bump_inplace_version()
        self.func_test_bump_inplace_version()

1544

1545
class TestVarBaseSlice(unittest.TestCase):
1546
    def func_test_slice(self):
1547 1548 1549 1550 1551 1552 1553
        paddle.disable_static()
        np_x = np.random.random((3, 8, 8))
        x = paddle.to_tensor(np_x, dtype="float64")
        actual_x = x._slice(0, 1)
        actual_x = paddle.to_tensor(actual_x)
        self.assertEqual(actual_x.numpy().all(), np_x[0:1].all())

1554 1555 1556 1557 1558
    def test_slice(self):
        with _test_eager_guard():
            self.func_test_slice()
        self.func_test_slice()

1559 1560

class TestVarBaseClear(unittest.TestCase):
1561
    def func_test_clear(self):
1562 1563 1564 1565 1566 1567
        paddle.disable_static()
        np_x = np.random.random((3, 8, 8))
        x = paddle.to_tensor(np_x, dtype="float64")
        x._clear()
        self.assertEqual(str(x), "Tensor(Not initialized)")

1568 1569 1570 1571 1572
    def test_clear(self):
        with _test_eager_guard():
            self.func_test_clear()
        self.func_test_clear()

1573 1574

class TestVarBaseOffset(unittest.TestCase):
1575
    def func_offset(self):
1576 1577 1578 1579 1580 1581 1582 1583
        paddle.disable_static()
        np_x = np.random.random((3, 8, 8))
        x = paddle.to_tensor(np_x, dtype="float64")
        expected_offset = 0
        actual_x = x._slice(expected_offset, 1)
        actual_x = paddle.to_tensor(actual_x)
        self.assertEqual(actual_x._offset(), expected_offset)

1584 1585 1586 1587 1588
    def test_offset(self):
        with _test_eager_guard():
            self.func_offset()
        self.func_offset()

1589

1590
class TestVarBaseShareBufferTo(unittest.TestCase):
1591
    def func_test_share_buffer_To(self):
1592
        paddle.disable_static()
1593 1594 1595
        np_src = np.random.random((3, 8, 8))
        src = paddle.to_tensor(np_src, dtype="float64")
        # empty_var
1596 1597 1598 1599
        if _in_legacy_dygraph():
            dst = core.VarBase()
        else:
            dst = core.eager.Tensor()
1600 1601
        src._share_buffer_to(dst)
        self.assertEqual(src._is_shared_buffer_with(dst), True)
1602

1603 1604 1605 1606 1607
    def test_share_buffer_To(self):
        with _test_eager_guard():
            self.func_test_share_buffer_To()
        self.func_test_share_buffer_To()

1608 1609

class TestVarBaseTo(unittest.TestCase):
1610
    def func_setUp(self):
1611 1612 1613 1614
        paddle.disable_static()
        self.np_x = np.random.random((3, 8, 8))
        self.x = paddle.to_tensor(self.np_x, dtype="float32")

1615
    def func_test_to_api(self):
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
        x_double = self.x._to(dtype='double')
        self.assertEqual(x_double.dtype, paddle.fluid.core.VarDesc.VarType.FP64)
        self.assertTrue(np.allclose(self.np_x, x_double))

        x_ = self.x._to()
        self.assertEqual(self.x.dtype, paddle.fluid.core.VarDesc.VarType.FP64)
        self.assertTrue(np.allclose(self.np_x, x_))

        if paddle.fluid.is_compiled_with_cuda():
            x_gpu = self.x._to(device=paddle.CUDAPlace(0))
            self.assertTrue(x_gpu.place.is_gpu_place())
            self.assertEqual(x_gpu.place.gpu_device_id(), 0)

            x_gpu0 = self.x._to(device='gpu:0')
            self.assertTrue(x_gpu0.place.is_gpu_place())
            self.assertEqual(x_gpu0.place.gpu_device_id(), 0)

            x_gpu1 = self.x._to(device='gpu:0', dtype="float64")
            self.assertTrue(x_gpu1.place.is_gpu_place())
            self.assertEqual(x_gpu1.place.gpu_device_id(), 0)
            self.assertEqual(x_gpu1.dtype,
                             paddle.fluid.core.VarDesc.VarType.FP64)

            x_gpu2 = self.x._to(device='gpu:0', dtype="float16")
            self.assertTrue(x_gpu2.place.is_gpu_place())
            self.assertEqual(x_gpu2.place.gpu_device_id(), 0)
            self.assertEqual(x_gpu2.dtype,
                             paddle.fluid.core.VarDesc.VarType.FP16)

        x_cpu = self.x._to(device=paddle.CPUPlace())
        self.assertTrue(x_cpu.place.is_cpu_place())

        x_cpu0 = self.x._to(device='cpu')
        self.assertTrue(x_cpu0.place.is_cpu_place())

        x_cpu1 = self.x._to(device=paddle.CPUPlace(), dtype="float64")
        self.assertTrue(x_cpu1.place.is_cpu_place())
        self.assertEqual(x_cpu1.dtype, paddle.fluid.core.VarDesc.VarType.FP64)

        x_cpu2 = self.x._to(device='cpu', dtype="float16")
        self.assertTrue(x_cpu2.place.is_cpu_place())
        self.assertEqual(x_cpu2.dtype, paddle.fluid.core.VarDesc.VarType.FP16)

        self.assertRaises(ValueError, self.x._to, device=1)
        self.assertRaises(AssertionError, self.x._to, blocking=1)

1662 1663 1664 1665 1666 1667 1668
    def test_to_api(self):
        with _test_eager_guard():
            self.func_setUp()
            self.func_test_to_api()
        self.func_setUp()
        self.func_test_to_api()

1669 1670

class TestVarBaseInitVarBaseFromTensorWithDevice(unittest.TestCase):
1671
    def func_test_varbase_init(self):
1672 1673 1674 1675 1676 1677 1678
        paddle.disable_static()
        t = fluid.Tensor()
        np_x = np.random.random((3, 8, 8))
        t.set(np_x, fluid.CPUPlace())

        if paddle.fluid.is_compiled_with_cuda():
            device = paddle.CUDAPlace(0)
1679 1680 1681 1682
            if _in_legacy_dygraph():
                tmp = fluid.core.VarBase(t, device)
            else:
                tmp = fluid.core.eager.Tensor(t, device)
1683 1684 1685 1686
            self.assertTrue(tmp.place.is_gpu_place())
            self.assertEqual(tmp.numpy().all(), np_x.all())

        device = paddle.CPUPlace()
1687 1688 1689 1690
        if _in_legacy_dygraph():
            tmp = fluid.core.VarBase(t, device)
        else:
            tmp = fluid.core.eager.Tensor(t, device)
1691 1692
        self.assertEqual(tmp.numpy().all(), np_x.all())

1693 1694 1695 1696 1697
    def test_varbase_init(self):
        with _test_eager_guard():
            self.func_test_varbase_init()
        self.func_test_varbase_init()

1698 1699

class TestVarBaseNumel(unittest.TestCase):
1700
    def func_test_numel_normal(self):
1701 1702 1703 1704 1705 1706 1707
        paddle.disable_static()
        np_x = np.random.random((3, 8, 8))
        x = paddle.to_tensor(np_x, dtype="float64")
        x_actual_numel = x._numel()
        x_expected_numel = np.product((3, 8, 8))
        self.assertEqual(x_actual_numel, x_expected_numel)

1708 1709 1710 1711 1712 1713
    def test_numel_normal(self):
        with _test_eager_guard():
            self.func_test_numel_normal()
        self.func_test_numel_normal()

    def func_test_numel_without_holder(self):
1714
        paddle.disable_static()
1715 1716 1717 1718
        if _in_legacy_dygraph():
            x_without_holder = core.VarBase()
        else:
            x_without_holder = core.eager.Tensor()
1719 1720 1721
        x_actual_numel = x_without_holder._numel()
        self.assertEqual(x_actual_numel, 0)

1722 1723 1724 1725 1726
    def ttest_numel_without_holder(self):
        with _test_eager_guard():
            self.func_test_numel_without_holder()
        self.func_test_numel_without_holder()

1727 1728

class TestVarBaseCopyGradientFrom(unittest.TestCase):
1729
    def func_test_copy_gradient_from(self):
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
        paddle.disable_static()
        np_x = np.random.random((2, 2))
        np_y = np.random.random((2, 2))
        x = paddle.to_tensor(np_x, dtype="float64", stop_gradient=False)
        y = paddle.to_tensor(np_y, dtype="float64")
        out = x + x
        out.backward()
        x._copy_gradient_from(y)
        self.assertEqual(x.grad.numpy().all(), np_y.all())

1740 1741 1742 1743 1744
    def test_copy_gradient_from(self):
        with _test_eager_guard():
            self.func_test_copy_gradient_from()
        self.func_test_copy_gradient_from()

1745

L
Leo Chen 已提交
1746 1747
if __name__ == '__main__':
    unittest.main()